Results on GL(2) *L*-Functions: Biases in Coefficients and Gaps Between Zeros

Steven J. Miller, Williams College
sjml@williams.edu, Steven.Miller.MC.96@aya.yale.edu
With Owen Barrett, Blake Mackall, Brian McDonald, Christina
Rapti, Patrick Ryan, Caroline Turnage-Butterbaugh & Karl Winsor
http://web.williams.edu/Mathematics/sjmiller/public html/

Number Theory Seminar, Brown University, April 2, 2018

Gaps between Critical Zeros

Joint with students Owen Barrett (Yale), Brian McDonald (Rochester), Patrick Ryan (Harvard), Karl Winsor (Michigan) and postoc Caroline Turnage-Butterbaugh (North Dakota State University)

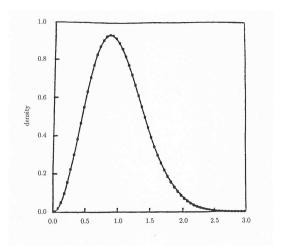
Emails: owen.barrett@yale.edu, bmcdon11@u.rochester.edu, patrickryan01@college.harvard.edu, krlwnsr@umich.edu and cturnagebutterbaugh@gmail.com.

The Random Matrix Theory Connection

Philosophy: Critical-zero statistics of *L*-functions agree with eigenvalue statistics of large random matrices.

- Montgomery pair-correlations of zeros of $\zeta(s)$ and eigenvalues of the Gaussian Unitary Ensemble.
- Hejhal, Rudnick and Sarnak Higher correlations and automorphic L-functions.
- Odlyzko further evidence through extensive numerical computations.

Consecutive Zero Spacings



Consecutive zero spacings of $\zeta(s)$ vs. GUE predictions (Odlyzko).

Large Gaps between Zeros

Let $0 \le \gamma_1 \le \gamma_2 \le \cdots \le \gamma_i \le \cdots$ be the ordinates of the critical zeros of an *L*-function.

Conjecture

Gaps between consecutive zeros that are arbitrarily large, relative to the average gap size, appear infinitely often.

Large Gaps between Zeros

Let $0 \le \gamma_1 \le \gamma_2 \le \cdots \le \gamma_i \le \cdots$ be the ordinates of the critical zeros of an *L*-function.

Conjecture

Gaps between consecutive zeros that are arbitrarily large, relative to the average gap size, appear infinitely often.

Letting
$$\Lambda = \limsup_{n \to \infty} \frac{\gamma_{n+1} - \gamma_n}{\text{average spacing}}$$
,

this conjecture is equivalent to $\Lambda = \infty$.

 Best unconditional result for the Riemann zeta function is Λ > 2.69.

Degree 2 Case

Higher degree *L*-functions are mostly unexplored.

Theorem (Turnage-Butterbaugh '14)

Let $T \geq 2$, $\varepsilon > 0$, $\zeta_K(s)$ the Dedekind zeta function attached to a quadratic number field K with discriminant d with $|d| \leq T^{\varepsilon}$, and $\mathcal{S}_T := \{\gamma_1, \gamma_2, \ldots, \gamma_N\}$ be the distinct zeros of $\zeta_K\left(\frac{1}{2} + it, f\right)$ in the interval [T, 2T]. Let κ_T denote the maximum gap between consecutive zeros in \mathcal{S}_T . Then

$$\kappa_T \geq \sqrt{6} \frac{\pi}{\log \sqrt{|\boldsymbol{d}|} T} \left(1 + O(\boldsymbol{d}^{\varepsilon} \log T)^{-1} \right).$$

• Assuming GRH, this means $\Lambda \ge \sqrt{6} \approx 2.449$.

A Lower Bound on Large Gaps

We proved the following unconditional theorem for an L-function associated to a holomorphic cusp form f on GL(2).

Theorem (BMMRTW '14)

Let $\mathcal{S}_{\mathcal{T}} := \{\gamma_1, \gamma_2, ..., \gamma_N\}$ be the set of distinct zeros of $L\left(\frac{1}{2} + it, f\right)$ in the interval $[\mathcal{T}, 2\mathcal{T}]$. Let $\kappa_{\mathcal{T}}$ denote the maximum gap between consecutive zeros in $\mathcal{S}_{\mathcal{T}}$. Then

$$\kappa_T \geq \frac{\sqrt{3}\pi}{\log T} \left(1 + O\left(\frac{1}{c_f} (\log T)^{-\delta}\right) \right),$$

where c_f is the residue of the Rankin-Selberg convolution $L(s, f \times \overline{f})$ at s = 1.

Assuming GRH, there are infinitely many normalized gaps between consecutive zeros at least $\sqrt{3}$ times the mean spacing, i.e.,

$$\Lambda > \sqrt{3} \approx 1.732$$
.

