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The Random Matrix Theory Connection

Philosophy: Critical-zero statistics of L-functions agree
with eigenvalue statistics of large random matrices.

@ Montgomery - pair-correlations of zeros of ((s) and
eigenvalues of the Gaussian Unitary Ensemble.

@ Hejhal, Rudnick and Sarnak - Higher correlations and
automorphic L-functions.

@ Odlyzko - further evidence through extensive
numerical computations.
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Consecutive Zero Spacings
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Large Gaps between Zeros

Let0 < <9 <---<~n <--- be the ordinates of the
critical zeros of an L-function.

Gaps between consecutive zeros that are arbitrarily large,
relative to the average gap size, appear infinitely often.
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Large Gaps between Zeros

Let0 < <9 <---<~n <--- be the ordinates of the
critical zeros of an L-function.

Gaps between consecutive zeros that are arbitrarily large,
relative to the average gap size, appear infinitely often.

Letting A = limsup — L —
nee  @verage spacing’

this conjecture is equivalent to A = cc.

@ Best unconditional result for the Riemann zeta
function is A > 2.69.

¢
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Degree 2 Case

Higher degree L-functions are mostly unexplored.

Theorem (Turnage-Butterbaugh '14)

Let T > 2,¢ > 0, (x(s) the Dedekind zeta function
attached to a quadratic number field K with discriminant d
with |[d| < T¢, and 8t := {71,972, ...,7n} be the distinct
zeros of (x (% + it,f) in the interval [T, 2T]. Let xt denote
the maximum gap between consecutive zeros in 8t. Then

(1+0(dlogT)™).

> \/EL
T = log \/|d[T

@ Assuming GRH, this means A > /6 ~ 2.449.

y
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A Lower Bound on Large Gaps

We proved the following unconditional theorem for an L-function
associated to a holomorphic cusp form f on GL(2).

Theorem (BMMRTW '14)

Let 8t := {71,72, ..., } be the set of distinct zeros of L (3 + it,f) in
the interval [T, 2T]. Let xt denote the maximum gap between
consecutive zeros in 8t. Then

KT > Iz)/g_$ <1+O (C—lf(logT)“5>),

where ¢; is the residue of the Rankin-Selberg convolution L(s, f x )
ats = 1.

Assuming GRH, there are infinitely many normalized gaps between
consecutive zeros at least /3 times the mean spacing, i.e.,

A > V3 ~ 1.732.
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An Upper Bound on Small Gaps

Theorem (BMMRTW '14)

L in Selberg class primitive of degree m_. Assume GRH for

logL(s) = >>n2, b (n)/n®, 3, [bL(n)log n[2 = (1 + o(1))x log x.
Have a computable nontrivial upper bound on g (liminf of smallest
average gap) depending on m,.

m_  upper bound for p

1 0.606894
2 0.822897
3 0.905604
4 0.942914
5 0.962190

(m_ = 1 due to Carneiro, Chandee, Littmann and Milinovich).

-
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Results on Gaps and Shifted Second Moments J
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Shifted Moment Result

To prove our theorem, use a method due to R.R. Hall and
the following shifted moment result.

Theorem (BMMRTW '14)

2T 1 1
/ L<—+it+a,f)L(——it+B,f)dt
LD 2

oy ENE ((iifglnaognw 10 (T(log T)*9),

where «, 5 € Cand |«|,|3] < 1/logT.

Key idea: differentiate wrt parameters, yields formulas for
integrals of products of derivatives.
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Shifted Moments Proof Technique

@ Approximate functional equation:

L(s +a,f) = > ?]fs(fa)e—% +F(s)) nAlf(S”)a +E(s),

n>1 n<X

where X¢(n) are the Fourier coefficients of L(s,f),
F(s) is a functional equation term, and E(s) is an
error term.

@ We have an analogous expression for L(1 — s + f,f).
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Shifted Moments Proof Technique

@ Analyze product
L(s + «,f)L(1 —s + 5,1),

where each factor gives rise to four products (so
sixteen products to estimate).

@ Use a generalization of Montgomery and Vaughan'’s
mean value theorem and contour integration to
estimate product and compute the resulting moments.
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Shifted Moment Result for Derivatives

@ Shifted moment result yields lower order terms and
moments of derivatives of L-functions by
differentiation and Cauchy’s integral formula.

