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Last Summer: Families and Moments

A one-parameter family of elliptic curves is given by
E:y? = x3* 4+ A(T)x +B(T)

where A(T),B(T) are polynomials in Z[T].

@ Each specialization of T to an integer t gives an
elliptic curve £(t) over Q.

@ The r'" moment of the Fourier coefficients is

Ace(p) = D agy(p).

t modp
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Negative Bias in the First Moment

A ¢(p) and Family Rank (Rosen-Silverman)

If Tate’s Conjecture holds for £ then

im %ZM — _rak(£/Q).

X—
7 px P

@ By the Prime Number Theorem,
A1 g(p) = —rp + O(1) implies rank(£/Q) =r.

A




Bias: ECs
°

Bias Conjecture

Second Moment Asymptotic (Michel)
For families £ with j(T) non-constant, the second moment
is

@ The lower order terms are of sizes p%/2, p, p*/?, and 1.

In every family we have studied, we have observed:

Bias Conjecture

The largest lower term in the second moment expansion
which does not average to O is on average negative .
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Preliminary Evidence and Patterns

Let n3, , equal the number of cube roots of 2 modulo p,
and set co(p) = |(3) + (3] P cx(P) = [ s (5]
Ca/2(P) = P Xypy (252).

Family A1e(p) Aze(p)
y2=x3+Sx+T 0 pd —p?
y? = x*+2%(=3)(T + 1) 0 T e
y? = x* 4 4(4T + 2)x 0 B s
y2=x3 +(T+1)x +Tx 0 Z_2p-1
y2=x3+x24+2T +1 0 2—2p—(_T3)
y2=x*+Tx*+1 -p P? — N3 20Pp — 1+ C3/2(P)
y?=x3 -T2 4+ T2 —2p p?> —p —c1(p) — co(p)
y2=x3 -T2 +T* -2p p? —p —c1(p) — co(p)
y2=x34+Tx? — (T +3)x +1 —2Cp,1.4P p? —4c,16p — 1

where ¢y am = 1 if p = amod m and otherwise is 0.
B
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Lower order terms and average rank

1 & logR - 2 1
N0 (W) = do+ o) - :
logp 1 ~/2logp 2 loglogR
glogRF¢<logR)at(p) +O< log R )

@ ¢(x) > 0 gives upper bound average rank.

@ Expect big-Oh term Q(1/logR).

TS HHSHHH
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Implications for Excess Rank

@ Katz-Sarnak’s one-level density statistic is used to
measure the average rank of curves over a family.

@ More curves with rank than expected have been
observed, though this excess average rank vanishes
in the limit.

@ Lower-order biases in the moments of families explain
a small fraction of this excess rank phenomenon.
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Methods for Obtaining Explicit Formulas

For a family £ : y? = x3 + A(T )x + B(T), we can write

aco® - — 3 (x +A(t)x+B(t))

X mod p P

where (5> is the Legendre symbol modp given by

1 if X is a non-zero square modulo p

(5) =<0 ifx =0modp
P —1 otherwise.
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Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums
> (ax;b) =0 ifpta

X mod p

a?rbx+c) _(g> if p b2 — dac
< p )_ (p—1)<g) if p | b? — 4ac

2

X mod p

>

Average Values of Legendre Symbols

The value of <%> for x € Z, when averaged over all
primes p, is 1 if X is a non-zero square, and 0 otherwise.
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Rank 0 Families

Theorem (MMRW’14): Rank O Families Obeying the
Bias Conjecture

For families of the form &£ : y? = x® + ax? + bx +cT +d,

Pos(p) = p2—p <1+ (?) + <a2—p3b>> .

@ The average bias in the size p termis —2 or —1,
according to whether a> — 3b € Z is a non-zero
square.
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Families with Rank

Theorem (MMRW’14): Families with Rank
For families of the form & : y? = x® + aT2x + bT?,

) = 0 1+ (3) + () (B (45

@ These include families of rank O, 1, and 2.

