Bergman Game Definition and ExampleHistoryQuantities and TechniquesSummary of ResultsAcknowledgementsReferences00000000000000000

The Bergman Game, SMALL 2021

Speakers: Faye Jackson¹, Luke Reifenberg²

Co-authors: Ben Baily³, Justine Dell⁴, Irfan Durmic⁵, Henry Fleischmann⁶, Isaac Mijares⁷, Steven J Miller⁸, Ethan Pesikoff⁹, Alicia Smith Reina¹⁰, Yingzi Yang¹¹

¹alephnil@umich.edu, ²lreifenb@nd.edu, ³bmb2@williams.edu,
 ⁴jdell@haverford.edu, ⁵id5@williams.edu, ⁶henryfl@umich.edu, ⁷rim1@williams.edu,
 ⁸sjm1@williams.edu, ⁹ethan.pesikoff@yale.edu, ¹⁰licita.smith01@gmail.com

May 19, 2022

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

Definition

The *Bergman Game* is a turn-based game played on an **doubly infinite tape**.

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

Definition

The *Bergman Game* is a turn-based game played on an **doubly infinite tape**. The **Combine Move:**

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

Definition

The *Bergman Game* is a turn-based game played on an **doubly infinite tape**. The **Combine Move:**

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

Definition

The *Bergman Game* is a turn-based game played on an **doubly infinite tape**. The **Combine Move:**

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

Definition

The *Bergman Game* is a turn-based game played on an **doubly infinite tape**. The **Combine Move:**

The Split Move:

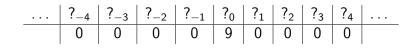
Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

Definition

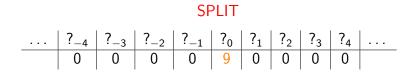
The *Bergman Game* is a turn-based game played on an **doubly infinite tape**. The **Combine Move:**

The Split Move:

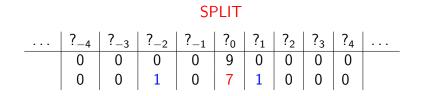
... 0 0 2 0 ...


Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

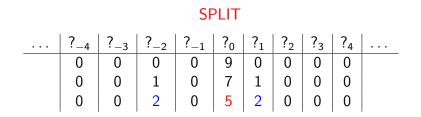
Definition

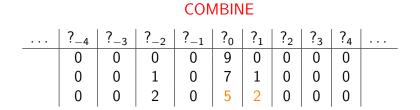

The *Bergman Game* is a turn-based game played on an **doubly infinite tape**. The **Combine Move:**

The Split Move:


Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					


Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					


Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

	?_4	?_3	?_2	$?_{-1}$? ₀	$?_1$?2	? ₃	?4	
	0	0	0	0	9	0	0	0	0	
	0	0	1	0	7	1	0	0	0	
	0	0	2	0	5	2	0	0	0	
	0	0 0 0 0	2	0	4	1	1	0	0	

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

	?_4	?_3	?_2	$?_{-1}$? ₀	$?_1$?2	? ₃	?4	
	0	0	0	0	9	0	0	0	0	
	0	0	1	0	7	1	0	0	0	
	0	0	2	0	5	2	0	0	0	
	0	0 0 0 0	2	0	4	1	1	0	0	

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

 ?_4	?_3	?_2	$?_{-1}$?0	$?_1$?2	? ₃	?4	
 0	0	0	0	9	0	0	0	0	
0	0	1	0	7	1	0	0	0	
0	0	2	0	5	2	0	0	0	
0	0	2	0	4	1	1	0	0	
0 0 0 0 0	0	2	0	4	0	0	1	0	

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

SPLIT

	?_4	?_3	?_2	$?_{-1}$? ₀	$?_1$?2	? ₃	?4	
	0	0	0	0	9	0	0	0	0	
	0	0	1	0	7	1	0	0	0	
	0	0	2	0	5	2	0	0	0	
	0	0	2	0	4	1	1	0	0	
	0	0 0 0 0 0	2	0	4	0	0	1	0	

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

SPLIT

 ?_4	?_3	?_2	$?_{-1}$?0	$?_1$?2	?3	?4	
0	0	0	0	9	0	0	0	0	
0	0	1	0	7	1	0	0	0	
0	0	2	0	5	2	0	0	0	
0	0 0 0	2	0	4	1	1	0	0	
0	0	2	0	4	0	0	1	0	
1	0 0	0	1	4	0	0	1	0	