An Upper Bound on Small Gaps

Theorem (BMMRTW '14)

L in Selberg class primitive of degree m_L . Assume GRH for $\log L(s) = \sum_{n=1}^{\infty} b_L(n)/n^s$, $\sum_{n \leq x} |b_L(n)| \log n|^2 = (1+o(1))x \log x$. Have a computable nontrivial upper bound on μ_L (liminf of smallest average gap) depending on m_L .

m_L	upper bound for μ_L
1	0.606894
2	0.822897
3	0.905604
4	0.942914
5	0.962190
:	:

 $(m_L = 1 \text{ due to Carneiro, Chandee, Littmann and Milinovich)}.$

Key idea: use pair correlation analysis.

Results on Gaps and Shifted Second Moments

Shifted Moment Result

Gaps: Intro

To prove our theorem, use a method due to R.R. Hall and the following shifted moment result.

Theorem (BMMRTW '14)

$$\int_{T}^{2T} L\left(\frac{1}{2} + it + \alpha, f\right) L\left(\frac{1}{2} - it + \beta, f\right) dt$$

$$= c_{f} T \sum_{n \geq 0} \frac{(-1)^{n} 2^{n+1} (\alpha + \beta)^{n} (\log T)^{n+1}}{(n+1)!} + O\left(T(\log T)^{1-\delta}\right),$$

where $\alpha, \beta \in \mathbb{C}$ and $|\alpha|, |\beta| \ll 1/\log T$.

Key idea: differentiate wrt parameters, yields formulas for integrals of products of derivatives.

Shifted Moments Proof Technique

• Approximate functional equation:

$$L(s+\alpha,f) = \sum_{n\geq 1} \frac{\lambda_f(n)}{n^{s+\alpha}} e^{-\frac{n}{X}} + F(s) \sum_{n\leq X} \frac{\lambda_f(n)}{n^{1-s-\alpha}} + E(s),$$

where $\lambda_f(n)$ are the Fourier coefficients of L(s, f), F(s) is a functional equation term, and E(s) is an error term.

• We have an analogous expression for $L(1 - s + \beta, f)$.

Shifted Moments Proof Technique

Analyze product

$$L(s + \alpha, f)L(1 - s + \beta, f),$$

where each factor gives rise to four products (so sixteen products to estimate).

 Use a generalization of Montgomery and Vaughan's mean value theorem and contour integration to estimate product and compute the resulting moments.

Shifted Moment Result for Derivatives

- Shifted moment result yields lower order terms and moments of derivatives of L-functions by differentiation and Cauchy's integral formula.
- Derive an expression for

$$\int_{T}^{2T} L^{(\mu)} \left(\frac{1}{2} + it, f\right) L^{(\nu)} \left(\frac{1}{2} - it, f\right) dt,$$

where $T \ge 2$ and $\mu, \nu \in \mathbb{Z}^+$. Use this in Hall's method to obtain the lower bound stated in our theorem.

• Need $(\mu, \nu) \in \{(0,0), (1,0), (1,1)\}$; other cases previously done (Good did (0,0) and Yashiro did $\mu = \nu$).

Modified Wirtinger Inequality

Using Hall's method, we bound the gaps between zeroes. This requires the following result, due to Wirtinger and modified by Bredberg.

Lemma (Bredberg)

Let $y : [a, b] \to \mathbb{C}$ be a continuously differentiable function and suppose that y(a) = y(b) = 0. Then

$$\int_a^b |y(x)|^2 dx \le \left(\frac{b-a}{\pi}\right)^2 \int_a^b |y'(x)|^2 dx.$$

• For ρ a real parameter to be determined later, define

$$g(t) := e^{i\rho t \log T} L\left(\frac{1}{2} + it, f\right),$$

Fix f and let $\tilde{\gamma}_f(k)$ denote an ordinate zero of L(s, f) on the critical line $\Re(s) = \frac{1}{2}$.

ullet For ρ a real parameter to be determined later, define

$$g(t) := e^{i\rho t \log T} L\left(\frac{1}{2} + it, f\right),$$

Fix f and let $\tilde{\gamma}_f(k)$ denote an ordinate zero of L(s, f) on the critical line $\Re(s) = \frac{1}{2}$.

• g(t) has same zeros as L(s, f) (at $t = \tilde{\gamma}_f(k)$). Use in the modified Wirtinger's inequality.

ullet For ho a real parameter to be determined later, define

$$g(t) := e^{i\rho t \log T} L\left(\frac{1}{2} + it, f\right),$$

Fix f and let $\tilde{\gamma}_f(k)$ denote an ordinate zero of L(s, f) on the critical line $\Re(s) = \frac{1}{2}$.

- g(t) has same zeros as L(s, f) (at $t = \tilde{\gamma}_f(k)$). Use in the modified Wirtinger's inequality.
- For adjacent zeros have

$$\sum_{n=1}^{N-1} \int_{\tilde{\gamma}_f(n)}^{\tilde{\gamma}_f(n+1)} |g(t)|^2 dt \leq \sum_{n=1}^{N-1} \frac{\kappa_T^2}{\pi^2} \int_{\tilde{\gamma}_f(n)}^{\tilde{\gamma}_f(n+1)} |g'(t)|^2 dt.$$

• Summing over zeros with $n \in \{1, ..., N\}$ and trivial estimation yields integrals from T to 2T.

