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Summary

@ Review Benford’s Law.
@ Discuss examples and applications.
@ Sketch proofs.

@ Describe open problems.
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unlikely events, alternate reasons.
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Benford’s Law: Newcomb (1881), Benford (1938)

For many data sets, probability of observing a first digit of

d base Bis logg (%+'); base 10 about 30% are 1s.

@ Not all data sets satisfy Benford’s Law.
o Long street [1, L]: L =199 versus L = 999.
o Oscillates between 1/9 and 5/9 with first digit 1.
© Many streets of different sizes: close to Benford.
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Examples

e recurrence relations

e special functions (such as n!)

e iterates of power, exponential, rational maps
e products of random variables

e L-functions, characteristic polynomials

o iterates of the 3x + 1 map

o differences of order statistics

e hydrology and financial data

e many hierarchical Bayesian models




Introduction
[ ]
Applications

e analyzing round-off errors

e determining the optimal way to store
numbers

e detecting tax and image fraud, and data
integrity
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°
Mantissas

Mantissa: x = Mio(x) - 10%, k integer.

Mio(x) = Mio(x) if and only if x and X have the
same leading digits.

Key observation: log,o(x) = logo(X) mod 1 if
and only if x and x have the same leading digits.
Thus often study y = log;, X.
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Equidistribution and Benford’s Law

Equidistribution
{¥n}>2, is equidistributed modulo 1 if probability
yamod 1 € [a,b] tends to b — a:
#{n<N:y,mod 1€ [a b]} .
N
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Equidistribution and Benford’s Law

Equidistribution
{¥n}>2, is equidistributed modulo 1 if probability
yamod 1 € [a,b] tends to b — a:

#{n<N:y,mod 1€ [a b]} .

N b— a.

e Thm: 5 &€ Q, ng is equidistributed mod 1.

o Examples: logy, 2,109, (%) Z Q.
Proof: if rational: 2 = 10°/9,
Thus 29 = 10P or 297P = 5P impossible.
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Example of Equidistribution: n,/7 mod 1

051

0.2 0.4 0.6 0.8 1

ny/m mod 1 for n <10
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Example of Equidistribution: n,/7 mod 1

081

0.6

041

02r

04 0.6 0.8 1

ny/m mod 1 for n < 100
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Example of Equidistribution: n,/7 mod 1

081

0.6

041

021

04 0.6 0.8 1

ny/m mod 1 for n < 1000
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Example of Equidistribution: n,/7 mod 1

081

0.6

04

02r

0.2 0.4 0.6 0.8

ny/m mod 1 for n < 10,000
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Logarithms and Benford’s Law

Fundamental Equivalence

Data set {x;} is Benford base B if {y;} is
equidistributed mod 1, where y; = logg X;.

0 log 2 /log 10
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Logarithms and Benford’s Law

Fundamental Equivalence

Data set {x;} is Benford base B if {y;} is
equidistributed mod 1, where y; = logg X;.

log 2 /log 10
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Examples

e 2" is Benford base 10 as logy 2 ¢ Q.

e Fibonacci numbers are Benford base 10.
apni1 = @n+ an—1-
Guessa,=n":rtt' ="y rmtorrd=r+1.
Roots r = (1 £+/5)/2.
General solution: a, = ¢1r{ + cor’.

n n
Binet: a, = % (%) - % (%) .
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Applications for the IRS: Detecting Fraud
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Applications for the IRS: Detecting Fraud
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Applications for the IRS: Detecting Fraud

Exh Check Fraud in Arizona

f
The table lists the checks that a manager in the office of the
Arizona State Treasurer wrote to divert funds for his own use

| The vendors to whom the checks were issued ware fictitious.

Date of Check Amount
October 9, 1992 $ 192748

| + 27.902.31

[ October 14, 1992 86,241.90

[ 72,117.46

1,321.75

‘ 97,473.96

October 19, 1992 93,249.11

89,658.17

‘ B7,776-89

92,105.83
79.949.16

87,602.93
‘ 96.879.27
91,806.47
84,991.67
90,831.83
| 93,766.67
| 88,338.72
‘ 94,639 49

83,709.28
| 96,412.21
‘ 88,432.86
[ A 71,552.16

| % 1,878,687.58
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Applications for the IRS: Detecting Fraud (cont)

o Embezzler started small and then increased
dollar amounts.

e Most amounts below $100,000 (critical
threshold for data requiring additional
scrutiny).

e Over 90% had first digit of 7, 8 or 9.




Applications
L]

Detecting Fraud

Bank Fraud

o Audit of a bank revealed huge spike of
numbers starting with 48 and 49, most due
to one person.

o Write-off limit of $5,000. Officer had friends
applying for credit cards, ran up balances
just under $5,000 then he would write the
debts off.

.
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Detecting Fraud

e Benford’s Law detected manipulation of
revenue numbers.

o Results showed a tendency towards round
Earnings Per Share (0.10, 0.20, etc.).
Consistent with a small but noticeable
increase in earnings management in 2002.

-
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Data Integrity: Stream Flow Statistics: 130 years, 457,440 records
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Analysis of Williams College Transactions (thanks to Richard
McDowell): September 6, 2006 to June 29, 2007: 64,000+
transactions

Digit Analysis of Williams Financial Transactions




Analysis of Williams College Transactions (thanks to Richard
McDowell): September 6, 2006 to June 29, 2007: 64,000+
transactions

percentage
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Analysis of Williams College Transactions (thanks to Richard

McDowell): September 6, 2006 to June 29, 2007: 64,000+
transactions

percentage

0.008

0.006

0.004
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Conclusions
Conclusions and Future Investigations

e Diverse systems exhibit Benford behavior.

e Ingredients of proofs (logarithms,
equidistribution).

e Applications to fraud detection / data
integrity.

e Future work:
o Study digits of other systems.
o Develop more sophisticated tests for fraud.

|
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