@ Derive an expression for

2T 1 1
LD (= it f ) LW (= —it.f ) dt
[ (3en)en i) m

where T > 2 and p, v € Z*. Use this in Hall's method
to obtain the lower bound stated in our theorem.

@ Need (u,v) € {(0,0),(1,0),(1,1)}; other cases
prewously done (Good d|d (0,0) and Yashiro did

1= v).
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Modified Wirtinger Inequality

Using Hall's method, we bound the gaps between zeroes.
This requires the following result, due to Wirtinger and
modified by Bredberg.

Lemma (Bredberg)

Lety : [a, b] — C be a continuously differentiable function
and suppose thaty(a) = y(b) = 0. Then

[ oara < (b;a)z [ veorac
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Proving our Result

@ For p areal parameter to be determined later, define
g(t) := e (1 +it,f),

Fix f and let 5¢(k ) denote an ordinate zero of L(s,f)

on the critical line R(s) = 3.
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Proving our Result

@ For p areal parameter to be determined later, define
g(t) := e (1 +it,f),

Fix f and let 5¢(k ) denote an ordinate zero of L(s,f)
on the critical line R(s) = 3.
@ g(t) has same zeros as L(s,f) (att = #(k)). Use in

the modified Wirtinger’s inequality.
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Proving our Result

@ For p areal parameter to be determined later, define
g(t) := e (1 +it,f),

Fix f and let 5¢(k ) denote an ordinate zero of L(s,f)

on the critical line R(s) = 3.

@ g(t) has same zeros as L(s,f) (att = #(k)). Use in
the modified Wirtinger’s inequality.

@ For adjacent zeros have

N-1 5 (n+1) N-1 K2 w(n+1
[, lewra < X0 [ gra
n=1 :}'/f(n) n= Y (n)

@ Summing over zeros withn € {1,... N} and trivial

estimation yields integrals from T to 2T.
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Proving our Result

o |g(t)[2 = |L(1/2 +it,f)]? and
GO = [U(L/2+ it ) + Plog? T - [L(L/2 + it, 1)
+2plogT -Re <L’(1/2 it f)L(1/2 1 it,f)) .

@ Apply sub-convexity bounds to L(1/2 + it, f):
2T 2 2T
[l < [ g+ 0 (T30 T
T T

@ As g(t) and ¢g/(t) may be expressed in terms of
L (% +it, f) and its derivatives, can write our
inequality explicitly in terms of formula given by our
mixed moment theorem.
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Finishing the Proof

@ After substituting our formula, we have

2

kr 3 -2 -5
> logT 1+0O(logT .

T 3p2—6p—|—4(0g ) ( (logT)™)

@ The polynomial in p is minimized at p = 1, yielding

KT 2> I:)/g; ( +0 (C—lf(logT)“s)).
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Essential GL(2) properties J
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Properties
For primitive f on GL(2) over Q (Hecke or Maass) with

we isolate needed crucial properties (all are known).
@ L(s,f) has an analytic continuation to an entire
function of order 1.

Q L(s,f) satisfies a function equation of the form

A(s,f) = L(s,fx)L(s,f) = &A1 —s,f)
S

withL(s,f.) = Q°F (§+ul)r(2+u2>.
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Properties (continued)

© Convolution L-function L(s, f x f),

o0

> M, R(s) > 1,

nS
n=1

is entire except for a simple pole ats = 1.

© The Dirichlet coefficients (normalized so that the
critical strip is 0 < R(s) < 1) satisfy

> lan)ff < x.
n<x
@ For some small § > 0, we have a subconvexity bound

1
L{=+it,f
’ (2+It,)

< Jt|2 0.
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Properties (status)

@ Moeglin and Waldspurger prove the needed
properties of L(s,f x f) (in greater generality).

@ Dirichlet coefficient asymptotics follow for Hecke
forms essentially from the work of Rankin and
Selberg, and for Maass by spectral theory.

@ Michel and Venkatesh proved a subconvexity bound
for primitive GL(2) L-functions over Q.

@ Other properties are standard and are valid for GL(2).
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Families and Moments

A one-parameter family of elliptic curves is given by
E:y? = x3* 4+ A(T)x +B(T)

where A(T),B(T) are polynomials in Z[T].