•
$$|g(t)|^2 = |L(1/2 + it, f)|^2$$
 and
$$|g'(t)|^2 = |L'(1/2 + it, f)|^2 + \rho^2 \log^2 T \cdot |L(1/2 + it, f)|^2 + 2\rho \log T \cdot \text{Re}\left(L'(1/2 + it, f)\overline{L(1/2 + it, f)}\right).$$

• Apply sub-convexity bounds to L(1/2 + it, f):

$$\int_{T}^{2T} |g(t)|^2 dt \leq \frac{\kappa_T^2}{\pi^2} \int_{T}^{2T} |g'(t)|^2 dt + O\left(T^{\frac{2}{3}}(\log T)^{\frac{5}{6}}\right).$$

 As g(t) and g'(t) may be expressed in terms of L(½+it, f) and its derivatives, can write our inequality explicitly in terms of formula given by our mixed moment theorem.

Finishing the Proof

After substituting our formula, we have

$$\frac{\kappa_T^2}{\pi^2} \geq \frac{3}{3\rho^2 - 6\rho + 4} (\log T)^{-2} (1 + O(\log T)^{-\delta}).$$

• The polynomial in ρ is minimized at $\rho =$ 1, yielding

$$\kappa_T \, \geq \, \frac{\sqrt{3}\pi}{\log T} \left(1 + O\left(\frac{1}{c_f}(\log T)^{-\delta}\right) \right).$$

20

Essential GL(2) properties

Properties

For primitive f on GL(2) over \mathbb{Q} (Hecke or Maass) with

$$L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s}, \quad \mathfrak{R}(s) > 1,$$

we isolate needed crucial properties (all are known).

- L(s, f) has an analytic continuation to an entire function of order 1.
- 2 L(s, f) satisfies a function equation of the form

$$egin{array}{lll} \Lambda(s,f) &:=& L(s,f_{\infty})L(s,f) &=& \epsilon_f \Lambda(1-s,\overline{f}) \ \mathrm{with} \; L(s,f_{\infty}) &=& Q^s \Gamma\left(rac{s}{2} + \mu_1
ight) \Gamma\left(rac{s}{2} + \mu_2
ight). \end{array}$$

22

Properties (continued)

3 Convolution *L*-function $L(s, f \times \overline{f})$,

$$\sum_{n=1}^{\infty} \frac{|a_f(n)|^2}{n^s}, \quad \Re(s) > 1,$$

is entire except for a simple pole at s = 1.

③ The Dirichlet coefficients (normalized so that the critical strip is $0 \le \Re(s) \le 1$) satisfy

$$\sum_{n \le x} |a_f(n)|^2 \ll x.$$

⑤ For some small $\delta > 0$, we have a subconvexity bound

$$\left|L\left(\frac{1}{2}+it,f\right)\right|\ll |t|^{\frac{1}{2}-\delta}.$$

Properties (status)

- Mæglin and Waldspurger prove the needed properties of $L(s, f \times \overline{f})$ (in greater generality).
- Dirichlet coefficient asymptotics follow for Hecke forms essentially from the work of Rankin and Selberg, and for Maass by spectral theory.
- Michel and Venkatesh proved a subconvexity bound for primitive GL(2) L-functions over ℚ.
- Other properties are standard and are valid for GL(2).

Bias Conjecture for Moments of Fourier Coefficients of Elliptic Curve *L*-functions

Joint with students Blake Mackall (Williams), Christina Rapti (Bard) and Karl Winsor (Michigan)

Emails: Blake.R.Mackall@williams.edu, cr9060@bard.edu and krlwnsr@umich.edu.

Families and Moments

A one-parameter family of elliptic curves is given by

$$\mathcal{E}: y^2 = x^3 + A(T)x + B(T)$$

where A(T), B(T) are polynomials in $\mathbb{Z}[T]$.

- Each specialization of T to an integer t gives an elliptic curve $\mathcal{E}(t)$ over \mathbb{Q} .
- The *r*th moment of the Fourier coefficients is

$$A_{r,\mathcal{E}}(p) = \sum_{t \mod p} a_{\mathcal{E}(t)}(p)^r.$$

26

Tate's Conjecture

Gaps: Intro

Tate's Conjecture for Elliptic Surfaces

Let \mathcal{E}/\mathbb{Q} be an elliptic surface and $L_2(\mathcal{E},s)$ be the L-series attached to $H^2_{\mathrm{\acute{e}t}}(\mathcal{E}/\overline{\mathbb{Q}},\mathbb{Q}_l)$. Then $L_2(\mathcal{E},s)$ has a meromorphic continuation to \mathbb{C} and satisfies

$$-\operatorname{ord}_{s=2}L_2(\mathcal{E},s) = \operatorname{rank} NS(\mathcal{E}/\mathbb{Q}),$$

where $NS(\mathcal{E}/\mathbb{Q})$ is the \mathbb{Q} -rational part of the Néron-Severi group of \mathcal{E} . Further, $L_2(\mathcal{E},s)$ does not vanish on the line Re(s)=2.

