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Overview

e Many problems have painfully slow convergence.

e Elliptic curves quantities converge like the log of the
conductor; millions with conductors at most 102°
translates to less than 50.

@ Improvements in computing power give larger data
sets, and with machine learning techniques have
found new behavior.

@ Reporting on lower order terms in coefficients in
families, describing an open conjecture where the
“nice” term is hard to extract due to large, fluctuation
terms, hoping to form collaborations....
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Warning

Claim: 40% of all integers are prime and 20% start a
twin prime pair!
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“Proof”: If count up to 10 have 2, 3, 5 and 7 with 3 and 5
starting pairs.




Intro
L]

Warning

Claim: 40% of all integers are prime and 20% start a
twin prime pair!

“Proof”: If count up to 10 have 2, 3, 5 and 7 with 3 and 5
starting pairs.

If double the computation to 20 gain 11, 13, 17 and 19,
with 11 and 17 starting pairs!
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Two Papers

Random Matrix Ensembles with Split Limiting Behavior
(with Paula Burkhardt, Peter Cohen, Jonathan Dewitt,
Max Hlavacek, Carsten Sprunger, Yen Nhi Truong Vu,
Roger Van Peski, and Kevin Yang, and an appendix joint
with Manuel Fernandez and Nicholas Sieger), Random
Matrices: Theory and Applications 7 (2018), no. 3,
1850006 (30 pages), DOI: 10.1142/S2010326318500065:
https://arxiv.org/abs/1609.03120.

Applications of Moments of Dirichlet Coefficients in Elliptic
Curve Families (with Zoe Batterman, Aditya Jambhale,
Steven J. Miller, Akash L. Narayanan, Kishan Sharma,
Andrew Yang, Chris Yao), to appear in the ICERM
Conference Proceedings for the July 2023 Murmurations
Workshop: https://arxiv.org/abs/2311.17215.



https://arxiv.org/abs/1609.03120
https://arxiv.org/abs/2311.17215
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Classical Random Matrix Theory
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem intractable.
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem intractable.
Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into
nucleus, see what comes out.

Fundamental Equation:
Hwn = Enwn
H : matrix, entries depend on system

E, : energy levels
1y . energy eigenfunctions
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Origins of Random Matrix Theory

e Statistical Mechanics: for each configuration,
calculate quantity (say pressure).

@ Average over all configurations — most configurations
close to system average.

@ Nuclear physics: choose matrix at random, calculate
eigenvalues, average over matrices (real Symmetric

A = AT, complex Hermitian A’ = A).

10
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Random Matrix Ensembles

ayn a2 a3z - an
di2 dp dpz - QN T
A= : : Do : = A", ag=ag
aN an asn - amn
Fix p, define
Prob(A) = [ nr(ay)
1<i<j<N
This means
Bi
Prob (A: aj € [o, 5j]) / p(X;)dx;.
1<i<j<N ¥ Xi=%

L Want to understand eigenvalues of A.
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Eigenvalue Distribution

d(x — xo) is a unit point mass at xp:
[ f(x)d(x — xo)dx = f(Xo).

To each A, attach a probability measure:

N .
) - %zao—z%)

b : N
/a ;LAJ\/(X)dX = N

k" moment = =17 = —.
2kNz+ 2kNz
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Wigner’s Semi-Circle Law

Wigner’s Semi-Circle Law

N x N real symmetric matrices, entries i.i.d.r.v. from a
fixed p(x) with mean 0, variance 1, and other moments
finite. Then for almost all A, as N — oo

v1—x2 if x| <A1

2
0 otherwise.

pan(x) — {

See Eugene Wigner’s The Unreasonable Effectiveness of
Mathematics in the Natural Sciences in Communications
in Pure and Applied Mathematics, vol. 13, No. | (February
1960), online at http://www.dartmouth.edu/
~matc/MathDrama/reading/Wigner.html.



http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html
http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html
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Numerical examples
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Numerical examples

Cauchy Dlstrlbutlon P(X) = i

|. Zakharevich, A generalization of Wigner’s law, Comm.
Math. Phys. 268 (2006), no. 2, 403—414.

http://web.williams.edu/Mathematics/sjmiller/public_html/book/papers/innaz.pdf



http://web.williams.edu/Mathematics/sjmiller/public_html/book/papers/innaz.pdf
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SKETCH OF PROOF: Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but choose the
matrix elements randomly and independently.

Eigenvalue Trace Lemma
Let Abe an N x N matrix with eigenvalues \;(A). Then

N

Trace(A¥) = ZA,-(A)",

n=1
where

N

Trace(AK) = Z Za,1,23,2,3 * @jyiy -

ip=1 ix=1
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SKETCH OF PROOF: Correct Scale

Trace(A%) = > \(A).

By the Central Limit Theorem:

N N
Tl’ace(AZ) = a,/a/, = Zzai ~ N2

i=1 j=1 i=1 j=1
> ON(AP ~ NP

Gives NAve()\;(A)?) ~ N2 or Ave(\;(A)) ~ V/N.
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SKETCH OF PROOF: Averaging Formula

Recall k-th moment of 114 n(X) is Trace(AK) /2K Nk/2+1,

Average k-th moment is
Trace(A¥)
2ka/2+1 p aj)aaj.

Proof by method of moments: Two steps.

@ Show average of k-th moments converge to moments
of semi-circle as N — oc;

e Control variance (show it tends to zero as N — o).
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SKETCH OF PROOF: Averaging Formula for Second Moment

Substituting into expansion gives

22N2/ / ZZ i p(ai1)dais - - - p(ann)dann

- i=1 j=1

Integration factors as

oo
/ ,jp aj)daj
ajj=—00

Higher moments involve more advanced combinatorics
(Catalan numbers).

H / akg dakg = 1.
a

(k,O)A(i,j) ¥/ Bke=—00
k<t
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SKETCH OF PROOF: Averaging Formula for Higher Moments

Higher moments involve more advanced combinatorics
(Catalan numbers).

2ka/2+1 / / Z Za’ﬂz -ay;, - | [ p(ay)day.