@ Each specialization of T to an integer t gives an
elliptic curve £(t) over Q.

@ The r'" moment of the Fourier coefficients is

Ace(p) = D agy(p).

t modp
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Tate’s Conjecture

Tate’s Conjecture for Elliptic Surfaces

Let £/Q be an elliptic surface and L(€, s) be the L-series attached to
Hét(E/Q, Q). Then L,(&, s) has a meromorphic continuation to C

and satisfies

*Ords:ZLZ(SaS) = rank NS(S/Q)v

where NS(£/Q) is the Q-rational part of the Néron-Severi group of €.
Further, L,(&, s) does not vanish on the line Re(s) = 2.

Tate’s conjecture is known for rational surfaces: An elliptic surface
y? =x3 + A(T)x + B(T) is rational iff one of the following is true:

@ 0 < max{3degA, 2degB} < 12;
@ 3degA = 2degB = 12 and ordr_oT2A(T 1) = 0.
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Negative Bias in the First Moment

A ¢(p) and Family Rank (Rosen-Silverman)

If Tate’s Conjecture holds for £ then

im %ZM — _rak(£/Q).

X—
7 px P

@ By the Prime Number Theorem,
Aig(p) = —rp + O(1) implies rank(£/Q) =r.
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Bias Conjecture

Second Moment Asymptotic (Michel)

For families £ with j(T) non-constant, the second moment
is

@ The lower order terms are of sizes p®/?, p, p*/?, and 1.
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Bias Conjecture

Second Moment Asymptotic (Michel)
For families £ with j(T) non-constant, the second moment
is

@ The lower order terms are of sizes p%/2, p, p*/?, and 1.

In every family we have studied, we have observed:

Bias Conjecture

The largest lower term in the second moment expansion
which does not average to O is on average negative .
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Preliminary Evidence and Patterns

Let n3, , equal the number of cube roots of 2 modulo p,
and set co(p) = |(3) + (3] P cx(P) = [ s (5]
Ca/2(P) = P Xypy (252).

Family A1e(p) Aze(p)
y2=x3+Sx+T 0 pd —p?
y? = x*+2%(=3)(T + 1) 0 T e
y? = x* 4 4(4T + 2)x 0 B s
y2=x3 +(T+1)x +Tx 0 Z_2p-1
y2=x3+x24+2T +1 0 2—2p—(_T3)
y2=x>+Tx*+1 -p P? — N3 20Pp — 1+ C3/2(P)
y?=x3 -T2 4+ T2 —2p p?> —p —c1(p) — co(p)
y2=x3 -T2 +T* -2p p? —p —c1(p) — co(p)
y2=x34+Tx? — (T +3)x +1 —2Cp,1.4P p? —4cy16p — 1

where ¢y am = 1 if p = amod m and otherwise is 0.
1
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Preliminary Evidence and Patterns

The first family is the family of all elliptic curves; it is a two parameter family
and we expect the main term of its second moment to be p3.

Note that except for our family y2 = x® + Tx? + 1, all the families £ have
Az £(p) = p? — h(p)p + O(1), where h(p) is non-negative. Further, many of
the families have h(p) = mg > 0.

Note c1(p) is the square of the coefficients from an elliptic curve with complex
multiplication. It is non-negative and of size p for p # 3 mod 4, and zero for
p =1mod 4 (send x — —x mod p and note (<) = —1).

It is somewhat remarkable that all these families have a correction to the
main term in Michel's theorem in the same direction, and we analyze the
consequence this has on the average rank. For our family which has a p®/2
term, note that on average this term is zero and the p term is negative.
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Lower order terms and average rank

If ¢ is non-negative, we obtain a bound for the average rank in

the family by restricting the sum to be only over zeros at the
central point. The error O ('OI%'%RR) comes from trivial
estimation and ignores probable cancellation, and we expect
o) (IogR> or smaller to be the correct magnitude. For most

families logR ~ log N2 for some integer a.

Qe
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Lower order terms and average rank (cont)

The main term of the first and second moments of the a;(p) give

r¢(0) and —3¢(0).
Assume the second moment of a;(p)? is p2 — mgp + O(1), mg > 0.