@ The average bias in the size p terms is —3 or —2,
according to whether —3a € Z is a non-zero square.
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Families with Rank

Theorem (MMRW’14): Families with Complex
Multiplication

For families of the form £ : y? = x3 + (aT + b)x,
5 -1
Aog(P) = (P"=P) 1+ () )

@ The average bias in the size p term is —1.

@ The size p? term is not constant, but is on average p?,
and an analogous Bias Conjecture holds.
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Families with Unusual Distributions of Signs

Theorem (MMRW’14): Families with Unusual Signs
For the family £ : y? = x3 4+ Tx? — (T + 3)x + 1,

Aze(p) = p>—p (2+2 <%3>> 1.

@ The average bias in the size p term is —2.

@ The family has an usual distribution of signs in the
functional equations of the corresponding L-functions.
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The Size p3/2 Term

Theorem (MMRW’14): Families with a Large Error

For families of the form
E:y?=x3+ (T +a)x?+ (bT +b?—ab+c)x — bc,

<—cx(x + b)(bx — c))

Aog(p) = P —3p—1+p ) :

X mod p

@ The size p®/? term is given by an elliptic curve
coefficient and is thus on average 0.

@ The average bias in the size p term is —3.
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General Structure of the Lower Order Terms

The lower order terms appear to always
@ have no size p¥? term or a size p®/? term that is on
average 0;

@ exhibit their negative bias in the size p term;

@ be determined by polynomials in p, elliptic curve
coefficients, and congruence classes of p (i.e., values
of Legendre symbols).
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New Families: Work in Progress

@ Dirichlet characters of prime level: bias +1.
@ Holomorphic cusp forms: bias —1/2.

o r'™ Symmetric Power F, x s4: bias +1/48.

(With Megumi Asada and Eva Fourakis (Williams), Kevin
Yang (Harvard).)
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Finite Conductor Models at Central Point

With Owen Barrett and Blaine Talbut (Chicago),
Gwyn Moreland (Michigan), Nathan Ryan (Bucknell)

Emails: owen.barrett@yale.edu, gwynm@umich.edu,
blainetalbut@gmail.com, nathan.ryan@bucknell.edu.

Excised Orthogonal Ensemble joint with Eduardo Duefiez, Duc
Khiem Huynh, Jon Keating and Nina Snaith. Numerical experiments
ongoing with Nathan Ryan.
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RMT: Theoretical Results ( N — o)
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1st normalized evalue above 1: SO(even)
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RMT: Theoretical Results ( N — o)

© o o o
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1st normalized evalue above 1: SO(odd)
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Rank O Curves: 1st Norm Zero: 14 One-Param of Rank 0

1 1.5 2 2.5

Figure 4a: 209 rank 0 curves from 14 rank O families,
log(cond) € [3.26,9.98], median = 1.35, mean = 1.36
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Rank O Curves: 1st Norm Zero: 14 One-Param of Rank 0

0.5 1 1.5 2 2.5

Figure 4b: 996 rank O curves from 14 rank 0 families,
log(cond) € [15.00, 16.00], median = .81, mean = .86.
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Spacings b/w Norm Zeros: Rank 0 One-Param Families over Q(T)

@ All curves have log(cond) € [15, 16];

@ 7 = imaginary part of j™" normalized zero above the central point;

@ 863 rank 0 curves from the 14 one-param families of rank 0 over Q(T);
@ 701 rank 2 curves from the 21 one-param families of rank 0 over Q(T).

863 Rank 0 Curves | 701 Rank 2 Curves t-Statistic
Median z, — z; 1.28 1.30
Mean 2z, —z; 1.30 1.34 -1.60
StDev 7z, —7; 0.49 0.51
Median z3 — z; 1.22 1.19
Mean 2z3— 2, 1.24 1.22 0.80
StDev 73— 27, 0.52 0.47
Median z3 — z; 2.54 2.56
Mean z3—12z; 2.55 2.56 -0.38
StDev 73— 273 0.52 0.52

OGS
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Spacings b/w Norm Zeros: Rank 2 one-param families over Q(T)

@ All curves have log(cond) € [15, 16];

@ 7 = imaginary part of the j™ norm zero above the central point;

@ 64 rank 2 curves from the 21 one-param families of rank 2 over Q(T);
@ 23 rank 4 curves from the 21 one-param families of rank 2 over Q(T).