Tate's conjecture is known for rational surfaces: An elliptic surface $y^2 = x^3 + A(T)x + B(T)$ is rational iff one of the following is true:

- 0 < max{3degA, 2degB} < 12;</p>
- $3 \text{deg} A = 2 \text{deg} B = 12 \text{ and } \text{ord}_{T=0} T^{12} \Delta(T^{-1}) = 0.$

Negative Bias in the First Moment

$A_{1,\mathcal{E}}(p)$ and Family Rank (Rosen-Silverman)

If Tate's Conjecture holds for \mathcal{E} then

$$\lim_{X\to\infty}\frac{1}{X}\sum_{p< X}\frac{A_{1,\mathcal{E}}(p)\log p}{p}\ =\ -\mathrm{rank}(\mathcal{E}/\mathbb{Q}).$$

• By the Prime Number Theorem, $A_{1,\mathcal{E}}(p) = -rp + O(1)$ implies $\operatorname{rank}(\mathcal{E}/\mathbb{Q}) = r$.

Bias Conjecture

Second Moment Asymptotic (Michel)

For families \mathcal{E} with j(T) non-constant, the second moment is

$$A_{2,\mathcal{E}}(p) = p^2 + O(p^{3/2}).$$

• The lower order terms are of sizes $p^{3/2}$, p, $p^{1/2}$, and 1.

Bias Conjecture

Second Moment Asymptotic (Michel)

For families \mathcal{E} with j(T) non-constant, the second moment is

$$A_{2,\mathcal{E}}(p) = p^2 + O(p^{3/2}).$$

• The lower order terms are of sizes $p^{3/2}$, p, $p^{1/2}$, and 1.

In every family we have studied, we have observed:

Bias Conjecture

The largest lower term in the second moment expansion which does not average to 0 is on average **negative**.

Preliminary Evidence and Patterns

Let $n_{3,2,p}$ equal the number of cube roots of 2 modulo p, and set $c_0(p) = \left[\left(\frac{-3}{p}\right) + \left(\frac{3}{p}\right)\right]p$, $c_1(p) = \left[\sum_{x \bmod p} \left(\frac{x^3 - x}{p}\right)\right]^2$, $c_{3/2}(p) = p \sum_{x(p)} \left(\frac{4x^3 + 1}{p}\right)$.

Family	$A_{1,\mathcal{E}}(p)$	$A_{2,\mathcal{E}}(p)$
$y^2 = x^3 + Sx + T$	0	$p^3 - p^2$
$y^2 = x^3 + 2^4(-3)^3(9T + 1)^2$	0	$\begin{cases} 2p^2 - 2p & p \equiv 2 \mod 3 \\ 0 & p \equiv 1 \mod 3 \end{cases}$
$y^2 = x^3 \pm 4(4T + 2)x$	0	$\begin{cases} 2p^2 - 2p & p \equiv 1 \mod 4 \\ 0 & p \equiv 3 \mod 4 \end{cases}$
$y^2 = x^3 + (T+1)x^2 + Tx$	0	$p^2 - 2p - 1$
$y^2 = x^3 + x^2 + 2T + 1$	0	$p^2-2p-\left(\frac{-3}{p}\right)$
$y^2 = x^3 + Tx^2 + 1$	-p	$p^2 - n_{3,2,p}p - 1 + c_{3/2}(p)$
$y^2 = x^3 - T^2x + T^2$	−2 <i>p</i>	$p^2-p-c_1(p)-c_0(p)$
$y^2 = x^3 - T^2x + T^4$	−2 <i>p</i>	$p^2 - p - c_1(p) - c_0(p)$
2 2 - 2	_	2 .

 $y^2 = x^3 + Tx^2 - (T+3)x + 1$ $-2c_{p,1;4}p$ $p^2 - 4c_{p,1;6}p - 1$ where $c_{p,a;m} = 1$ if $p \equiv a \mod m$ and otherwise is 0.

Preliminary Evidence and Patterns

The first family is the family of all elliptic curves; it is a two parameter family and we expect the main term of its second moment to be p^3 .

Note that except for our family $y^2 = x^3 + Tx^2 + 1$, all the families \mathcal{E} have $A_{2,\mathcal{E}}(p) = p^2 - h(p)p + O(1)$, where h(p) is non-negative. Further, many of the families have $h(p) = m_{\mathcal{E}} > 0$.

Note $c_1(p)$ is the square of the coefficients from an elliptic curve with complex multiplication. It is non-negative and of size p for $p \not\equiv 1 \mod 4$ (send $x \mapsto -x \mod p$ and note $\left(\frac{-1}{p}\right) = -1$).