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

 ?_4	?_3	?_2	$?_{-1}$?0	?1	?2	?3	?4	
 0	0	0	0	9	0	0	0	0	
0	0	1	0	7	1	0	0	0	
0	0	2	0	5	2	0	0	0	
0	0	2	0	4	1	1	0	0	
0			0	4	0	0	1	0	
1	0	0	1		0				

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

 ?_4	?_3	?_2		?0	$?_1$?2	?3	?4	
 0	0	0	0	9	0	0	0	0	
0	0	1	0	7	1	0	0	0	
0	0	2	0	5	2	0	0	0	
0	0	2	0	4	1	1	0	0	
0	0	2	0	4	0	0	1	0	
1	0	0	1	4	0	0	1	0	
1	0	0	0	3	1	0	1	0	

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

 ?_4	?_3	?_2		?0	$?_1$?2	? ₃	?4	
 0	0	0	0	9	0	0	0	0	
0	0	1	0	7	1	0	0	0	
0	0	2	0	5	2	0	0	0	
0	0	2	0	4	1	1	0	0	
0	0	2	0	4	0	0	1	0	
1	0	0	1	4	0	0	1	0	
1	0	0	0	3	1	0	1	0	

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

 ?_4	?_3	?_2	$?_{-1}$? ₀	$?_1$?2	? ₃	?4	
 0	0	0	0	9	0	0	0	0	
0	0	1	0	7	1	0	0	0	
0	0	2	0	5	2	0	0	0	
0	0	2	0	4	1	1	0	0	
0	0	2	0	4	0	0	1	0	
1	0	0	1	4	0	0	1	0	
1	0	0	0	3	1	0	1	0	
1	0	0	0	2	0	1	1	0	

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

 ?_4	?_3	?_2	$?_{-1}$? ₀	? ₁	?2	? ₃	?4	
0	0	0	0	9	0	0	0	0	
0	0	1	0	7	1	0	0	0	
0	0	2	0	5	2	0	0	0	
0	0	2	0	4	1	1	0	0	
0	0	2	0	4	0	0	1	0	
1	0	0	1	4	0	0	1	0	
1	0	0	0	3	1	0	1	0	
1	0	0	0	2	0	1	1	0	

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

 ?_4	?_3	?_2	$?_{-1}$?0	$?_1$?2	?3	?4	
 0	0	0	0	9	0	0	0	0	
0	0	1	0	7	1	0	0	0	
0	0	2	0	5	2	0	0	0	
0	0	2	0	4	1	1	0	0	
0	0	2	0	4	0	0	1	0	
1	0	0	1	4	0	0	1	0	
1	0	0	0	3	1	0	1	0	
1	0	0	0	2	0	1	1	0	
1	0	0	0	2	0	0	0	1	

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

SPLIT

 ?_4	?_3	?_2	$?_{-1}$? ₀	$?_1$?2	? ₃	?4	
 0	0	0	0	9	0	0	0	0	
0	0	1	0	7	1	0	0	0	
0	0	2	0	5	2	0	0	0	
0	0	2	0	4	1	1	0	0	
0	0	2	0	4	0	0	1	0	
1	0	0	1	4	0	0	1	0	
1	0	0	0	3	1	0	1	0	
1	0	0	0	2	0	1	1	0	
1	0	0	0	2	0	0	0	1	

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

SPLIT

 ?_4	?_3	?_2	$?_{-1}$? ₀	$?_1$?2	? ₃	? ₄	
0	0	0	0	9	0	0	0	0	
0	0	1	0	7	1	0	0	0	
0	0	2	0	5	2	0	0	0	
0	0	2	0	4	1	1	0	0	
0	0	2	0	4	0	0	1	0	
1	0	0	1	4	0	0	1	0	
1	0	0	0	3	1	0	1	0	
1	0	0	0	2	0	1	1	0	
1	0	0	0	2	0	0	0	1	
1	0	1	0	0	1	0	0	1	

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
0000					

The Wonders of φ

- The polynomial $x^2 x 1 = 0$ "works well" with these rules because $x^2 = 1 + x$ and $2x^2 = 1 + x^3$.
- The golden mean, $\varphi = \frac{1+\sqrt{5}}{2}$ is a root of this polynomial.
- Any integer can be uniquely represented as a sum of non-consecutive powers of φ.

