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Summary

Review Benford’s Law.

Discuss examples and applications.

Sketch proofs.

Describe open problems.
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Caveats!

Not all fraud can be detected by Benford’s Law.
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Not all fraud can be detected by Benford’s Law.

A math test indicating fraud is not proof of fraud:
unlikely events, alternate reasons.
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Benford’s Law: Newcomb (1881), Benford (1938)

Statement
For many data sets, probability of observing a first digit of
d base B is logB

(d+1
d

)
; base 10 about 30% are 1s.
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; base 10 about 30% are 1s.

Not all data sets satisfy Benford’s Law.
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Benford’s Law: Newcomb (1881), Benford (1938)

Statement
For many data sets, probability of observing a first digit of
d base B is logB

(d+1
d

)
; base 10 about 30% are 1s.

Not all data sets satisfy Benford’s Law.
� Long street [1, L]: L = 199 versus L = 999.
� Oscillates between 1/9 and 5/9 with first digit 1.
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Benford’s Law: Newcomb (1881), Benford (1938)

Statement
For many data sets, probability of observing a first digit of
d base B is logB

(d+1
d

)
; base 10 about 30% are 1s.

Not all data sets satisfy Benford’s Law.
� Long street [1, L]: L = 199 versus L = 999.
� Oscillates between 1/9 and 5/9 with first digit 1.
� Many streets of different sizes: close to Benford.
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Examples

recurrence relations
special functions (such as n!)
iterates of power, exponential, rational maps
products of random variables
L-functions, characteristic polynomials
iterates of the 3x + 1 map
differences of order statistics
hydrology and financial data
many hierarchical Bayesian models
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Applications

analyzing round-off errors

determining the optimal way to store
numbers

detecting tax and image fraud, and data
integrity
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General Theory
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Mantissas

Mantissa: x = M10(x) · 10k , k integer.
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Mantissa: x = M10(x) · 10k , k integer.

M10(x) = M10(x̃) if and only if x and x̃ have the
same leading digits.
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Mantissas

Mantissa: x = M10(x) · 10k , k integer.

M10(x) = M10(x̃) if and only if x and x̃ have the
same leading digits.

Key observation: log10(x) = log10(x̃) mod 1 if
and only if x and x̃ have the same leading digits.
Thus often study y = log10 x .
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Equidistribution and Benford’s Law

Equidistribution
{yn}∞n=1 is equidistributed modulo 1 if probability
yn mod 1 ∈ [a, b] tends to b − a:

#{n ≤ N : yn mod 1 ∈ [a, b]}
N

→ b − a.
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{yn}∞n=1 is equidistributed modulo 1 if probability
yn mod 1 ∈ [a, b] tends to b − a:
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N
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Thm: β 6∈ Q, nβ is equidistributed mod 1.
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Equidistribution and Benford’s Law

Equidistribution
{yn}∞n=1 is equidistributed modulo 1 if probability
yn mod 1 ∈ [a, b] tends to b − a:

#{n ≤ N : yn mod 1 ∈ [a, b]}
N

→ b − a.

Thm: β 6∈ Q, nβ is equidistributed mod 1.

Examples: log10 2, log10

(
1+

√
5

2

)
6∈ Q.
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Equidistribution and Benford’s Law

Equidistribution
{yn}∞n=1 is equidistributed modulo 1 if probability
yn mod 1 ∈ [a, b] tends to b − a:

#{n ≤ N : yn mod 1 ∈ [a, b]}
N

→ b − a.

Thm: β 6∈ Q, nβ is equidistributed mod 1.

Examples: log10 2, log10

(
1+

√
5

2

)
6∈ Q.

Proof: if rational: 2 = 10p/q.
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Equidistribution and Benford’s Law

Equidistribution
{yn}∞n=1 is equidistributed modulo 1 if probability
yn mod 1 ∈ [a, b] tends to b − a:

#{n ≤ N : yn mod 1 ∈ [a, b]}
N

→ b − a.