© i =1 ix=1 i<j

Main contribution when the a;,;,,,’s matched in pairs, not
all matchings contribute equally (if did would get a
Gaussian and not a semi-circle; this is seen in Real
Symmetric Palindromic Toeplitz matrices).
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Checkerboard Ensemble J
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Checkerboard Matrices: N x N (k, w)-checkerboard ensemble

Matrices M = (mj;) = MT with a; iidrv, mean 0, variance
1, finite higher moments, w fixed and

a; ifizjmodk

mj = e
w if i =) mod k.

Example: (3, w)-checkerboard matrix:

w a1 Qo2 w doa - doN-1
aio W a2 a3 w T a1 N-1

a o a 1 w a3 aa w

anN-1 A N-1 W agn-1 aan-—1 - w
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Split Eigenvalue Distribution

Scaled Bin Count

10~
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Figure: Histogram of normalized eigenvalues: 2-checkerboard
100 x 100 matrices, 100 trials.
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Split Eigenvalue Distribution

Scaled Bin Count

L L L I
0 1 2 3

Figure: Histogram of normalized eigenvalues: 2-checkerboard
150 x 150 matrices, 100 trials.
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Split Eigenvalue Distribution

Scaled Bin Count

L L L L
0 1 2 3

Figure: Histogram of normalized eigenvalues: 2-checkerboard
200 x 200 matrices, 100 trials.
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Split Eigenvalue Distribution

Scaled Bin Count

i L L L I
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Figure: Histogram of normalized eigenvalues: 2-checkerboard
250 x 250 matrices, 100 trials.
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Split Eigenvalue Distribution

Scaled Bin Count
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Figure: Histogram of normalized eigenvalues: 2-checkerboard
300 x 300 matrices, 100 trials.
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Split Eigenvalue Distribution

Scaled Bin Count

I L L L L
0 1 2 3 4

Figure: Histogram of normalized eigenvalues: 2-checkerboard
350 x 350 matrices, 100 trials.
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The Weighting Function

Use weighting function f,(x) = x®"(x — 2)2".

Figure: f,(x) plotted for n € {1,2,3,4}.
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The Weighting Function

Use weighting function f,(x) = x2"(x — 2)2".

05 1.0 15 20

Figure: f,(x) plotted for n=4" m e {0,1,...,5}.
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Spectral distribution of hollow GOE

Figure: Hist. of eigenvals of 32000 (Left) 2 x 2 hollow GOE matrices,
(Right) 3 x 3 hollow GOE matrices.

Figure: Hist. of eigenvals of 32000 (Left) 4 x 4 hollow GOE matrices,
(Right) 16 x 16 hollow GOE matrices.
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SMALL 2024 Results

Definition ((k, w)-Checkerboard)

Define N x N (k, w)-checkerboard matrices M = (my;) as follows:

Gk = a; j ifi;,‘éjmodk
YT Yw o if i=j modk

where a; = aj;; with a; ~ N(0, 1) iid, and w € R. E.g., (2, w)-checkerboard matrices:

w ap,1 w ap,1 w coo o do,N—1
4o, 1 w a2 w a4 S w

M = w a2 w a3 w coo d N—1
a0,N—1 w a N—1 w asN—1 w

Definition (Anticommutator of Checkerboard Matrices)

Draw A from N x N (k, w)-checkerboard matrices and B from N x N
(j, v)-checkerboard matrices, consider AB + BA.
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Distribution of Anticommutator of Checkerboard Matrices
(Quantization)

Draw A from N x N (k, w)-checkerboard matrices and B from N x N
(J, v)-checkerboard matrices. In addition to bulk of order N observe four blips of order

N3/2_ Their respective centers are 0, £+ /1 — }N%, and j:} 1— %Ng.

Spectral Density of Random Matrix Ensemble

r] N . o I
10 -8 6 4 2 o 2 4 6 8 10
Eigenvalue

Figure: ESD of AB 4 BA
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Moments of the Bulk: SMALL 2024

Odd moments of AB + BA are 0, even moments follow the recurrence below.

Moments of the Anti-Commutator of Checkerboard Matrices Let f(0) = f(1) =1,
g(1) =1, and

k—1
f(k) = 2> g()f(k —j) + g(k)
j=1

9(k)

2fk—1)+ D (14145001 + 10 (x1)f()g(k — 1 = x1 — X).
0<xq,Xp<k—1
Xy +Xxo<k—1

Then the 2k™ moment Myy is 2f(k).
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Introduction
to L-Functions
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Riemann Zeta Function

- ()
=> —=]J] (1-=) . Re(s)>1.
n° p prime p?

n=1

Unique Factorization: n = pq‘ S pm.

1 1\ . 112
];[ — > = [T+ tlss) +
1

ns’
n

1 1\2
T4 ast(gs) +
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Riemann Zeta Function (cont)

1
(s) = ,:SZH<1—;S) , Re(s) > 1

o
m(x) = #{p:pisprime,p < x}

Properties of ((s) and Primes:
@ limg_,1+ ¢ (S) ( )—)OO

® ((2)= @, 7r(x) — 00.

ey EEEEETTSTSTSTSSSSSSSSSEEEESEEEEEEEEEEEEEEE
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Riemann Zeta Function

i;s_ 11 <1—';S>_1, Re(s) > 1.

n=1 p prime

Functional Equation:

§(s) = 1(3)rkc(s) = €(1-9)

Riemann Hypothesis (RH):

. 1 . 1.
All non-trivial zeros have Re(s) = i can write zeros as > +iy.

Observation: Spacings b/w zeros appear same as b/w
. o . =T
eigenvalues of Complex Hermitian matrices A = A.

eSS
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General L-functions

L(s.f) = iafss”) — I Lo(s.N™", Re(s)>1.

n=1 p prime
Functional Equation:
A(s, f) = No(s,f)L(s,f) = N1 —s,f).

Generalized Riemann Hypothesis (RH):

. 1 . 1
All non-trivial zeros have Re(s) = 5 can write zeros as TR

Observation: Spacings b/w zeros appear same as b/w
. i . =T
eigenvalues of Complex Hermitian matrices A° = A.