 Bergman Game Definition and Example
 History
 Quantities and Techniques
 Summary of Results
 Acknowledgements
 References

 000
 000
 0000
 0000
 0000
 0
 0

Playing the Bergman Game: The Reveal

 φ^{-4}	φ^{-3}	φ^{-2}	φ^{-1}	φ^{0}	φ^1	φ^2	φ^3	φ^4	
 0	0	0	0	9	0	0	0	0	
0	0	1	0	7	1	0	0	0	
0	0	2	0	5	2	0	0	0	
0	0	2	0	4	1	1	0	0	
0	0	2	0	4	0	0	1	0	
1	0	0	1	4	0	0	1	0	
1	0	0	0	3	1	0	1	0	
1	0	0	0	2	0	1	1	0	
1	0	0	0	2	0	0	0	1	
1	0	1	0	0	1	0	0	1	

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
	000				

History

Definition

The Fibonacci Numbers are a recursively defined sequence so that $F_0 = 1, F_1 = 2$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
	000				

History

Definition

The Fibonacci Numbers are a recursively defined sequence so that $F_0 = 1, F_1 = 2$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.

Theorem (Zeckendorf, 1972,[2])

Every positive integer may be written uniquely as a sum of non-adjacent Fibonacci numbers .

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
	000				

History

Definition

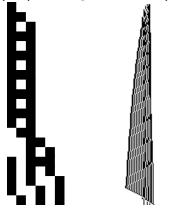
The Fibonacci Numbers are a recursively defined sequence so that $F_0 = 1, F_1 = 2$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.

Theorem (Zeckendorf, 1972,[2])

Every positive integer may be written uniquely as a sum of non-adjacent Fibonacci numbers .

Example

$2021 = 1597 + 377 + 34 + 13 = \textit{F}_{15} + \textit{F}_{12} + \textit{F}_{7} + \textit{F}_{5}$


Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
	000				

The **Zeckendorf Game** (see [1]) uses very similar rules to the Bergman Game, with extra boundary moves that prevent us from using negative indices. It produces Zeckendorf Decomposition.

The Bergman Game is Long

Zeckendorf Game (left) vs Bergman Game (right) on 20 chips:

The Bergman Game is MUCH more complicated!

The Bergman Game Invariants

Take the following four game states from the recent game:

φ^{-2}	φ^{-1}	φ^{0}	φ^1	$ \varphi^2 $	Value(S)
0	0	9	0	0	$9arphi^0=9$
1	0	7	1	0	$arphi^{-2}+7arphi^0+1arphi^1=9$
2	0	5	2	0	$2arphi^{-2}+5arphi^0+2arphi^2=9$
2	0	4	1	1	$\left \begin{array}{c} 2 \varphi^{-2} + 4 \varphi^0 + 1 \varphi^1 + 1 \varphi^2 = 9 \end{array} \right $

Definition

Value(S) = $\sum_{j} S(j)\varphi^{j}$, that is, the number which the game state S represents as a base φ decomposition.

This is an *invariant*.

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
		00000000			

Number of Chips

Definition

#chips(S) = the number of chips in game state S

- #chips(S) stays the same when we split and goes down by one when we combine. Bounds # of combines.
- It is a *monovariant*, a quantity which only changes in one direction over the course of the game.

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
		00000000			

Index Sum

Definition

IndexSum(S) = $\sum_{j} S(j) \cdot j$, a weighted sum of the indices in game state S.

- A split decreases this by one. Can bound # of successive splits.
- A combine into index j increases this by -j + 3

Bergman Game Definition and ExampleHistoryQuantities and TechniquesSummary of ResultsAcknowledgementsReferences0000000000000000000000

The Bergman Game Terminates: Left/Right Bound

Lemma (Right Bound)

We have a right bound on the game of $\log_{\phi} Value(S)$.

Bergman Game Definition and ExampleHistoryQuantities and TechniquesSummary of ResultsAcknowledgementsReferences0000000000000000000000

The Bergman Game Terminates: Left/Right Bound

Lemma (Right Bound)

We have a right bound on the game of $\log_{\phi} Value(S)$.