Thm: β 6∈ Q, nβ is equidistributed mod 1.

Examples: log10 2, log10

(
1+

√
5

2

)
6∈ Q.

Proof: if rational: 2 = 10p/q.
Thus 2q = 10p or 2q−p = 5p, impossible.
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Example of Equidistribution: n
√

π mod 1

0.2 0.4 0.6 0.8 1

0.5

1.0

1.5

2.0

n
√

π mod 1 for n ≤ 10
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Example of Equidistribution: n
√

π mod 1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1.0

n
√

π mod 1 for n ≤ 100
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Example of Equidistribution: n
√

π mod 1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1.0

n
√

π mod 1 for n ≤ 1000
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Example of Equidistribution: n
√

π mod 1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1.0

n
√

π mod 1 for n ≤ 10, 000
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Logarithms and Benford’s Law

Fundamental Equivalence
Data set {xi} is Benford base B if {yi} is
equidistributed mod 1, where yi = logB xi .
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Logarithms and Benford’s Law

Fundamental Equivalence
Data set {xi} is Benford base B if {yi} is
equidistributed mod 1, where yi = logB xi .

0 1log 2 � log 10
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Logarithms and Benford’s Law

Fundamental Equivalence
Data set {xi} is Benford base B if {yi} is
equidistributed mod 1, where yi = logB xi .

0 1

1 102

log 2 � log 10
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Examples

2n is Benford base 10 as log10 2 6∈ Q.
Fibonacci numbers are Benford base 10.
an+1 = an + an−1.
Guess an = nr : rn+1 = rn + rn−1 or r2 = r + 1.
Roots r = (1 ±

√
5)/2.

General solution: an = c1rn
1 + c2rn

2 .

Binet: an = 1√
5

(
1+

√
5

2

)n
− 1√

5

(
1−

√
5

2

)n
.
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Applications
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Applications for the IRS: Detecting Fraud
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Applications for the IRS: Detecting Fraud
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Applications for the IRS: Detecting Fraud (cont)

Embezzler started small and then increased
dollar amounts.

Most amounts below $100,000 (critical
threshold for data requiring additional
scrutiny).

Over 90% had first digit of 7, 8 or 9.
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Detecting Fraud

Bank Fraud
Audit of a bank revealed huge spike of
numbers starting with 48 and 49, most due
to one person.

Write-off limit of $5,000. Officer had friends
applying for credit cards, ran up balances
just under $5,000 then he would write the
debts off.
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Detecting Fraud

Enron
Benford’s Law detected manipulation of
revenue numbers.

Results showed a tendency towards round
Earnings Per Share (0.10, 0.20, etc.).
Consistent with a small but noticeable
increase in earnings management in 2002.
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Data Integrity: Stream Flow Statistics: 130 years, 457,440 records
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Analysis of Williams College Transactions (thanks to Richard
McDowell): September 6, 2006 to June 29, 2007: 64,000+
transactions

1 2 3 4 5 6 7 8 9
digit0.00

0.05

0.10

0.15

0.20

0.25

0.30

percentage

Digit Analysis of Williams Financial Transactions
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Analysis of Williams College Transactions (thanks to Richard
McDowell): September 6, 2006 to June 29, 2007: 64,000+
transactions

20 40 60 80 100
digits
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Analysis of Williams College Transactions (thanks to Richard
McDowell): September 6, 2006 to June 29, 2007: 64,000+
transactions

200 400 600 800 1000
digits

0.002

0.004

0.006

0.008

percentage
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Conclusions
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Conclusions and Future Investigations

Diverse systems exhibit Benford behavior.
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Ingredients of proofs (logarithms,
equidistribution).
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equidistribution).

Applications to fraud detection / data
integrity.
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Conclusions and Future Investigations

Diverse systems exhibit Benford behavior.

Ingredients of proofs (logarithms,
equidistribution).

Applications to fraud detection / data
integrity.

Future work:
� Study digits of other systems.
� Develop more sophisticated tests for fraud.
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