It is somewhat remarkable that all these families have a correction to the main term in Michel's theorem in the same direction, and we analyze the consequence this has on the average rank. For our family which has a $p^{3/2}$ term, note that on average this term is zero and the p term is negative.

Lower order terms and average rank

$$\frac{1}{N} \sum_{t=N}^{2N} \sum_{\gamma_t} \phi\left(\gamma_t \frac{\log R}{2\pi}\right) = \widehat{\phi}(0) + \phi(0) - \frac{2}{N} \sum_{t=N}^{2N} \sum_{p} \frac{\log p}{\log R} \frac{1}{p} \widehat{\phi}\left(\frac{\log p}{\log R}\right) a_t(p) \\
- \frac{2}{N} \sum_{t=N}^{2N} \sum_{r} \frac{\log p}{\log R} \frac{1}{p^2} \widehat{\phi}\left(\frac{2\log p}{\log R}\right) a_t(p)^2 + O\left(\frac{\log \log R}{\log R}\right).$$

If ϕ is non-negative, we obtain a bound for the average rank in the family by restricting the sum to be only over zeros at the central point. The error $O\left(\frac{\log\log R}{\log R}\right)$ comes from trivial estimation and ignores probable cancellation, and we expect $O\left(\frac{1}{\log R}\right)$ or smaller to be the correct magnitude. For most families $\log R \sim \log N^a$ for some integer a.

Lower order terms and average rank (cont)

The main term of the first and second moments of the $a_t(p)$ give $r\phi(0)$ and $-\frac{1}{2}\phi(0)$.

Assume the second moment of $a_t(p)^2$ is $p^2 - m_{\mathcal{E}}p + O(1)$, $m_{\mathcal{E}} > 0$.

We have already handled the contribution from p^2 , and $-m_{\mathcal{E}}p$ contributes

$$S_{2} \sim \frac{-2}{N} \sum_{p} \frac{\log p}{\log R} \widehat{\phi} \left(2 \frac{\log p}{\log R} \right) \frac{1}{p^{2}} \frac{N}{p} (-m_{\mathcal{E}} p)$$

$$= \frac{2m_{\mathcal{E}}}{\log R} \sum_{p} \widehat{\phi} \left(2 \frac{\log p}{\log R} \right) \frac{\log p}{p^{2}}.$$

Thus there is a contribution of size $\frac{1}{\log R}$.

Lower order terms and average rank (cont)

A good choice of test functions (see Appendix A of [ILS]) is the Fourier pair

$$\phi(x) = \frac{\sin^2(2\pi\frac{\sigma}{2}x)}{(2\pi x)^2}, \quad \widehat{\phi}(u) = \begin{cases} \frac{\sigma - |u|}{4} & \text{if } |u| \leq \sigma \\ 0 & \text{otherwise.} \end{cases}$$

Note $\phi(0) = \frac{\sigma^2}{4}$, $\widehat{\phi}(0) = \frac{\sigma}{4} = \frac{\phi(0)}{\sigma}$, and evaluating the prime sum gives

$$S_2 \sim \left(\frac{.986}{\sigma} - \frac{2.966}{\sigma^2 \log R}\right) \frac{m_{\mathcal{E}}}{\log R} \phi(0).$$

35

Lower order terms and average rank (cont)

Let r_t denote the number of zeros of E_t at the central point (i.e., the analytic rank). Then up to our $O\left(\frac{\log\log R}{\log R}\right)$ errors (which we think should be smaller), we have

$$\frac{1}{N} \sum_{t=N}^{2N} r_t \phi(0) \leq \frac{\phi(0)}{\sigma} + \left(r + \frac{1}{2}\right) \phi(0) + \left(\frac{.986}{\sigma} - \frac{2.966}{\sigma^2 \log R}\right) \frac{m_{\mathcal{E}}}{\log R} \phi(0)$$

$$\mathsf{Ave}\;\mathsf{Rank}_{[\mathsf{N},2\mathsf{N}]}(\mathcal{E}) \quad \leq \quad \frac{1}{\sigma} + r + \frac{1}{2} + \left(\frac{.986}{\sigma} - \frac{2.966}{\sigma^2 \log R}\right) \frac{m_{\mathcal{E}}}{\log R}.$$

 $\sigma=$ 1, $m_{\mathcal{E}}=$ 1: for conductors of size 10^{12} , the average rank is bounded by $1+r+\frac{1}{2}+.03=r+\frac{1}{2}+1.03$. This is significantly higher than Fermigier's observed $r+\frac{1}{2}+.40$.

 $\sigma=2$: lower order correction contributes .02 for conductors of size 10^{12} , the average rank bounded by $\frac{1}{2}+r+\frac{1}{2}+.02=r+\frac{1}{2}+.52$. Now in the ballpark of Fermigier's bound (already there without the potential correction term!).

36

Interpretation: Approaching semicircle 2nd moment from below

Sato-Tate Law for Families without CM

For large primes p, the distribution of $a_{\mathcal{E}(t)}(p)/\sqrt{p}$, $t \in \{0, 1, \dots, p-1\}$, approaches a semicircle on [-2, 2].

