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The Random Matrix Theory Connection

Philosophy: Critical-zero statistics of L-functions agree
with eigenvalue statistics of large random matrices.

Montgomery - pair-correlations of zeros of ζ(s) and
eigenvalues of the Gaussian Unitary Ensemble.

Hejhal, Rudnick and Sarnak - Higher correlations and
automorphic L-functions.

Odlyzko - further evidence through extensive
numerical computations.
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Consecutive Zero Spacings

Consecutive zero spacings of ζ(s) vs. GUE predictions (Odlyzko).
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Large Gaps between Zeros

Let 0 ≤ γ1 ≤ γ2 ≤ · · · ≤ γi ≤ · · · be the ordinates of the
critical zeros of an L-function.

Conjecture
Gaps between consecutive zeros that are arbitrarily large,
relative to the average gap size, appear infinitely often.
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Large Gaps between Zeros

Let 0 ≤ γ1 ≤ γ2 ≤ · · · ≤ γi ≤ · · · be the ordinates of the
critical zeros of an L-function.

Conjecture
Gaps between consecutive zeros that are arbitrarily large,
relative to the average gap size, appear infinitely often.

Letting Λ = lim sup
n→∞

γn+1 − γn

average spacing
,

this conjecture is equivalent to Λ = ∞.

Best unconditional result for the Riemann zeta
function is Λ > 2.69.
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Degree 2 Case

Higher degree L-functions are mostly unexplored.

Theorem (Turnage-Butterbaugh ’14)

Let T ≥ 2, ε > 0, ζK (s) the Dedekind zeta function
attached to a quadratic number field K with discriminant d
with |d | ≤ T ε, and ST := {γ1, γ2, . . . , γN} be the distinct
zeros of ζK

(
1
2 + it , f

)
in the interval [T , 2T ]. Let κT denote

the maximum gap between consecutive zeros in ST . Then

κT ≥
√

6
π

log
√
|d |T

(
1 + O(dε log T )−1

)
.

Assuming GRH, this means Λ ≥
√

6 ≈ 2.449.
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A Lower Bound on Large Gaps

We proved the following unconditional theorem for an L-function
associated to a holomorphic cusp form f on GL(2).

Theorem (BMMRTW ’14)

Let ST := {γ1, γ2, ..., γN} be the set of distinct zeros of L
(

1
2 + it , f

)
in

the interval [T , 2T ]. Let κT denote the maximum gap between
consecutive zeros in ST . Then

κT ≥
√

3π
log T

(
1 + O

(
1
cf
(log T )−δ

))
,

where cf is the residue of the Rankin-Selberg convolution L(s, f × f̄ )
at s = 1.

Assuming GRH, there are infinitely many normalized gaps between
consecutive zeros at least

√
3 times the mean spacing, i.e.,

Λ ≥
√

3 ≈ 1.732.
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An Upper Bound on Small Gaps

Theorem (BMMRTW ’14)

L in Selberg class primitive of degree mL. Assume GRH for
log L(s) =

∑∞
n=1 bL(n)/ns ,

∑
n≤x |bL(n) log n|2 = (1 + o(1))x log x .

Have a computable nontrivial upper bound on µL (liminf of smallest
average gap) depending on mL.

mL upper bound for µL

1 0.606894
2 0.822897
3 0.905604
4 0.942914
5 0.962190
...

...

(mL = 1 due to Carneiro, Chandee, Littmann and Milinovich).

Key idea: use pair correlation analysis.
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Results on Gaps and Shifted Second Moments
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Shifted Moment Result

To prove our theorem, use a method due to R.R. Hall and
the following shifted moment result.

Theorem (BMMRTW ’14)

∫ 2T

T
L
(

1
2
+ it + α, f

)
L
(

1
2
− it + β, f

)
dt

= cf T
∑

n≥0

(−1)n2n+1(α + β)n(log T )n+1

(n + 1)!
+O

(
T (log T )1−δ

)
,

where α, β ∈ C and |α|, |β| ≪ 1/ log T .