- We bound the maximum gap size between summands during the game.
- We then perform a worst-case analysis to provide a left bound.
- Together these give a maximum and minimum for IndexSum(S).

Bergman Game Definition and ExampleHistoryQuantities and TechniquesSummary of ResultsAcknowledgementsReferences0000000000000000000000

The Bergman Game Terminates

Proposition

The Bergman Game Terminates.

Proof.

- There are at most #chips(S) combines
- Suffices to bound successive splits
- IndexSum(S) is bounded above and below.

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
		000000000			

Building Better Hammers

• We first prove slow termination.

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
		000000000			

Building Better Hammers

- We first prove slow termination.
- Information about the final state \rightarrow better left bound.

Building Better Hammers

- We first prove slow termination.
- Information about the final state → better left bound.
- Better Left Bound → Fast Termination depending on Length of Initial State.

Bergman Game Definition and Example History Quantities and Techniques Summary of Results Acknowledgements References o

Building Better Hammers

- We first prove slow termination.
- Information about the final state → better left bound.
- Better Left Bound → Fast Termination depending on Length of Initial State.
- Fast Termination Depending on Length → Fast Termination only depending on Chips.

 Bergman Game Definition and Example
 History
 Quantities and Techniques
 Summary of Results
 Acknowledgements
 References

 0000
 000
 0000
 0000
 0000
 0

Summary of Our Bergman Game Results

Theorem (SMALL, 2021)

There is a tight left bound $-2n - \log_{\varphi} n$ on the left-most used edge of a game that begins with n chips at the 0th index.

Theorem (SMALL, 2021)

The longest Bergman Game with n summands terminates in $\Theta(n^2)$ moves. Furthermore, an O(n) game is achievable from any initial state.

Bergman Game Definition and Example History Quantities and Techniques **Summary of Results** Acknowledgements References o

The Generalized Bergman Game

Definition

We say a sequence is a Positive Linear Recurrence Sequence (PLRS) if it is given by a linear recurrence with characteristic polynomial $x^k - c_1 x^{k-1} - \cdots - c_k$ for some c_i with $c_1, c_k > 0$ and $k \ge 2$. We say it is non-increasing if $c_1 \ge c_2 \ge \cdots \ge c_k > 0$. For convenience if j > k we let $c_j = 0$.

Example

Let
$$a_0 = a_1 = a_2 = 1$$
, and for $n \ge 3$,
 $a_n := 3a_{n-1} + 2a_{n-2} + a_{n-3}$.
1, 1, 1, 6, 21, 76, 276, ...

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
			0000		

Generalized Bergman game

The Bergman Game is based on φ and its recurrence relation. We also define games based on the roots of any non-increasing PLRS. We call such games together the Generalized Bergman Game.

Theorem (SMALL, 2021)

The longest Generalized Bergman Game with n summands terminates in $\Theta(n^2)$ moves.

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
			0000		

Further Questions

- Is there a winning strategy for either player?
- How hard is it to determine the winner or winning strategy on the Bergman Game?
- How far can the results on the Bergman Game be pushed beyond non-increasing PLRS games?

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References
				•	

Acknowledgements

This research was done as part of the SMALL REU program and was funded by NSF grant number 1947438.

Special thanks to our co-researchers Benjamin Baily, Justine Dell, Irfan Durmic, Henry Fleischmann, Isaac Mijares, Ethan Pesikoff, Alicia Smith Reina, and Yingzi Yang as well as Professor Steven J. Miller for his mentorship.

Bergman Game Definition and Example	History	Quantities and Techniques	Summary of Results	Acknowledgements	References

References

- P. Baird-Smith, A. Epstein, K. Flint, and S. J. Miller. "The Zeckendorf Game". In: *Combinatorial and Additive Number Theory III*. Ed. by Melvyn B. Nathanson. Springer Proceedings in Mathematics & Statistics. Cham: Springer International Publishing, 2020, pp. 25–38. ISBN: 978-3-030-31106-3. DOI: 10.1007/978-3-030-31106-3 3.
- T. J. Keller. "Generalizations of Zeckendorf's Theorem". In: Fibonacci Quarterly 10.1 (), pp. 95-103. URL: https://fq.math.ca/Scanned/10-1/keller-a.pdf.