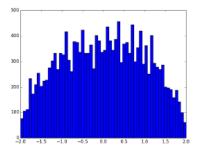


Figure: $a_{\mathcal{E}(t)}(p)$ for $y^2 = x^3 + Tx + 1$ at the 2014th prime.

Implications for Excess Rank

- Katz-Sarnak's one-level density statistic is used to measure the average rank of curves over a family.
- More curves with rank than expected have been observed, though this excess average rank vanishes in the limit.
- Lower-order biases in the moments of families explain a small fraction of this excess rank phenomenon.

Theoretical Evidence

Methods for Obtaining Explicit Formulas

For a family $\mathcal{E}: y^2 = x^3 + A(T)x + B(T)$, we can write

$$a_{\mathcal{E}(t)}(p) = -\sum_{\substack{x \mod p}} \left(\frac{x^3 + A(t)x + B(t)}{p} \right)$$

where $\left(\frac{\cdot}{p}\right)$ is the Legendre symbol mod p given by

$$\left(\frac{x}{p}\right) = \begin{cases} 1 & \text{if } x \text{ is a non-zero square modulo } p \\ 0 & \text{if } x \equiv 0 \bmod p \\ -1 & \text{otherwise.} \end{cases}$$

40

Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums

$$\sum_{x \mod p} \left(\frac{ax+b}{p}\right) = 0 \quad \text{if } p \nmid a$$

$$\sum_{\text{mod } p} \left(\frac{ax^2 + bx + c}{p}\right) = \begin{cases} -\left(\frac{a}{p}\right) & \text{if } p \nmid b^2 - 4ac \\ (p-1)\left(\frac{a}{p}\right) & \text{if } p \mid b^2 - 4ac \end{cases}$$

41

Lemmas on Legendre Symbols

Gaps: Intro

Linear and Quadratic Legendre Sums

$$\sum_{x \mod p} \left(\frac{ax + b}{p} \right) = 0 \quad \text{if } p \nmid a$$

$$\sum_{x \mod p} \left(\frac{ax^2 + bx + c}{p} \right) = \begin{cases} -\left(\frac{a}{p}\right) & \text{if } p \nmid b^2 - 4ac \\ (p - 1)\left(\frac{a}{p}\right) & \text{if } p \mid b^2 - 4ac \end{cases}$$

Average Values of Legendre Symbols

The value of $\left(\frac{x}{p}\right)$ for $x \in \mathbb{Z}$, when averaged over all primes p, is 1 if x is a non-zero square, and 0 otherwise.

Rank 0 Families

Theorem (MMRW'14): Rank 0 Families Obeying the Bias Conjecture

For families of the form $\mathcal{E}: y^2 = x^3 + ax^2 + bx + cT + d$,

$$A_{2,\mathcal{E}}(p) = p^2 - p\left(1 + \left(\frac{-3}{p}\right) + \left(\frac{a^2 - 3b}{p}\right)\right).$$

• The average bias in the size p term is -2 or -1, according to whether $a^2 - 3b \in \mathbb{Z}$ is a non-zero square.

Families with Rank

Theorem (MMRW'14): Families with Rank

For families of the form $\mathcal{E}: y^2 = x^3 + aT^2x + bT^2$,

$$A_{2,\mathcal{E}}(p) = p^2 - p\left(1 + \left(\frac{-3}{p}\right) + \left(\frac{-3a}{p}\right)\right) - \left(\sum_{x(p)} \left(\frac{x^3 + ax}{p}\right)\right)^2.$$

- These include families of rank 0, 1, and 2.
- The average bias in the size p terms is -3 or -2, according to whether $-3a \in \mathbb{Z}$ is a non-zero square.

Families with Complex Multiplication

Theorem (MMRW'14): Families with Complex Multiplication

For families of the form $\mathcal{E}: y^2 = x^3 + (aT + b)x$,

$$A_{2,\mathcal{E}}(p) = (p^2 - p) \left(1 + \left(\frac{-1}{p}\right)\right).$$

- The average bias in the size p term is -1.
- The size p^2 term is not constant, but is on average p^2 , and an analogous Bias Conjecture holds.

Families with Unusual Distributions of Signs

Theorem (MMRW'14): Families with Unusual Signs

For the family $\mathcal{E} : y^2 = x^3 + Tx^2 - (T+3)x + 1$,

$$A_{2,\mathcal{E}}(p) = p^2 - p\left(2 + 2\left(\frac{-3}{p}\right)\right) - 1.$$

- The average bias in the size p term is -2.
- The family has an usual distribution of signs in the functional equations of the corresponding *L*-functions.

The Size $p^{3/2}$ Term

Theorem (MMRW'14): Families with a Large Error

For families of the form

$$\mathcal{E}: y^2 = x^3 + (T+a)x^2 + (bT+b^2-ab+c)x - bc,$$

$$A_{2,\mathcal{E}}(p) = p^2 - 3p - 1 + p \sum_{x \mod p} \left(\frac{-cx(x+b)(bx-c)}{p} \right)$$

- The size $p^{3/2}$ term is given by an elliptic curve coefficient and is thus on average 0.
- The average bias in the size p term is -3.