Key idea: differentiate wrt parameters, yields formulas for
integrals of products of derivatives.
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Shifted Moments Proof Technique

Approximate functional equation:

L(s + α, f ) =
∑

n≥1

λf (n)
ns+α

e− n
X + F (s)

∑

n≤X

λf (n)
n1−s−α

+ E(s),

where λf (n) are the Fourier coefficients of L(s, f ),
F (s) is a functional equation term, and E(s) is an
error term.

We have an analogous expression for L(1 − s + β, f ).
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Shifted Moments Proof Technique

Analyze product

L(s + α, f )L(1 − s + β, f ),

where each factor gives rise to four products (so
sixteen products to estimate).

Use a generalization of Montgomery and Vaughan’s
mean value theorem and contour integration to
estimate product and compute the resulting moments.
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Shifted Moment Result for Derivatives

Shifted moment result yields lower order terms and
moments of derivatives of L-functions by
differentiation and Cauchy’s integral formula.

Derive an expression for
∫ 2T

T
L(µ)

(
1
2
+ it , f

)
L(ν)

(
1
2
− it , f

)
dt ,

where T ≥ 2 and µ, ν ∈ Z+. Use this in Hall’s method
to obtain the lower bound stated in our theorem.

Need (µ, ν) ∈ {(0, 0), (1, 0), (1, 1)}; other cases
previously done (Good did (0, 0) and Yashiro did
µ = ν).
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Modified Wirtinger Inequality

Using Hall’s method, we bound the gaps between zeroes.
This requires the following result, due to Wirtinger and
modified by Bredberg.

Lemma (Bredberg)

Let y : [a, b] → C be a continuously differentiable function
and suppose that y(a) = y(b) = 0. Then

∫ b

a
|y(x)|2dx ≤

(
b − a
π

)2 ∫ b

a
|y ′(x)|2dx .
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Proving our Result

For ρ a real parameter to be determined later, define

g(t) := eiρt log T L
(

1
2 + it , f

)
,

Fix f and let γ̃f (k) denote an ordinate zero of L(s, f )
on the critical line ℜ(s) = 1

2 .
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Proving our Result

For ρ a real parameter to be determined later, define

g(t) := eiρt log T L
(

1
2 + it , f

)
,

Fix f and let γ̃f (k) denote an ordinate zero of L(s, f )
on the critical line ℜ(s) = 1

2 .

g(t) has same zeros as L(s, f ) (at t = γ̃f (k)). Use in
the modified Wirtinger’s inequality.

17



Gaps: Intro Gaps: Shifted Moments & Proofs Gaps: Props Bias: Intro Bias: Evidence Bias: Data Bias: Future Refs

Proving our Result

For ρ a real parameter to be determined later, define

g(t) := eiρt log T L
(

1
2 + it , f

)
,

Fix f and let γ̃f (k) denote an ordinate zero of L(s, f )
on the critical line ℜ(s) = 1

2 .

g(t) has same zeros as L(s, f ) (at t = γ̃f (k)). Use in
the modified Wirtinger’s inequality.

For adjacent zeros have
N−1∑

n=1

∫ γ̃f (n+1)

γ̃f (n)
|g(t)|2dt ≤

N−1∑

n=1

κ2
T

π2

∫ γ̃f (n+1)

γ̃f (n)
|g′(t)|2dt .

Summing over zeros with n ∈ {1, . . . ,N} and trivial
estimation yields integrals from T to 2T .
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Proving our Result

|g(t)|2 = |L(1/2 + it , f )|2 and

|g′(t)|2 = |L′(1/2 + it , f )|2 + ρ2 log2 T · |L(1/2 + it , f )|2

+ 2ρ log T · Re
(

L′(1/2 + it , f )L(1/2 + it , f )
)
.

Apply sub-convexity bounds to L(1/2 + it , f ):
∫ 2T

T
|g(t)|2dt ≤ κ2

T

π2

∫ 2T

T
|g′(t)|2dt + O

(
T

2
3 (log T )

5
6

)
.