AQ
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Elliptic Curves: Mordell-Weil Group

Elliptic curve y? = x3 + ax + b with rational solutions
P = (x1,y1) and Q = (x2, y») and connecting line y = mx + b.

Addition of distinct points P and Q Adding a point P to itself

E(Q) = E(Q)tors ® v/
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Elliptic curve L-function

E : y? = x3 + ax + b, associate L-function

L(s,E) = ZaE(” IT Le

n=1 p prime

where

ag(p) = p— #{(x,y) € (Z/pZ)? : y* = x> + ax + b mod p}.
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Elliptic curve L-function

E : y? = x3 + ax + b, associate L-function

L(s,E) = ZaE(” IT Le

n=1 p prime

where

ag(p) = p— #{(x,y) € (Z/pZ)? : y* = x> + ax + b mod p}.

Birch and Swinnerton-Dyer Conjecture

Rank of group of rational solutions equals order of vanishing of
L(s,E)ats=1/2.
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Properties of zeros of L-functions

@ Infinitude of primes, primes in arithmetic progression.
@ Chebyshev’s bias: 73 4(x) > 71 4(x) ‘most’ of the time.
@ Birch and Swinnerton-Dyer conjecture.

@ Goldfeld, Gross-Zagier: bound for h(D) from L-functions
with many central point zeros.

@ Even better estimates for h(D) if a positive percentage of
zeros of ¢(s) are at most 1/2 — ¢ of the average spacing to
the next zero.
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Distribution of zeros

@ ((s) # 0 for Re(s) = 1: w(x), ma,q(X).
@ GRH: error terms.
@ GSH: Chebyshev’s bias.

@ Analytic rank, adjacent spacings: h(D).
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Explicit Formula (Contour Integration)

AR
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Explicit Formula (Contour Integration)

_¢(s) = —:Iog{ = ——IogH (1-p -

_d _pS
= dszp:bg(1 P

logp - p~° log p
= ;1_'0_3 = Z p + GOOd( )




A
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Explicit Formula (Contour Integration)

Contour Integration:

[~ 5 = Tue[() S
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Explicit Formula (Contour Integration)

! d d -
Q9 e = gglel] (P

d _
= dsEp:IogU -p~®)

lo . pS lo
S L Jeh
P P

Contour Integration:

¢'(s) s
/— ) #(s)ds vs zpjlogp/qb(s)p ds.
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Explicit Formula (Contour Integration)

! d d -
_CC((SS)) = g5 loel(s) = —dslogl;[(1 —p)

_d e
= dszp:logﬁ p )

logp - p~*° log p
= Zﬁ = ZF + Good(s).
p p

Contour Integration (see Fourier Transform arising):

C,(S) —ologp o—itlog
/— ) $(s)ds vs ;Iogp/qb(s)e Pg-itlogpgs,

Knowledge of zeros gives info on coefficients.
|
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Explicit Formula: Example

Dirichlet L-functions: Let ¢ be an even Schwartz function and
L(s,x) = >_,x(n)/n® a Dirichlet L-function from a non-trivial
character x with conductor m and zeros p = % + Iv,. Then

Z¢< log( m/7r ) / oy
23 i) (iato1) 2572)

o ~ o 2 1
> st Ciogtmm) o licgm)

;
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Katz-Sarnak
Density Conjectures

ST -
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Zeros of ((s) vs GUE

0.6 P

04

02

0.0 L —L L
0.0 0.5 1.0 L5 2.0 25 3.0

70 million spacings b/w adjacent zeros of {(s), starting at the
1020t zero (from Odlyzko).

N TS
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Measures of Spacings: n-Level Correlations

{a;} increasing sequence, box B C R™ 1,

n-level correlation

# (O‘IH Q5 Qg afn) € B,ji # Jk

lim
N— oo N

(Instead of using a box, can use a smooth test function.)

;
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Measures of Spacings: n-Level Correlations

{a;} increasing sequence, box B  R™".
@ Normalized spacings of ¢(s) starting at 102° (Odlyzko).
© 2 and 3-correlations of ¢(s) (Montgomery, Hejhal).

© n-level correlations for all automorphic cupsidal L-functions
(Rudnick-Sarnak).

© n-level correlations for the classical compact groups
(Katz-Sarnak).

© Insensitive to any finite set of zeros.

;
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Measures of Spacings: n-Level Density and Families

Let g; be even Schwartz functions whose Fourier Transform is
compactly supported, L(s, f) an L-function with zeros % + s
and conductor Qy:

log Q log Q
Dni(9) = Z 91 (’Yf,hgﬂ_f) - gn <’Yf,jnog7rf>

@ Properties of n-level density:
o Individual zeros contribute in limit
< Most of contribution is from low zeros
o Average over similar L-functions (family)

|~ S
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n-Level Density

n-level density: F = UFy a family of L-functions ordered by
conductors, gk an even Schwartz function: Dy, 7(g) =

. 1 log Qr log Q
LEPIPIEIC S HERAS

As N — oo, n-level density converges to

[ aRngn(3)9% = [ (@Nngin(U)T.

Conjecture (Katz-Sarnak)

(In the limit) Scaled distribution of zeros near central point
agrees with scaled distribution of eigenvalues near 1 of a
classical compact group.

;
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rth centered moments of low-lying zeroes

Apart from one technical obstruction, we obtain support
o= 2, -, generalizing Baluyot-Chandee-Li'23 r =1,0 = 4

result.

Theorem (Cheek, Gilman, Jaber, Miller, Tomé ’24

Assume GRH and let ®; be even Schwartz functions with ®;
compactly supported in (—o,0) for ¢ < min {ﬁ L}.

? 2!7—]12)[”

Then
o'i“ooN(BZ (3) Z H( (fi &) = ( (f«b,-»*).
feHK(q) i=1

agrees with RMT results and predictions for orthogonal
symmetry.