64 Rank 2 Curves | 23 Rank 4 Curves t-Statistic
Median z, — 73 1.26 1.27
Mean 2z, —z; 1.36 1.29 0.59
StDev 2z, — 23 0.50 0.42
Median z3 — z, 1.22 1.08
Mean z3—2z; 1.29 1.14 1.35
StDev 73— 27, 0.49 0.35
Median z3 — z; 2.66 2.46
Mean z3—2z; 2.65 2.43 2.05
StDev 73 — 27, 0.44 0.42
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Rank 2 Curves from Rank 0 & Rank 2 Families over Q(T)

@ All curves have log(cond) € [15, 16];

@ 7 = imaginary part of the j™ norm zero above the central point;

@ 701 rank 2 curves from the 21 one-param families of rank 0 over Q(T);
@ 64 rank 2 curves from the 21 one-param families of rank 2 over Q(T).

701 Rank 2 Curves | 64 Rank 2 Curves || t-Statistic
Median z, — z; 1.30 1.26
Mean 2z, —2z; 1.34 1.36 0.69
StDev 7z, —7; 0.51 0.50
Median z3 — z» 1.19 1.22
Mean 2z3— 2, 1.22 1.29 1.39
StDev 73— 27, 0.47 0.49
Median z3 — z; 2.56 2.66
Mean z3—12z; 2.56 2.65 1.93
StDev 73— 23 0.52 0.44

- EEEOSTSTSTSTSSSSSS
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New Model for Finite Conductors

@ Replace conductor N with Neective-
o Arithmetic info, predict with L-function Ratios Conj.
© Do the number theory computation.

@ Excised Orthogonal Ensembles.
o L(1/2,E) discretized.
o Study matrices in SO(2Neg ) with |Aa(1)] > ceN.

@ Painlevé VI differential equation solver.
o Use explicit formulas for densities of Jacobi ensembles.
o Key input: Selberg-Aomoto integral for initial conditions.
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Modeling lowest zero of Lg,, (S, xq) with 0 < d < 400,000

04 |
0.2 T4
0

Lowest zero for Lg,, (S, xq) (bar chart),'lowest eigenvalue
of SO(2N) with N (solid), standard Ng (dashed).




Central Point

Modeling lowest zero of Lg,, (S, xq) with 0 < d < 400,000

Lowest zero for Lg,, (S, xa) (bar chart); lowest eigenvalue

of SO(2N): Ngt = 2 (solid) with discretisation, and
Negi = 2.32 (dashed) without discretisation.
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Effective Matrix Size: Families with Unitary Symplectic Mo nodromy

@ L-function attached to quadratic Dirichlet character.

oL(x,8) = [Tpew (L= x(PIP%) .

@ L-function attached to symmetric power.
oL(Sym'f,s) = [],.. Lp(Sym',s).

@ Compute 1-level Density: Study distribution of zeros
© Dl,«p(]:) =#F L Zfe]—‘ Z,}le/yrinyf (s - Iozg—wQ)
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Integral Representation of One-Level Density

We bound conductors of families by a parameter X
o For quadratic Dirichlet characters, we have:

The One-Level Density is represented by the integral kernel
sin(2wr) 1 — cos(2n7) 1
K(r) = 1 —
(™) 2T A-Tlog X log? X
for A < O.

Similarly for the family of quadratic twists of Sym'f.
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Deducing Effective Matrix Size

° Matching with integral kernel of matrix groups.

°y K uspeen)(t) = 1 — o) o 1o 4

W K1 So(2|\|+1)(t), same Ieading term.

@ Note
s 1 — cos(2nt)
L (K _K - . = LUelent)
N (K1,s0(2n-+1) 1,USP(2(—-N))) 5N

@ Unitary Symplectic Families behave like SO(2N + 1)
for bounded X.