We have already handled the contribution from p?, and —mgp
contributes

Iogp Iogp 1N

_2mg ~( logp\ logp
N IogR;qb(zlogR) p2

Thus there is a contribution of size ﬁ.
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Lower order terms and average rank (cont)

A good choice of test functions (see Appendix A of [ILS]) is the
Fourier pair

( _ sin®(2n%x) 3u) ol i) <o
T (27x)?2 ~lo otherwise.

Note ¢(0) = 2, $(0) = 2 = %9 and evaluating the prime sum gives

4 o

S, ~ (.986 2.966> Mg 4(0).

o c2logR ) logR
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Lower order terms and average rank (cont)

Let r. denote the number of zeros of E; at the central point (i.e., the analytic
rank). Then up to our O (%) errors (which we think should be smaller),
we have

15 $(0) 1 986  2.966 \ mg
5 g’;nqﬁ(O) < <r + 5) #(0) + (T - aZIogR> IogR¢(O)

A

1 .986 2.966 m
Ave Rank[N,ZN](E) < o N m) ;

1
< = = —.
- U+r+2+ logR

o =1, mg = 1: for conductors of size 10*?, the average rank is bounded by
1+r+3%+.03=r+ 3+ 1.03. This s significantly higher than Fermigier's
observed r + % + .40.

o = 2: lower order correction contributes .02 for conductors of size 102, the
average rank bounded by } +r + 3 4+ .02 =r + 1 + .52. Now in the ballpark
of Fermigier's bound (already there without the potential correction term!).

AR
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Interpretation: Approaching semicircle 2nd moment from be low

Sato-Tate Law for Families without CM

For large primes p, the distribution of a)(p)/+/P.
t €{0,1,...,p — 1}, approaches a semicircle on [-2, 2].

-6 -15  -Lb —05  0b [E] i0 15 X

Figure: agq(p) fory? = x3 + Tx + 1 at the 2014th prime.

Q7




Bias: Intro
°

Implications for Excess Rank

@ Katz-Sarnak’s one-level density statistic is used to
measure the average rank of curves over a family.

@ More curves with rank than expected have been
observed, though this excess average rank vanishes
in the limit.

@ Lower-order biases in the moments of families explain
a small fraction of this excess rank phenomenon.




Theoretical Evidence J
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Methods for Obtaining Explicit Formulas

For a family £ : y? = x3 + A(T )x + B(T), we can write

aco® - — 3 (x +A(t)x+B(t))

X mod p P

where (5> is the Legendre symbol modp given by
1 if X is a non-zero square modulo p

(5) =<0 ifx =0modp
P —1 otherwise.

A
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Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums

> (ax;b) =0 ifpta
X mod p
3 <ax2+bx+c> _ {(S) if p f b? — 4ac

p (p—1)<g) if p | b? — 4ac

X mod p

A1
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Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums
> (ax;b) =0 ifpta

X mod p

ax?rbx+c) _(g> if p b2 — dac
< p >_ (p—1)<g) if p | b? — 4ac

2

X mod p

>

Average Values of Legendre Symbols

The value of <%> for x € Z, when averaged over all
primes p, is 1 if X is a non-zero square, and 0 otherwise.

A
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Rank 0 Families

Theorem (MMRW’14): Rank O Families Obeying the
Bias Conjecture

For families of the form &£ : y? = x® + ax? + bx +cT +d,

Pos(p) = p2—p <1+ (?) + <a2—p3b>> .

@ The average bias in the size p termis —2 or —1,
according to whether a> — 3b € Z is a non-zero
square.

AR
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Families with Rank

Theorem (MMRW’14): Families with Rank
For families of the form & : y? = x® + aT2x + bT?,

) = 0 1+ (3) + () (B (5

@ These include families of rank O, 1, and 2.

@ The average bias in the size p terms is —3 or —2,
according to whether —3a € Z is a non-zero square.

AA
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Families with Complex Multiplication

Theorem (MMRW’14): Families with Complex
Multiplication

For families of the form £ : y? = x3 + (aT + b)x,
5 -1
Aog(P) = (P"=P) 1+ () )

@ The average bias in the size p term is —1.