L
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1-Level Densities

Let G be one of the classical compact groups: Unitary,
Symplectic, Orthogonal (or SO(even), SO(odd)).
If supp(g) < (—1,1), 1-level density of G is

where
0 G is Unitary

Cg = 1 G is Symplectic
—1 G is Orthogonal.

~N- TS
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Identifying the Symmetry Groups

@ Often suggested by monodromy group in the function field.
@ Tools: Explicit Formula, Summation Formula.

@ How to identify symmetry group in general? One possibility

is by the signs of the functional equation:
Folklore Conjecture: If all signs are even and no
corresponding family with odd signs, Symplectic symmetry;
otherwise SO(even). (False!)

The low lying zeros of a GL(4) and a GL(6) family of L-functions (with

Eduardo Dueriez), Compositio Mathematica 142 (2006), no. 6, 1403—1425.

http://arxiv.org/abs/math/0506462

BQ


http://arxiv.org/abs/math/0506462
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Explicit Formula

@ : cuspidal automorphic representation on GL,,.

@ Q; > 0: analytic conductor of L(s,7) = > A:(n)/n°.

@ By GRH the non-trivial zeros are § + ivy .

@ Satake params: {a.i(p)}7_i; A=(p”) = 1 axi(p)”.
_ )\w(”) —s\—1

@ L(s,7m)= Z HpH/ 1 ( oam,-(p)p ) '

log Q- _ . (viogp\ \r(p”)logp
o 2) -om-2o 1220 S

J
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Some Results: Rankin-Selberg Convolution of Families

Symmetry constant: ¢, = 0 (resp, 1 or -1) if family £ has
unitary (resp, symplectic or orthogonal) symmetry.

Rankin-Selberg convolution: Satake parameters for 7y , x 72
are {omxm, (K)}RZ = {om (i) - amy(i)} 1cisn

Theorem (Duenez-Miller)

If 7 and G are nice families of L-functions, then cryg = Ccr - Cg.

Breaks analysis of compound families into simple ones.
The effect of convolving families of L-functions on the underlying group symmetries (with Eduardo Duefiez),
Proceedings of the London Mathematical Society, 2009; doi: 10.1112/plms/pdp018.

http://arxiv.org/pdf/math/0607688.pdf



http://arxiv.org/pdf/math/0607688.pdf
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1-Level Density

Assuming conductors constant in family 7, have to study

h
" moment : A(P”) = ar1(p)” + -+ asa(p)”

_ ~( logp\ logp | 1
sir) = 2% g ( =r) e HZAf(p)]
D feF
_ ~(ologp\ logp | 1 2
Su(F) = ‘2§pig<2|ogﬂ> b | NP )]

The corresponding classical compact group determined by

0 Unitar
1 ) -
mZ)\f(p) = Cr = 1 Symplectic
fer —1  Orthogonal.
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ELCEVEVS

Very similar to Central Limit Theorem.

@ Universal behavior: main term controlled by first two
moments of Satake parameters, agrees with RMT.

@ First moment zero save for families of elliptic curves.

@ Higher moments control convergence and can depend on
arithmetic of family.
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Lower Order Terms

S. J. Miller, Lower order terms in the 1-level density for families
of holomorphic cuspidal newforms, Acta Arithmetica 137
(2009), 51-98. https://arxiv.org/abs/0704.0924

S(p) = {f € F:p{ Ny} (1.11)
Thus for f ¢ S(p), ap(p)™ + By(p)™ = As(p)™. Let
As0) = Gy 30 M) As0) = g 3 (NG (112

feF fEF
fes(p) f¢s(p)

we use the convention that 0° = 1; thus Ao r(p) equals the cardinality of S(p).



https://arxiv.org/abs/0704.0924
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Lower Order Terms

Theorem 1.1 (Expansion for S(F) in terms of moments of As(p)). Let log R be the average log-
conductor of a finite family ofL-fum‘rians F, and let S(F) be as in (1.10). We have

SE) = -2y S AR g, eer )

= log R log R

- 2Ao.f(p) logp 2407(p)logp > (, logp
720(0);p(p+1)10gl? + 2; plog R ¢ 2logR

o\~ Aux(p) logp ~ (logp ~ A r(p)(3p+1) logp
722 pl/2 logRo log R +20(0) p2(p+1)2 logR

A x(p lozp logp ~ Ao 7(p)(4p® +3p + 1) logp
0
22 plog R 210)11? +26( )Z p(p+1)3logR

P

2 (p—1)logp 1

. 7FPP ) log 1

-2 el 2+ 0 -
30 ZZ p+1r‘“1og1? ( >

P =3 log’ R
— SulF) + So(F) + S1(F) + Sa(F) + Sa(F) + O (ﬁ) . (1.13)
Ifwe let
7 1 Ar(p)?
A = ) — 1.14
0 = g 2 T 1

then by the geometric series formula we may replace S (F) with S ;(F), where

Si(F) = 725(0)2%731;2;0“ (1.15)
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Correspondences

Similarities between L-Functions and Nuclei:

Zeros <«+— Energy Levels

Schwartz test function ——  Neutron

Support of test function <—  Neutron Energy.
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Bias Conjecture J
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Families and Moments

A one-parameter family of elliptic curves is given by
E:y% = X3+ A(T)x + B(T)
where A(T), B(T) are polynomials in Z[T].

@ Each specialization of T to an integer t gives an elliptic
curve £(t) over Q.

@ The r'" moment (note not normalizing by 1/p) is

Are(p) = > an(p),

t modp

where agy(p) = p+ 1 — #&1(Fp) is the Frobenius trace of
E(t).
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Negative Bias in the First Moment

First moment related to the rank of the elliptic curve family.

A1 ¢(p) and Family Rank (Rosen-Silverman)

Given technical assumptions (Tate’s conjecture) related to
L-functions associated with &,
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Bias Conjecture

The j(T)-invariantis j(T) = 1728 1z phaerye-

Second Moment Asymptotic (Michel)
For families with j(T) non-constant, the second moment is

with lower order terms of sizes p3/2, p, p'/2, and 1.

T0)
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Bias Conjecture

The j(T)-invariantis j(T) = 1728 1z phaerye-

Second Moment Asymptotic (Michel)
For families with j(T) non-constant, the second moment is

with lower order terms of sizes p3/2, p, p'/2, and 1.