As g(t) and g′(t) may be expressed in terms of
L
(

1
2 + it , f

)
and its derivatives, can write our

inequality explicitly in terms of formula given by our
mixed moment theorem.
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Finishing the Proof

After substituting our formula, we have

κ2
T

π2
≥ 3

3ρ2 − 6ρ+ 4
(log T )−2

(
1 + O(log T )−δ

)
.

The polynomial in ρ is minimized at ρ = 1, yielding

κT ≥
√

3π
log T

(
1 + O

(
1
cf
(log T )−δ

))
.
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Essential GL(2) properties
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Properties

For primitive f on GL(2) over Q (Hecke or Maass) with

L(s, f ) =
∞∑

n=1

af (n)
ns

, R(s) > 1,

we isolate needed crucial properties (all are known).

1 L(s, f ) has an analytic continuation to an entire
function of order 1.

2 L(s, f ) satisfies a function equation of the form

Λ(s, f ) := L(s, f∞)L(s, f ) = ǫfΛ(1 − s, f̄ )

with L(s, f∞) = QsΓ
(s

2
+ µ1

)
Γ
(s

2
+ µ2

)
.
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Properties (continued)

3 Convolution L-function L(s, f × f̄ ),
∞∑

n=1

|af (n)|2
ns

, R(s) > 1,

is entire except for a simple pole at s = 1.

4 The Dirichlet coefficients (normalized so that the
critical strip is 0 ≤ ℜ(s) ≤ 1) satisfy

∑

n≤x

|af (n)|2 ≪ x .

5 For some small δ > 0, we have a subconvexity bound∣∣∣∣L
(

1
2
+ it , f

)∣∣∣∣ ≪ |t | 1
2−δ.
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Properties (status)

Mœglin and Waldspurger prove the needed
properties of L(s, f × f ) (in greater generality).

Dirichlet coefficient asymptotics follow for Hecke
forms essentially from the work of Rankin and
Selberg, and for Maass by spectral theory.

Michel and Venkatesh proved a subconvexity bound
for primitive GL(2) L-functions over Q.

Other properties are standard and are valid for GL(2).
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Bias Conjecture for Moments of Fourier Coefficients of
Elliptic Curve L-functions

Joint with students Blake Mackall (Williams), Christina
Rapti (Bard) and Karl Winsor (Michigan)

Emails: Blake.R.Mackall@williams.edu, cr9060@bard.edu and
krlwnsr@umich.edu.
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Families and Moments

A one-parameter family of elliptic curves is given by

E : y2 = x3 + A(T )x + B(T )

where A(T ),B(T ) are polynomials in Z[T ].

Each specialization of T to an integer t gives an
elliptic curve E(t) over Q.

The r th moment of the Fourier coefficients is

Ar ,E(p) =
∑

t mod p

aE(t)(p)r .
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Tate’s Conjecture

Tate’s Conjecture for Elliptic Surfaces

Let E/Q be an elliptic surface and L2(E , s) be the L-series attached to
H2

ét(E/Q,Ql). Then L2(E , s) has a meromorphic continuation to C

and satisfies
−ords=2L2(E , s) = rank NS(E/Q),

where NS(E/Q) is the Q-rational part of the Néron-Severi group of E .
Further, L2(E , s) does not vanish on the line Re(s) = 2.

Tate’s conjecture is known for rational surfaces: An elliptic surface
y2 = x3 + A(T )x + B(T ) is rational iff one of the following is true:

0 < max{3degA, 2degB} < 12;

3degA = 2degB = 12 and ordT=0T 12∆(T−1) = 0.
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Negative Bias in the First Moment

A1,E(p) and Family Rank (Rosen-Silverman)

If Tate’s Conjecture holds for E then

lim
X→∞

1
X

∑

p≤X

A1,E(p) log p
p

= −rank(E/Q).