@ Similarly for quadratic twists of Sym?f.
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Excised Orthogonal Ensemble

@ As before, let F be those quadratic twists of L(E, s).
o Idea: interpret L(E,  + it) as an integral kernel.
@ Taylor Series expansion:

1 1 1

L(E,s) = L(E, 5) + L'(E, 5)(3 — 5) -

@ Goal: match power series coefficients with that of
chy (e'?).

@ Amalgamate integral kernels together: attach to F a
product distribution [Tz~ [,°L(E, 5 + it)dt.
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Excised Orthogonal Ensemble (continued)

We deduce

Let Fx be those quadratic twists of an elliptic curve E /Q of
conductor N < X. If sup,, (‘L(”)(E, L= ch(”)(l)D < 4, then

<E.
L2

HDL]:X - Dl,MN(x)
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Summary of Results

@ Dirichlet characters of prime level: bias +1.
@ Holomorphic cusp forms: bias —1/2.

o r'™ Symmetric Power F; x s4: bias +1/48.
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Dirichlet Family Fq

Definition

Prime q € Z and 7y = {x # x0(q)} is the family of
nontrivial Dirichlet characters of conductor q. The second
moment at p is

= ) X%(p)

XEFq

Goal: Compute asymptotics for the sum

Mzx (Fq) = ZMZ Fa:P) ZZXZ(F’)

p<X p<X xEFq
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Results for Fq

Family F, has positive bias in the second moment of +1.

Have Mz(]:q; p) = er]—‘q Xz(p)'

From orthogonality relations:

-2 ifp=+£1(q);
Mz(Fq;p) = { (11 :fg%ilggg,

Thus
ZMz(]:q;p): Z(q—Z)— Z 1.
p<X pzpﬁ((q) pfpﬁ((q)

Main term size (X). O

A
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Cuspidal Newforms

Fix level g = 1. For weight k, consider an orthonormal
basis Bk q(x0) of Hk q(x0), the space of holomorphic cusp
forms on the surface 5\ of level k and trivial
nebentypus.

Family
fx = U Bk,q:l(XO)-

k<X
k=0(2)

A
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An Important Tool: Petersson Trace Formula

For any n,m > 1, we have

Mk —1 2 o Sc(p, A
W > PP =6(p.p)+2mi Y @JH (Tp)

fE€B q(x0) ¢=0(q)

where X¢(n) is the n-th Hecke eigenvalue of f,
d(m, n) is Kronecker’s delta,

Sc¢(m, n) is the classical Kloosterman sum, and
Jy—_1(t) is the k-Bessel function.

A7
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Cusp Newform: F_x

We gain asymptotic control over Ji_4(t) by averaging over
even weights k.

2(Fx; p) ZMzHUXo Z Z At (p

k*<X k*<X feBy 1(xo0)

where ) ,._, denotes summing over even k.

Let ¢ € C3°(R~o) be real-valued, and let X > 1. Then

42 <%) Jea(t) = <P(%) T &90(2) (%)

A
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Cusp Newform: F_x

To handle S;(m, n), we instead compute

Mz(fx;é) = Z MZ(erp)logp

p<X?

After several substitutions and iterations of integration by
parts,

1 Xl+6 X1+5
M . — _Xl+5 . o)
ol7xi0) = 5 2log® X? " (Iog3x5>

yields a bias of —1/2.

A
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Varying the Level: Fx;d;e

Can also vary the level:

Mz(./—"x;(s; 6) = Z Mz(fq,x;é)

q<X¢

= 2. 2.2 2. |Mp)? logp

q<Xe p<X? k*<X feBy q(xo0)

B }Xl+5+€ B X 1+6+e N (xl+5+€ )
2 2log® X9 log®Xxs /)"

AT
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Symmetric Lift Family

Fix a square-free level g and study for § > 0

-Fr,X,é,q - U Symr[ ﬁ,q(Xo)}-

k<X?$

Second moment: for € > 0O:

Mz,s(]:r,x,éq - Z Z Z )‘gym'f(p) )

p<Xe k<X$¢ feH;’q(Xo)
find bias of +1/48 in

Mz (Frx.s) = lim M2 (Fr x.5.0)-

q sq—free

A
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