General Structure of the Lower Order Terms

The lower order terms appear to always

- have no size $p^{3/2}$ term or a size $p^{3/2}$ term that is on average 0;
- exhibit their negative bias in the size p term;
- be determined by polynomials in p, elliptic curve coefficients, and congruence classes of p (i.e., values of Legendre symbols).

Numerical Investigations

Numerical Methods

- As complexity of coefficients increases, it is much harder to find an explicit formula.
- We can always just calculate the second moment from the explicit formula; if \mathcal{E} : $y^2 = f(x)$, we have

$$A_{2,\mathcal{E}}(p) = \sum_{t(p)} \left(\sum_{x(p)} \left(\frac{f(x)}{p} \right) \right)^2.$$

• Takes an hour for the first 500 primes. Optimizations?

Numerical Methods

Consider the family $y^2 = f(x) = ax^3 + (bT + c)x^2 + (dT + e)x + f$. By similar arguments used to prove special cases,

$$A_{2,\mathcal{E}}(p) = p^2 - 2p + pC_0(p) - pC_1(p) - 1 + \#_1,$$

where

$$C_{0}(\rho) = \sum_{x(\rho)} \sum_{y(\rho): \beta(x,y) \equiv 0} \left(\frac{A(x)A(y)}{\rho} \right),$$

$$C_{1}(\rho) = \sum_{x(\rho): \beta(x,x) \equiv 0} \left(\frac{A(x)^{2}}{\rho} \right),$$

$$\#_{1} = \rho \sum_{x(\rho): \gamma(\rho): A(x) \equiv 0 \text{ and } A(y) \equiv 0} \left(\frac{B(x)B(y)}{\rho} \right),$$

and β , A, and B are polynomials.

Numerical Methods

- $C_o(p)$ ordinarily $O(p^2)$ to compute.
- Sum over zeros of $\beta(x, y) \mod p$
- Fixing an x, β is a quadratic in y. So, with the quadratic formula mod p, we know where to look for y to see if there is a zero.
- Now O(p); runs from 6000th to 7000th prime in an hour.

Potential Counterexamples

Families of Rank as Large as 3

$$\mathcal{E}: y^2 = x^3 + ax^2 + bT^2x + cT^2 \text{ with } b, c \neq 0:$$

$$A_{2,\mathcal{E}}(p) = p^2 + p \sum_{P(x,y)\equiv 0} \left(\frac{(x^3 + bx)(y^3 + by)}{p}\right)$$

$$+ \rho \left[\sum_{x^3 + bx \equiv 0} \left(\frac{ax^2 + c}{\rho} \right) \right]^2 - \rho \sum_{P(x,x) \equiv 0} \left(\frac{x^3 + bx}{\rho} \right)^2$$
$$- \rho \left(2 + \left(\frac{-b}{\rho} \right) \right) - \left[\sum_{x \mod \rho} \left(\frac{x^3 + bx}{\rho} \right) \right]^2 - 1$$

where
$$P(x, y) = bx^2y^2 + c(x^2 + xy + y^2) + bc(x + y)$$
.

A Positive Size p Term?

$$p\left[\sum_{x^3+bx\equiv 0}\left(\frac{ax^2+c}{p}\right)\right]^2$$
 can be $+9p$ on average!

- Terms such as $-p \sum_{P(x,x)\equiv 0} \left(\frac{x^3+bx}{p}\right)^2$, $-p\left(2+\left(\frac{-b}{p}\right)\right)$, and $-\left[\sum_{x \mod p} \left(\frac{x^3+bx}{p}\right)\right]^2$ contribute negatively to the size p bias.
- The term $p \sum_{P(x,y)\equiv 0} \left(\frac{(x^3+bx)(y^3+by)}{p}\right)$ is of size $p^{3/2}$.

$$A_{2,\mathcal{E}}(p) = p^2 + p \sum_{P(x,y)\equiv 0} \left(\frac{(x^3 + bx)(y^3 + by)}{p} \right) + p \left[\sum_{x^3 + bx \equiv 0} \left(\frac{ax^2 + c}{p} \right) \right]^2$$
$$- p \sum_{P(x,x)\equiv 0} \left(\frac{x^3 + bx}{p} \right)^2 - p \left(2 + \left(\frac{-b}{p} \right) \right) - \left[\sum_{x \mod p} \left(\frac{x^3 + bx}{p} \right) \right]^2 - 1$$

where $P(x, y) = bx^2y^2 + c(x^2 + xy + y^2) + bc(x + y)$.

Analyzing the Size $p^{3/2}$ Term

We averaged $\sum_{P(x,y)\equiv 0} \left(\frac{(x^3+bx)(y^3+by)}{p}\right)$ over the first 10,000 primes for several rank 3 families of the form $\mathcal{E}: y^2 = x^3 + ax^2 + bT^2x + cT^2$.