By the Prime Number Theorem,
A1,E(p) = −rp + O(1) implies rank(E/Q) = r .

28



Gaps: Intro Gaps: Shifted Moments & Proofs Gaps: Props Bias: Intro Bias: Evidence Bias: Data Bias: Future Refs

Bias Conjecture

Second Moment Asymptotic (Michel)

For families E with j(T ) non-constant, the second moment
is

A2,E(p) = p2 + O(p3/2).

The lower order terms are of sizes p3/2, p, p1/2, and 1.
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Bias Conjecture

Second Moment Asymptotic (Michel)

For families E with j(T ) non-constant, the second moment
is

A2,E(p) = p2 + O(p3/2).

The lower order terms are of sizes p3/2, p, p1/2, and 1.

In every family we have studied, we have observed:

Bias Conjecture
The largest lower term in the second moment expansion
which does not average to 0 is on average negative .
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Preliminary Evidence and Patterns

Let n3,2,p equal the number of cube roots of 2 modulo p,
and set c0(p) =

[

(

−3
p

)

+
(3

p

)

]

p, c1(p) =
[

∑

x mod p

(x3
−x
p

)

]2
,

c3/2(p) = p
∑

x(p)

(4x3+1
p

)

.

Family A1,E(p) A2,E(p)
y2 = x3 + Sx + T 0 p3 − p2

y2 = x3 + 24(−3)3(9T + 1)2 0
{

2p2
−2p p≡2 mod 3

0 p≡1 mod 3

y2 = x3 ± 4(4T + 2)x 0
{

2p2
−2p p≡1 mod 4

0 p≡3 mod 4

y2 = x3 + (T + 1)x2 + Tx 0 p2 − 2p − 1
y2 = x3 + x2 + 2T + 1 0 p2 − 2p −

(

−3
p

)

y2 = x3 + Tx2 + 1 −p p2 − n3,2,pp − 1 + c3/2(p)
y2 = x3 − T 2x + T 2 −2p p2 − p − c1(p)− c0(p)
y2 = x3 − T 2x + T 4 −2p p2 − p − c1(p)− c0(p)

y2 = x3 + Tx2 − (T + 3)x + 1 −2cp,1;4p p2 − 4cp,1;6p − 1
where cp,a;m = 1 if p ≡ a mod m and otherwise is 0.
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Preliminary Evidence and Patterns

The first family is the family of all elliptic curves; it is a two parameter family
and we expect the main term of its second moment to be p3.

Note that except for our family y2 = x3 + Tx2 + 1, all the families E have
A2,E(p) = p2 − h(p)p + O(1), where h(p) is non-negative. Further, many of
the families have h(p) = mE > 0.

Note c1(p) is the square of the coefficients from an elliptic curve with complex
multiplication. It is non-negative and of size p for p 6≡ 3 mod 4, and zero for
p ≡ 1 mod 4 (send x 7→ −x mod p and note

(

−1
p

)

= −1).

It is somewhat remarkable that all these families have a correction to the

main term in Michel’s theorem in the same direction, and we analyze the

consequence this has on the average rank. For our family which has a p3/2

term, note that on average this term is zero and the p term is negative.
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Lower order terms and average rank

1
N

2N∑

t=N

∑

γt

φ

(
γt

log R
2π

)
= φ̂(0) + φ(0) − 2

N

2N∑

t=N

∑

p

log p
log R

1
p
φ̂

(
log p
log R

)
at(p)

− 2
N

2N∑

t=N

∑

p

log p
log R

1
p2 φ̂

(
2 log p
log R

)
at(p)2 + O

(
log log R

log R

)
.

If φ is non-negative, we obtain a bound for the average rank in
the family by restricting the sum to be only over zeros at the

central point. The error O
(

log log R
log R

)
comes from trivial

estimation and ignores probable cancellation, and we expect

O
(

1
log R

)
or smaller to be the correct magnitude. For most

families log R ∼ log Na for some integer a.
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Lower order terms and average rank (cont)

The main term of the first and second moments of the at(p) give
rφ(0) and − 1

2φ(0).