@ The size p? term is not constant, but is on average p?,
and an analogous Bias Conjecture holds.

AT




Bias: Evidence
[ ]

Families with Unusual Distributions of Signs

Theorem (MMRW’14): Families with Unusual Signs
For the family £ : y? = x3 4+ Tx? — (T + 3)x + 1,

Aze(p) = p>—p (2+2 <%3>> 1.

@ The average bias in the size p term is —2.

@ The family has an usual distribution of signs in the
functional equations of the corresponding L-functions.

AR
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The Size p3/2 Term

Theorem (MMRW’14): Families with a Large Error

For families of the form
E:y?=x3+ (T +a)x?+ (bT +b?—ab +c)x — bc,

<—cx(x + b)(bx — c))

Aog(p) = P —3p—1+p ) :

X mod p

@ The size p®/? term is given by an elliptic curve
coefficient and is thus on average 0.

@ The average bias in the size p term is —3.

A7
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General Structure of the Lower Order Terms

The lower order terms appear to always

@ have no size p¥? term or a size p®/? term that is on
average 0;

@ exhibit their negative bias in the size p term;
@ be determined by polynomials in p, elliptic curve

coefficients, and congruence classes of p (i.e., values
of Legendre symbols).

AR
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Numerical Methods

@ As complexity of coefficients increases, it is much
harder to find an explicit formula.

@ We can always just calculate the second moment
from the explicit formula; if £: y? = f(x), we have

2

restp) = X (3 ()

t(p) \x(p)

@ Takes an hour for the first 500 primes. Optimizations?
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Numerical Methods

Consider the family y? = f(x) = ax® + (bT +¢)x? + (dT +e)x +f. By
similar arguments used to prove special cases,

Aoe(p) = P? —2p +pCo(p) ~ PCL(P) — 1+ #1,

where
A(X)A
Co(p) = 3 (%) ’
x(p) y(p): B(x,y)=0
A(x)?
ap = > (p) ) |
x(p): B(x,x)=0

#1

DI G ]

x(p) y(p): A(x)=0 and A(y

and 3, A, and B are polynomials.
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Numerical Methods

@ C,(p) ordinarily O(p?) to compute.

@ Sum over zeros of 5(x,y) mod p

@ Fixing an x, ( is a quadratic in y. So, with the
guadratic formula mod p, we know where to look for y

to see if there is a zero.

@ Now O(p); runs from 6000" to 7000" prime in an
hour.
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Potential Counterexamples

Families of Rank as Large as 3

E:y2=x3+ax?+bT?x +cT?with b, c #0:

Aoc(p) = pPp 3 <x3+bx)(y +bY))

P(x.y)= P

2
ax?+c X3 + bx \ 2
| X ()] e (57
x3-+bx=0 P P(x,x)=0 P

S @)L 5, 5]

X mod p
where P(x,y) = bx2y? + ¢(x2 + xy +y?) + bc(x +y).
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A Positive Size p Term?

p [Zx3+bx50 (ax;+c)]2 can be +9p on average!

2
@ Terms such as —p 3", 1= (Xs%bx) ’

—p <2 + (‘Tb)) and — [ZX mod p <X3;bx)]2 contribute

negatively to the size p bias.

o The term p Yo, 40 <w> is of size p%/2.

2
3 3 2

Aze(p) = PP+p D (M)_ﬂ)[ > <ax +c>]
X,y)=0 P x34+bx=0 P

P(x,y)=

o (Y () [ (5]

X mod p

where P(x,y) = bx?y? + ¢(x? + xy +y?) + bc(x +y).
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Analyzing the Size p3/2 Term

We averaged >, .10 (M) over the first

10,000 primes for several rank 3 families of the form
E:y?=x3+ax?+bT?x +cT2.

Family Average
y2=x3+2x2 - 4T%x + T2 | —0.0238
y2=x3-3x2 -T2x +4T2% | —0.0357
y 3 4 4x% —4T2x +9T2 | —0.0332

X

x3 4 5x% —9T2x +4T2 | —0.0413
y2 =x%-5x2-T2x +9T2 | —0.0330
y2=x3 + 7x2—9T2x + T2 | —0.0311
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The Right Object to Study

C3/2(P) = ZP(X,y)EO (W) is not a natural object

to study (for us multiply by p).