In every family studied before July 2023, observe:

Bias Conjecture

The largest lower term in the second moment expansion which
does not average to 0 is on average negative.

2SS
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Comments

Relation with Excess Rank
@ Lower order negative bias increases the bound for average
rank in families through statistics of zero densities near the
central point.

@ Unfortunately only a small amount, not enough to explain
observed excess rank.

Results to date

@ Very special families, Legendre sums computable, not
generic.

@ Confirmed for additional families by M. Kazalicki and B.
Naskrecki.

/7 TS -
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Lower order terms and average rank

If ¢ is non-negative, we obtain a bound for the average rank in
the family by restricting the sum to be only over zeros at the
central point. The error O (%) comes from trivial
estimation and ignores probable cancellation, and we expect
0] ﬁ or smaller to be the correct magnitude. For most

families log R ~ log N2 for some integer a.

y
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Methods for Obtaining Explicit Formulas

For a family £ : y? = x3 + A(T)x + B(T), we can write

3
aeo(p) = - Y (HADEE)

X modp p

where (E) is the Legendre symbol modp given by

1 if x is a non-zero square modulo p

(X> =40 ifx=0modp
—1 otherwise.
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Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums
ax + b) .
=0 ifpta
> (% Pt

X modp
3 <ax2+bx—|—c> _ {(2) if pt b? —4ac

P (p—1)(g) if p| b2 — 4ac.

X modp

V,

TS
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Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums
ax + b) .
=0 ifpta
> (% Pt

X modp
3 <ax2+bx—|—c> _ {(2) if pt b? —4ac

P (p—1)(g) if p| b2 — 4ac.

X modp

Average Values of Legendre Symbols

The value of (g) for x € Z, when averaged over all primes p, is
1 if x is a non-zero square, and 0 otherwise.

TR




Bias Conj

Rank 6 Family

Rational Surface of Rank 6 over Q(T):

y? = x34(2aT — B)x®+ (2bT — C)(T? +2T — A+ 1)x
+(2cT —D)(T? 4+ 2T — A+ 1)

- 8,916, 100, 448, 256, 000, 000
- 811,365,140, 824,616, 222,208
26,497,490, 347, 321,493,520, 384
— 343,107,594, 345,448,813, 363, 200

16,660,111,104
—1,603, 174, 809, 600
— 2,149,908, 480, 000

Constructing one-parameter families of elliptic curves over Q(T) with moderate rank (with Scott Arms and Alvaro

OO OO

Lozano-Robledo), Journal of Number Theory 123 (2007), no. 2, 388-402:

https://arxiv.org/abs/math/0406579.

TS ’’’SSHSSEER



https://arxiv.org/abs/math/0406579

1-Param Families
[ ]

1-Parameter Families J
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Preliminary Evidence and Patterns

1-Param Families
[ Je}

Let ns» , equal the number of cube roots of 2 modulo p,

and set o (p) = [(‘—3) (%)] p; ci(p) = [ZX mod p (

Ca/2(p) = PZ (4X +1)

X3p_x)]2,

Famlly A1yg(p) Ag g
V2P=x3+Sx+T 0 P
Y2 = x® + 24(=3)3(9T + 1)2 0 4 p=2 mod 3
y? = x> £ 4(4T +2)x 0 2P P g—; ol
y2=x3 (T +1)x* + Tx 0 p 2p —
y2=x3 4+ x2 42T 4+ 1 0 p 2p — ( %)
Y2 = x4+ Tx® +1 -p P% — M3 2pp — 1+ C32(P)
y=x}-Tx+T° -2p p* —p— ci(p) — co(p)
yP=x*-Tx+T* -2p p? —p - ci(p) — co(p)
Y2P=x34+Tx® - (T+3)x+1 —2Cp14P p? —4cp1.6p — 1

where ¢, o.m = 1if p = @ mod m and otherwise is 0.
Qe
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Tools: Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums

Z (aX;b> =0 ifpta
o
> (ax2+—bx+0) _ {(g) if pt b2 — 4ac

p (p—1)(g) if p| b2 — 4ac.

X modp

Average Values of Legendre Symbols

The value of (g) for x € Z, when averaged over all
primes p, is 1 if x is a non-zero square, and 0 otherwise.
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Simple Second Moment: Not Generic Family!

Family: y? = x?(x + 1) + x(x + 1)t.

p—1 p—1 5
Ae(p) = > alp) = - (x (X+1)+x(x+1)t)'
t(p)

If x equals 0 or —1, then the t-sum is zero.
Otherwise t — x~'(x — 1)~'t and get zero from the t-sum.

Hence A ¢(p) vanishes.
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Simple Second Moment: Not Generic Family!

Family: y? = x3(x +1) + x(x + 1)t.

A 7(P) =
- (xZ(x+ 1) + x(x + 1)t) (y2<y+ 1)+ y(y + 1)
t=0 x=0 y=0 p p
SIS ( (x+1>y(y+1>) (t+_x) <t+_y)

t=0 x=0 y=0 p p p
_ §’y’jyx(x+1);/(y+1)) 2 <(t+X),§t+y) |

The t-sumis p — 1 if x = y and —1 otherwise.
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Simple Second Moment: Not Generic Family!

Family: y? = x?(x + 1) + x(x + 1)t.

Ao r(p) — j?(x2x+1 )p ijjj( x(x +1)y y+1))
_ (p_z)p_<§<x(x;1)))

= pPP-2p—(-1)p2=p"-2p-1,
thus Az ¢(p) = p? —2p — 1.
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More Involved Second Moment: y? = x3 + tx? + 1

Arp) = =D > (X3 +1+ tx2>

t(p) x(p)
1 P x3 4+ 1+ tx?
- 2()-Z2 ()
t(p) x=1t(p)
_ ZZ(X +1+t> ~
x=11(p)

so family has rank 1.