Assume the second moment of at(p)2 is p2 − mEp + O(1), mE > 0.

We have already handled the contribution from p2, and −mEp
contributes

S2 ∼ −2
N

∑

p

log p
log R

φ̂

(
2

log p
log R

)
1
p2

N
p
(−mEp)

=
2mE

log R

∑

p

φ̂

(
2

log p
log R

)
log p
p2 .

Thus there is a contribution of size 1
log R .
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Lower order terms and average rank (cont)

A good choice of test functions (see Appendix A of [ILS]) is the
Fourier pair

φ(x) =
sin2(2π σ

2 x)
(2πx)2 , φ̂(u) =

{
σ−|u|

4 if |u| ≤ σ

0 otherwise.

Note φ(0) = σ2

4 , φ̂(0) = σ
4 = φ(0)

σ , and evaluating the prime sum gives

S2 ∼
(
.986
σ

− 2.966
σ2 log R

)
mE

log R
φ(0).
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Lower order terms and average rank (cont)

Let rt denote the number of zeros of Et at the central point (i.e., the analytic

rank). Then up to our O
(

log log R
log R

)

errors (which we think should be smaller),

we have

1
N

2N
∑

t=N

rtφ(0) ≤
φ(0)
σ

+

(

r +
1
2

)

φ(0) +
(

.986
σ

−
2.966
σ2 log R

)

mE

log R
φ(0)

Ave Rank[N,2N](E) ≤
1
σ
+ r +

1
2
+

(

.986
σ

−
2.966
σ2 log R

)

mE

log R
.

σ = 1, mE = 1: for conductors of size 1012, the average rank is bounded by
1 + r + 1

2 + .03 = r + 1
2 + 1.03. This is significantly higher than Fermigier’s

observed r + 1
2 + .40.

σ = 2: lower order correction contributes .02 for conductors of size 1012, the

average rank bounded by 1
2 + r + 1

2 + .02 = r + 1
2 + .52. Now in the ballpark

of Fermigier’s bound (already there without the potential correction term!).
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Interpretation: Approaching semicircle 2nd moment from be low

Sato-Tate Law for Families without CM
For large primes p, the distribution of aE(t)(p)/

√
p,

t ∈ {0, 1, . . . , p − 1}, approaches a semicircle on [−2, 2].

Figure: aE(t)(p) for y2 = x3 + Tx + 1 at the 2014th prime.
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Implications for Excess Rank

Katz-Sarnak’s one-level density statistic is used to
measure the average rank of curves over a family.

More curves with rank than expected have been
observed, though this excess average rank vanishes
in the limit.

Lower-order biases in the moments of families explain
a small fraction of this excess rank phenomenon.
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Theoretical Evidence
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Methods for Obtaining Explicit Formulas

For a family E : y2 = x3 + A(T )x + B(T ), we can write

aE(t)(p) = −
∑

x mod p

(
x3 + A(t)x + B(t)

p

)

where
(

·

p

)
is the Legendre symbol modp given by

(
x
p

)
=





1 if x is a non-zero square modulo p
0 if x ≡ 0 mod p
−1 otherwise.
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Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums

∑

x mod p

(
ax + b

p

)
= 0 if p ∤ a

∑

x mod p

(
ax2 + bx + c

p

)
=




−
(

a
p

)
if p ∤ b2 − 4ac

(p − 1)
(

a
p

)
if p | b2 − 4ac
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Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums

∑

x mod p

(
ax + b

p

)
= 0 if p ∤ a

∑

x mod p

(
ax2 + bx + c

p

)
=




−
(

a
p

)
if p ∤ b2 − 4ac

(p − 1)
(

a
p

)
if p | b2 − 4ac

Average Values of Legendre Symbols

The value of
(

x
p

)
for x ∈ Z, when averaged over all

primes p, is 1 if x is a non-zero square, and 0 otherwise.
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Rank 0 Families

Theorem (MMRW’14): Rank 0 Families Obeying the
Bias Conjecture

For families of the form E : y2 = x3 + ax2 + bx + cT + d ,

A2,E(p) = p2 − p
(

1 +

(−3
p

)
+

(
a2 − 3b

p

))
.