An example distribution for y? = x3 + 2x3 — 4T2x + T2.

250

200

150

100

4

Figure: cs,»(p) over the first 10,000 primes.
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In Terms of Elliptic Curve Coefficients

Compare it to the distribution of a sum of 2 elliptic curve
coefficients.

300

1 2 3 4

Figure: =37 mod p (’&“TX“) — 3% modp (’@’“TX*Z) over the first
10,000 primes.
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More Error Distributions

0
-2.0

Figure: cg/(p) for y? = 4x3 4+ 5x2 + (4T — 2)x + 1, first 10,000
primes.
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More Error Distributions

160

140

120

100

80

60

40

20

0
-2.0 -15

-1.0 -05 0.0 0.5 10 15 2.0

Figure: =37, 1od p (’&“TX“) distribution, first 10,000 primes.
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More Error Distributions

400

350

300

250

200

150

0
-4 -3 -2 -1 0 1 2 3 4

Figure: cg/2(p) over y? = 4x3 + (4T + 1)x2 + (—4T — 18)x + 49, first
10,000 primes.

GO
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More Error Distributions

Figure: —3 . mod p (%) distribution, first 10,000 primes.

¢
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Summary of p3/2 Term Investigations

In the cases we’ve studied, the size p%/? terms

@ appear to be governed by (hyper)elliptic curve
coefficients;

@ may be hiding negative contributions of size p;

@ prevent us from numerically measuring average
biases that arise in the size p terms.
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Questions for Further Study

@ Are the size p%? terms governed by (hyper)elliptic
curve coefficients? Or at least other L-function
coefficients?

@ Does the average bias always occur in the terms of
size p?

@ Does the Bias Conjecture hold similarly for all higher
even moments?

@ What other (families of) objects obey the Bias
Conjecture? Kloosterman sums? Cusp forms of a
given weight and level? Higher genus curves?

¢




References J

RE




References

Gaps:

%] Gaps between zeros of GL(2) L-functions (with Owen Barrett, Brian McDonald, Ryan Patrick, Caroline
Turnage-Butterbaugh and Karl Winsor), preprint. ht t p: / / ar xi v. or g/ pdf / 1410. 7765. pdf .

Biases:

@ 1-and 2-level densities for families of elliptic curves: evidence for the underlying group symmetries,
Compositio Mathematica 140 (2004), 952-992. ht t p: / / ar xi v. or g/ pdf / mat h/ 0310159.

@ variation in the number of points on elliptic curves and applications to excess rank, C. R. Math. Rep. Acad.
Sci. Canada 27 (2005), no. 4, 111-120. ht t p: / / ar xi v. or g/ abs/ mat h/ 0506461.

%] Investigations of zeros near the central point of elliptic curve L-functions, Experimental Mathematics 15
(2006), no. 3, 257-279. ht t p: / / ar xi v. or g/ pdf / mat h/ 0508150.

@ Lower order terms in the 1-level density for families of holomorphic cuspidal newforms, Acta Arithmetica 137
(2009), 51-98. ht t p: / / ar xi v. or g/ pdf / 0704. 0924v4.

@ Moments of the rank of elliptic curves (with Siman Wong), Canad. J. of Math. 64 (2012), no. 1, 151-182.
http://web.w | lianms. edu/ Mat hematics/sjniller/public_htnl/math/papers/
mmVvorrent sRanksEC812f i nal . pdf

AR



http://arxiv.org/pdf/1410.7765.pdf
http://arxiv.org/pdf/math/0310159
http://arxiv.org/abs/math/0506461
http://arxiv.org/pdf/math/0508150
http://arxiv.org/pdf/0704.0924v4
http://web.williams.edu/Mathematics/sjmiller/public_html/math/papers/mwMomentsRanksEC812final.pdf
http://web.williams.edu/Mathematics/sjmiller/public_html/math/papers/mwMomentsRanksEC812final.pdf

Funded by NSF Grants DMS1265673, DMS1347804 and
Williams College.

¢




Thank you




	Gaps: Intro
	Gaps: Shifted Moments & Proofs
	Gaps: Props
	Bias: Intro
	Bias: Evidence
	Bias: Data
	Bias: Future
	Refs