Family	Average
$y^2 = x^3 + 2x^2 - 4T^2x + T^2$	-0.0238
$y^2 = x^3 - 3x^2 - T^2x + 4T^2$	-0.0357
$y^2 = x^3 + 4x^2 - 4T^2x + 9T^2$	-0.0332
$y^2 = x^3 + 5x^2 - 9T^2x + 4T^2$	-0.0413
$y^2 = x^3 - 5x^2 - T^2x + 9T^2$	-0.0330
$y^2 = x^3 + 7x^2 - 9T^2x + T^2$	-0.0311

The Right Object to Study

$$c_{3/2}(p) := \sum_{P(x,y)\equiv 0} \left(\frac{(x^3+bx)(y^3+by)}{p}\right)$$
 is not a natural object to study (for us multiply by p).

An example distribution for $y^2 = x^3 + 2x^3 - 4T^2x + T^2$.

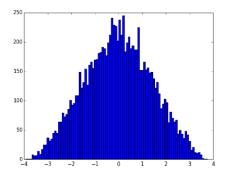


Figure: $c_{3/2}(p)$ over the first 10,000 primes.

In Terms of Elliptic Curve Coefficients

Compare it to the distribution of a sum of 2 elliptic curve coefficients.



Figure:
$$-\sum_{x \mod p} \left(\frac{x^3 + x + 1}{p} \right) - \sum_{x \mod p} \left(\frac{x^3 + x + 2}{p} \right)$$
 over the first 10,000 primes.

57

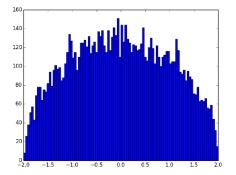


Figure: $c_{3/2}(p)$ for $y^2 = 4x^3 + 5x^2 + (4T - 2)x + 1$, first 10,000 primes.

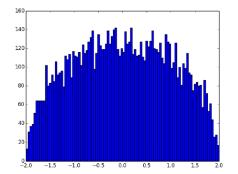


Figure: $-\sum_{x \mod p} \left(\frac{x^3+x+1}{p}\right)$ distribution, first 10,000 primes.

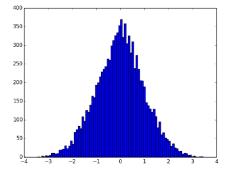


Figure: $c_{3/2}(p)$ over $y^2 = 4x^3 + (4T+1)x^2 + (-4T-18)x + 49$, first 10,000 primes.

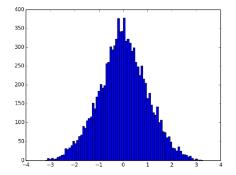


Figure: $-\sum_{x \mod p} \left(\frac{x^5 + x^3 + x^2 + x + 1}{p}\right)$ distribution, first 10,000 primes.

Summary of $p^{3/2}$ Term Investigations

In the cases we've studied, the size $p^{3/2}$ terms

- appear to be governed by (hyper)elliptic curve coefficients;
- may be hiding negative contributions of size p;
- prevent us from numerically measuring average biases that arise in the size p terms.

Future Directions

Questions for Further Study

- Are the size p^{3/2} terms governed by (hyper)elliptic curve coefficients? Or at least other *L*-function coefficients?
- Does the average bias always occur in the terms of size p?
- Does the Bias Conjecture hold similarly for all higher even moments?
- What other (families of) objects obey the Bias Conjecture? Kloosterman sums? Cusp forms of a given weight and level? Higher genus curves?

References

References

Gaps:

 Gaps between zeros of GL(2) L-functions (with Owen Barrett, Brian McDonald, Ryan Patrick, Caroline Turnage-Butterbaugh and Karl Winsor), preprint. http://arxiv.org/pdf/1410.7765.pdf.

Biases:

- 1- and 2-level densities for families of elliptic curves: evidence for the underlying group symmetries,
 Compositio Mathematica 140 (2004), 952–992. http://arxiv.org/pdf/math/0310159.
- Variation in the number of points on elliptic curves and applications to excess rank, C. R. Math. Rep. Acad.
 Sci. Canada 27 (2005), no. 4, 111–120. http://arxiv.org/abs/math/0506461.
- Investigations of zeros near the central point of elliptic curve L-functions, Experimental Mathematics 15 (2006), no. 3, 257–279. http://arxiv.org/pdf/math/0508150.
- Lower order terms in the 1-level density for families of holomorphic cuspidal newforms, Acta Arithmetica 137 (2009), 51–98. http://arxiv.org/pdf/0704.0924v4.
- Moments of the rank of elliptic curves (with Siman Wong), Canad. J. of Math. 64 (2012), no. 1, 151–182. http://web.williams.edu/Mathematics/sjmiller/public_html/math/papers/mwMomentsRanksEC812final.pdf

Funded by NSF Grants DMS1265673, DMS1347804 and Williams College.

Thank you!