The average bias in the size p term is −2 or −1,
according to whether a2 − 3b ∈ Z is a non-zero
square.
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Families with Rank

Theorem (MMRW’14): Families with Rank

For families of the form E : y2 = x3 + aT 2x + bT 2,

A2,E(p) = p2 − p
(

1 +
(

−3
p

)
+
(

−3a
p

))
−
(∑

x(p)

(
x3+ax

p

))2
.

These include families of rank 0, 1, and 2.

The average bias in the size p terms is −3 or −2,
according to whether −3a ∈ Z is a non-zero square.
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Families with Complex Multiplication

Theorem (MMRW’14): Families with Complex
Multiplication

For families of the form E : y2 = x3 + (aT + b)x ,

A2,E(p) = (p2 − p)
(

1 +

(−1
p

))
.

The average bias in the size p term is −1.

The size p2 term is not constant, but is on average p2,
and an analogous Bias Conjecture holds.
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Families with Unusual Distributions of Signs

Theorem (MMRW’14): Families with Unusual Signs

For the family E : y2 = x3 + Tx2 − (T + 3)x + 1,

A2,E(p) = p2 − p
(

2 + 2
(−3

p

))
− 1.

The average bias in the size p term is −2.

The family has an usual distribution of signs in the
functional equations of the corresponding L-functions.
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The Size p3/2 Term

Theorem (MMRW’14): Families with a Large Error

For families of the form
E : y2 = x3 + (T + a)x2 + (bT + b2 − ab + c)x − bc,

A2,E(p) = p2 − 3p − 1 + p
∑

x mod p

(−cx(x + b)(bx − c)
p

)

The size p3/2 term is given by an elliptic curve
coefficient and is thus on average 0.

The average bias in the size p term is −3.
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General Structure of the Lower Order Terms

The lower order terms appear to always

have no size p3/2 term or a size p3/2 term that is on
average 0;

exhibit their negative bias in the size p term;

be determined by polynomials in p, elliptic curve
coefficients, and congruence classes of p (i.e., values
of Legendre symbols).
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Numerical Investigations
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Numerical Methods

As complexity of coefficients increases, it is much
harder to find an explicit formula.

We can always just calculate the second moment
from the explicit formula; if E : y2 = f (x), we have

A2,E(p) =
∑

t(p)


∑

x(p)

(
f (x)

p

)


2

.

Takes an hour for the first 500 primes. Optimizations?
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Numerical Methods

Consider the family y2 = f (x) = ax3 + (bT + c)x2 + (dT + e)x + f . By
similar arguments used to prove special cases,

A2,E(p) = p2 − 2p + pC0(p) − pC1(p)− 1 +#1,

where

C0(p) =
∑

x(p)

∑

y(p): β(x,y)≡0

(
A(x)A(y)

p

)
,

C1(p) =
∑

x(p): β(x,x)≡0

(
A(x)2

p

)
,

#1 = p
∑

x(p)

∑

y(p): A(x)≡0 and A(y)≡0

(
B(x)B(y)

p

)
,

and β, A, and B are polynomials.
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Numerical Methods

Co(p) ordinarily O(p2) to compute.

Sum over zeros of β(x , y) mod p

Fixing an x , β is a quadratic in y . So, with the
quadratic formula mod p, we know where to look for y
to see if there is a zero.