For completeness will paste second moment calculation
from my thesis.
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More Involved Second Moment: y? = x3 + tx? + 1

https://web.williams.edu/Mathematics/
sjmiller/public_html/math/thesis/
SJIMthesis_Rev2005.pdf

We use the Gauss sum expansion (Equation 2.4) to calculate Az #(p).

3 114220\ (1 + 1+ 2t
farp) = LY (%) (%)

t(p) z(p) y(p)

p-1 3 3 2 2
_ 1(cd c(z® +1) —d(y’ +1) (cx® — dy*)t
=2 Zj(,,)“( » )Ze( » )

) i t(p)

(13.7)

Note ¢ and d are invertible mod p. If the numerator in the t-exponential is non-zero, the t-sum
vanishes. If exactly one of z and y vanishes, the numerator is not congruent to zero mod p. Hence
either or neither are zero. If both are zero, the t-sum gives p, the c-sum gives G, the d-sum gives

ﬁ,,. for a total contribution of p.



https://web.williams.edu/Mathematics/sjmiller/public_html/math/thesis/SJMthesis_Rev2005.pdf
https://web.williams.edu/Mathematics/sjmiller/public_html/math/thesis/SJMthesis_Rev2005.pdf
https://web.williams.edu/Mathematics/sjmiller/public_html/math/thesis/SJMthesis_Rev2005.pdf
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More Involved Second Moment: y? = x3 + tx? + 1

Assume z and y are non-zero. Then d = ¢(z?y~2) (otherwise the t-sum is zero). The t-sum

yields p, and we have

PELEPEL 2 2(p3,2 td g |
Arp) = 3 Zi(» “‘I*vil)),,,,,
z.y=1c=1 P P
p-1 p-1 —_ - [
_ ZZ(J z u+.t/l))+p
z.y=1c=1 P »

oy~ (e — y)(@% — (= +y) =
)+r-Z (59

=
*"/))) +p—(p-1)?

p=1 p-1

=YY

Zy=1c=0

(13.8)

sum is p, otherwise it is 0. We are left

If g(z,y) = (z — y)(a®y® — (z +y)) = O(p) then the
with counting how often g(z,y) = 0 for x, y non-zero

A few words must be said about why we cooked up this family. If, instead of 22t we had at,

/y)- As we have (<) this would lead to (<) (22) times

we would have found the condition d =
a similar c-exponential. It would not be sufficient to find how often a similar g(x,y) vanished; we
would need to know at which z and y (or, slightly weaker, the value of ()

Clearly, whenever z = y, g(z,y) = 0; therefore there are p — 1 solutions from this term. For z

non-zero, each such pair contributes p, for a total contribution of (p — 1)p.
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More Involved Second Moment: y? = x3 + tx° + 1

Consider now 22y® = x+y, which we may rewrite as a quadratic: y—2 = 0. By Lemma

C.3 (the Quadratic Formula mod p), if the discriminant 1 + 42® is a square mod p there are roots;

if it is not a square mod p there are no roots. The roots would be

(13.9)

where the square-root and divisions are operations mod p. If 1+ 42% is a non-zero square, there

will be two distinct choices for y. If 1+ 4z* = 0, there is one choice for y, and if 1 + 4z

square mod p, there are no y such that 2%y T +y.

. a note about our previous conditions. Neither z nor y is allowed to be zero. If y =0

 + y reduces to x = 0 (similarly if z = 0). Hence we do not need to worry about our
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More Involved Second Moment: y? = x3 + tx? + 1

solutions violating «, y non-zero

From the above, we've seen that for a given non-zero z, the number of non-zero y with 22y* =

). Hence the number of non-zero pairs with a2y = x +y is

423 +1 P (az3 +1 .
Z(l-( P )):pfl‘#Z( = >71. (13.10)

270 =0

Each of these pairs contributes p. Thus, these pairs contribute p*> — 2p +p ¥, (”T

We must be careful about double counting. If both z — y = 0 and #%y* = & + y, then we find

2z. As & # 0, we obtain 2% = 2. If 2 has a cube root mod p, we have double counted three
solutions; if it does not, we have counted correctly. Let hs,(2) denote the number of cube roots
of 2 modulo p.

Thus

123 +1 5
L7(p) = 2[‘+1’2( A,:‘ )‘l'“"1)’1”’.«;%2)*’[”(I"1)'
(o)
2 § 123 41 > g g
= ,,-7,11,;,,(1)7“,,;( B ) p® + O(p?) (13.11)
=)
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Lemma (SMALL ’14)

Consider a one-parameter family of elliptic curves of the form
E:y? = P(X)T + Q(x),

where P(x), Q(x) € Z[x] have degrees at most 3. Then the second

moment can be expanded as
[ ( P(x))
x(p) p

Az g(p) = L(X) ) (Q (x) )

o 3,50

A(x,y)=

2

where A(x,y) = (P(x)Q(y) — P(y)Q(x))?.

Kazalicki and Naskrecki proved Bias Conjecture for these
families.
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Second Moments of Linear-coefficient Families

We computed explicit formulas for the second moments of
some one-parameter families with linear coefficients in T:

):.

Family 2.£(P)
pz—p(z—s—( ) if ptad —2bc

y?=(ax+b)(cx®+dx+e+T) {(p —p( (7‘)) if p|ad—2bc
)1

—_ —4ac if 2_4
y?=(ax®*+bx+c)(dx+e+T) P p( ( ) if pt b° —4ac
p—1 if p| b* —4ac
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Possible Positive Bias: y?> = x3 + x + T3

Want to compute higher moments; beyond the second are
intractable Legendre sums.

SMALL ’23 REU: family with potential positive bias:
y2=x34 x4 T3

Zoe Batterman, Aditya Jambhale, Steven J. Miller, Akash
Narayanan, Kishan Sharma, Andrew Yang and Chris Yao:
Applications of Moments of Dirichlet Coefficients in Elliptic
Curve Families, to appear in the ICERM Conference
Proceedings for the July 2023 Murmurations Workshop:
https://arxiv.org/abs/2311.17215.



https://arxiv.org/abs/2311.17215
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Random Experiment

If your experiment needs statistics, you ought to have
done a better experiment. — Ernest Rutherford

Random Biases with Mean 0 Random Biases with Mean -1/10

Bias
o
Bias
o

[ 2500 5000 7500 10000 12500 15000 17500 [ 2500 5000 7500 10000 12500 15000 17500
Prime Prime
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Second Moment: Positive Bias for y> = x3 + x + T3?
Study (Az¢(p) — p?)/p*>.