Now O(p); runs from 6000th to 7000th prime in an
hour.
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Potential Counterexamples

Families of Rank as Large as 3

E : y2 = x3 + ax2 + bT 2x + cT 2 with b, c 6= 0:

A2,E(p) = p2 + p
∑

P(x,y)≡0

(
(x3 + bx)(y3 + by)

p

)

+ p


 ∑

x3+bx≡0

(
ax2 + c

p

)


2

− p
∑

P(x,x)≡0

(
x3 + bx

p

)2

− p
(

2 +

(−b
p

))
−


 ∑

x mod p

(
x3 + bx

p

)


2

− 1

where P(x , y) = bx2y2 + c(x2 + xy + y2) + bc(x + y).
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A Positive Size p Term?

p
[∑

x3+bx≡0

(
ax2+c

p

)]2
can be +9p on average!

Terms such as −p
∑

P(x,x)≡0

(
x3+bx

p

)2
,

−p
(

2 +
(

−b
p

))
, and −

[∑
x mod p

(
x3+bx

p

)]2
contribute

negatively to the size p bias.

The term p
∑

P(x,y)≡0

(
(x3+bx)(y3+by)

p

)
is of size p3/2.

A2,E (p) = p2 + p
∑

P(x,y)≡0

(

(x3 + bx)(y3 + by)

p

)

+ p





∑

x3+bx≡0

(

ax2 + c

p

)





2

− p
∑

P(x,x)≡0

(

x3 + bx

p

)2

− p
(

2 +

(

−b

p

))

−





∑

x mod p

(

x3 + bx

p

)





2

− 1

where P(x, y) = bx2y2 + c(x2 + xy + y2) + bc(x + y).
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Analyzing the Size p3/2 Term

We averaged
∑

P(x,y)≡0

(
(x3+bx)(y3+by)

p

)
over the first

10,000 primes for several rank 3 families of the form
E : y2 = x3 + ax2 + bT 2x + cT 2.

Family Average
y2 = x3 + 2x2 − 4T 2x + T 2 −0.0238
y2 = x3 − 3x2 − T 2x + 4T 2 −0.0357
y2 = x3 + 4x2 − 4T 2x + 9T 2 −0.0332
y2 = x3 + 5x2 − 9T 2x + 4T 2 −0.0413
y2 = x3 − 5x2 − T 2x + 9T 2 −0.0330
y2 = x3 + 7x2 − 9T 2x + T 2 −0.0311
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The Right Object to Study

c3/2(p) :=
∑

P(x,y)≡0

(
(x3+bx)(y3+by)

p

)
is not a natural object

to study (for us multiply by p).

An example distribution for y2 = x3 + 2x3 − 4T 2x + T 2.

Figure: c3/2(p) over the first 10,000 primes.
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In Terms of Elliptic Curve Coefficients

Compare it to the distribution of a sum of 2 elliptic curve
coefficients.

Figure: −∑
x mod p

(
x3+x+1

p

)
−∑

x mod p

(
x3+x+2

p

)
over the first

10,000 primes.
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More Error Distributions

Figure: c3/2(p) for y2 = 4x3 + 5x2 + (4T − 2)x + 1, first 10,000
primes.
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More Error Distributions

Figure: −∑
x mod p

(
x3+x+1

p

)
distribution, first 10,000 primes.
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More Error Distributions

Figure: c3/2(p) over y2 = 4x3 + (4T + 1)x2 + (−4T − 18)x + 49, first
10,000 primes.
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More Error Distributions

Figure: −∑
x mod p

(
x5+x3+x2+x+1

p

)
distribution, first 10,000 primes.
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Summary of p3/2 Term Investigations

In the cases we’ve studied, the size p3/2 terms

appear to be governed by (hyper)elliptic curve
coefficients;

may be hiding negative contributions of size p;

prevent us from numerically measuring average
biases that arise in the size p terms.
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Future Directions
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Questions for Further Study

Are the size p3/2 terms governed by (hyper)elliptic
curve coefficients? Or at least other L-function
coefficients?

Does the average bias always occur in the terms of
size p?

Does the Bias Conjecture hold similarly for all higher
even moments?

What other (families of) objects obey the Bias
Conjecture? Kloosterman sums? Cusp forms of a
given weight and level? Higher genus curves?
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References
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Thank you!
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