The bias of & : 2° +x + 3

6
1 . <
9 4
0
A 01
—24
el o]
T T T T T T T
0 2500 5000 7500 10000 12500 15000
Primes
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Second Moment: Positive Bias for y> = x3 + x + T3?

Study (Az(p) — p?)/p*>.

The bias of & : 2 + 2 + 3 for primes = 1 (mod 3) The bias of & : 23 + z + 3 for primes = 2 (mod 3)
6
. )
i 0.4
2 03
i 0
02
2
0.1 i
- g
0.0
0 2500 5000 7500 10000 12500 15000 0 2500 5000 7500 10000 12500 15000

Primes = 1(mod 3) Primes = 2(mod 3)
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£ :y? = x3 + x + T3: Positive Bias for p = 2 mod 3

For primes congruent to 2 modulo 3, the second
moment of £ is given by

Ase(p) = P +p.

Sketch of proof: For p = 2 mod 3 we have 2 — tis an
isomorphism.

After algebra, resulting sums are quadratic.

Fortunately can determine when discriminant vanishes
and count. O




1-Param Families
[ ]

No discernable pattern for p = 1 mod 3

The Bias of F : 2+ x + " for primesp =1 _(mod 3) The Bias of F : 4% + a4+ T° for primes p=2 _(mod 3)

il 5 \\‘_——_—

o 200 4000 6000 S000 10000 12000 0 2000 000 GO0 s00 10000 12000
Primes Primes

Figure 1: Left: A plot of the bias in the second moment for primes congruent to 1 mod 3.
Right: The same plot but for primes congruent to 2 mod 3.
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arger negative bias for p =1 mod 3

Running Average of Bias (1 Mod 3) Running Average of Bias (1 Mod 3)

01

00{ H

Running average

~050 -02

] 0 200 300 W 500 G0 700 [ w20 300 W 500 G0 700
Number of Primes Number of Primes

Figure 6: Left: Running average of the bias for F : y? = 2% + 2 + T2 for p = 1 mod 3. Right:
A zoomed-in version of the previous plot.
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Running Averages

Running Average of Bias (All Primes) Running Average of Bias (All Primes)
02
0o A

01

205 &

: : A

H Z 0o V

H £ W
01

-5
02
o 200 400 600 800 1000 1200 1400 0 200 100 600 800 1000 1200 oo

Number of Primzs Number of Primes

Figure 5: Left: Running average of the bias for F : y?> = 2% 4+ 2 + T2. Right: A zoomed-in
version of the previous plot.
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Questions

@ Does a negative bias for p = 1 mod 3 overwhelm
positive bias for p = 2 mod 37

@ Is there a formula for A ¢(p) for p = 1 mod 37

e What happens for “generic” family — these are special
as can do (at least some of) the Legendre sums.
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SMALL 2024: Computational Exploration

Approach: For A, B (mod p), store 3, .4 p) <_Xs+2x+3>

in a file, then call this data when needed to quickly
compute running averages of second moments of any
family.

Issue: This is slow on its own.

@ The automorphisms x — ¢?x, y — ¢3xand x — —x
allow us to only store As that are representitives of
quartic residue classes, and Bs up to §

o Efficient square root computation with Cipolla’s
algorithm

o Parallelization of code

Next steps: Use data to find interesting families that are
“sufficiently” nice and study them with algebraic geometry
techniques.

100
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Bias Explorations

By Michel’s theorem, there are «(p), 5(p) both O(1)
such that

Aze(p) = PP+ a(p)p*? + B(P)p + O(p'/?).

« We compute the normalized second moment of
Az ¢(p), which we define to be

.A N2
Boe(p) = 275'2232 2

and graph its running average and log p-weighted
running average to find potential positive bias families
to investigate further with algebraic geometry.
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Bias Explorations

A Family with Known Negative Bias For
E:y?=x3+x%+2T + 1, we know that
Az¢(p) = p? — 2p — 3 has negative bias.

lized s 1 ent of o + 2 =27~ 1
oot — unweighted
— logp weighted
£ oo
2 000
2 —002
=

—0.04

o 30000 100000 150000 200000 250000

Prin
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Bias Explorations

SMALL 24 Generic Random Family 1:
We sampled coefficients iid from {0,1,...,9} and
obtained the following families.

erages of Be(p) of o + (610 + 79 + 61 + 517 + 9T + 61 + 81° + T2 + 8T + T)ar + 710 + 617 + 875 + 817 + 8T° + 71 + 51% + 472+ 37 + 4

& B e T
5 000
E] 0.02
&
—0.01
aak

0 50000 100000 150000 200000 250000
Prime

— unweighted
— logp weighted
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Bias Explorations

SMALL 24 Generic Random Family 2

Running averages of the normalized second moment of @ = (5T'° 4 37? + 5T7 4 9T® — 374 + 2T3 + 7T? + 6T + 4)ax + AT'0 + 6T + 5T° + 777 — 37° + 9T + 273 + 8T% + 5T + 9

004 — mnweighted
logp weighted

0 50000 100000 150000 200000 250000
Prime
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Bias Explorations

SMALL ’23 Family
Recall that the SMALL '23 family £ : y2 = x® + x + T2 has

positive bias for all primes p = 2 mod 3, unknown bias for

es of the normalized second moment of #* | = + T%
£ o004
=002
F o - Ao
200
& —0.01
o 50000 100000 150000 200000 250000
Prin
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Bias Explorations

SMALL '24 Potential Positive Bias Family 1:
XCB+(TP+T+Tx+ T3+ T2+ T+ 1

AT) = T(TP=T+1), B(T) = (T+1)(T?+1)

50000 100000 150000 200000 230000
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Bias Explorations

SMALL '24 Potential Positive Bias Family 2:
X+ (TP+ T+ T+ T+ )X+ T°+ T

AT) = (T+1)3(T>-T+1), B(T) = T(T*+1)

Running averages of Byg(p) of 2° + (T° + TH+ T3>+ T+ V)a +T° + T

2 0.044 — unweighted
2 log p weighted
< 0,024

$

Z 000 t

1

20021

E 0.04 o

T T T T T
0 50000 100000 150000 200000 250000
Prime
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Bias Explorations

SMALL ’24 Potential Positive Bias Family 3:
XBH(TP+TH+)x+ T+ T3+ T2+ T+1

AT) = (TP+ THANT3+T2=1), B(T) = (T+1)(T2+1

Running averages of Bog(p) of 2® + (T° + T+ Va+ T+ T2 + T> + T + 1

"
§ 0.04 —— unweighted
B log p weighted
< 0.024
o
&
g 0.00
]
20024
E —0.04 1

T T T T T
0 50000 100000 150000 200000 250000
Prime
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Bias Explorations

SMALL '24 Potential Positive Bias Family 4:
X+ (TH+ T2+ )x+ T3+ T+ 1

AT) = (TP=T+1)(T?+T+1)

Running averages of Byg(p) of 2® + (T* +T? + 1)+ T* + T + 1

2 0.04 1 —— unweighted
B log p weighted
= 0.024

o

Bl

§ 0.00 '

2 -0.02 1

E —0.04 1

T T T T T
0 50000 100000 150000 200000 250000
Prime
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Bias Explorations

SMALL '24 Potential Positive Bias Family 5:
X+ (TP+ T+ T2+ DX+ T4+ T?

Running averages of the normalized second moment of «* + (27 + 1" + 1% 4 Da + 1" + 12

0.04

0.02

0.00

0.02

0.04

0 50000 100000 150000 200000 250000
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Bias Explorations

SMALL ’24 Potential Positive Bias Family 6:
X+ (T4+TH1)x+ T4+ T2

Running averages of By g(p) of a® + (T% + T + 1)a + T* + T?

—— unweighted
log p weighted

0.04 1

0.02 1

0.00

—0.04 1

T T T T T
0 50000 100000 150000 200000 250000
Prime
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Bias Explorations

SMALL ’24 Potential Positive Bias Family 7:
x3 4+ TOx 4 T8 + T2

B(T) = T3(T*—T?+1)(T?+1)

Runuing averages of the normalized sccond moment of &® + T + T + T2

w]  JYT
£ o

£ 000

RS
£

0 50000 100000 150000 200000
Prime

Assuming there is zero bias, this is a 4.5¢ deviation. This
happens ~ 3.4 in one million times.

E|
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Appendices:
Bias and Average Rank
Constructing Rank 6 Family




Biases in Lower Order Terms

Let ns» , equal the number of cube roots of 2 modulo p,

and set o (p) = [(‘—3) (%)] p; ci(p) = [ZX mod p (

Ca/2(p) = PZ (4X +1)

X3p_x)]2,

Famlly A1yg(p) Ag g
V2P=x3+Sx+T 0 P
Y2 = x® + 24(=3)3(9T + 1)2 0 4 p=2 mod 3
y? = x> £ 4(4T +2)x 0 2P P g—; ol
y2=x3 (T +1)x* + Tx 0 p 2p —
y2=x3 4+ x2 42T 4+ 1 0 p 2p — ( %)
Y2 = x4+ Tx® +1 -p P% — M3 2pp — 1+ C32(P)
y=x}-Tx+T° -2p p* —p— ci(p) — co(p)
yP=x*-Tx+T* -2p p? —p - ci(p) — co(p)
Y2P=x34+Tx® - (T+3)x+1 —2Cp14P p? —4cp1.6p — 1

where ¢, o.m = 1if p = @ mod m and otherwise is 0.
A7




Biases in Lower Order Terms

The first family is the family of all elliptic curves; it is a two parameter family
and we expect the main term of its second moment to be p°.

Note that except for our family y? = x® + Tx? + 1, all the families £ have
Az ¢(p) = p? — h(p)p + O(1), where h(p) is non-negative. Further, many of
the families have h(p) = mg > 0.

Note ci(p) is the square of the coefficients from an elliptic curve with complex
multiplication. It is non-negative and of size p for p #Z 3 mod 4, and zero for
p =1 mod 4 (send x — —x mod p and note (%1) =—1).

It is somewhat remarkable that all these families have a correction to the
main term in Michel’s theorem in the same direction, and we analyze the
consequence this has on the average rank. For our family which has a p°/2
term, note that on average this term is zero and the p term is negative.




Lower order terms and average rank

log log R
logR )~
If ¢ is non-negative, we obtain a bound for the average rank in
the family by restricting the sum to be only over zeros at the

central point. The error O ('°g 'g"g R) comes from trivial
estimation and ignores probable cancellation, and we expect
0] (@) or smaller to be the correct magnitude. For most
families log R ~ log N@ for some integer a.

|
no
=[]
<}
@
©
‘—L
)
R
no
o
@
©
~——
=
+
S}




Lower order terms and average rank (cont)

The main term of the first and second moments of the
ar(p) give r¢(0) and —3¢(0).

Assume the second moment of a;(p)? is p? — mgp + O(1),
me > 0.

We have already handled the contribution from p?, and
—mgp contributes

-2 logp~ (. logp\ 1 N B
Se N |ogF1’¢ <2|ogR> FE( mep)
o 2mg logp \ logp
N IogF{;gb(zlogR) p?

Thus there is a contribution of size 1/ log R.




Lower order terms and average rank (cont)

A good choice of test functions (see Appendix A of
Iwaniec-Luo-Sarnak (ILS)) is the Fourier pair

sin®(27%x) i) — 0_4|“‘ if lu <o
(2nx)2 ~]0 otherwise.

o(x) =

2 o~

Note ¢(0) = %, ¢(0) = ¢ = ?© and evaluating the prime
sum gives

.986 2.966 me
Se ( o o2 log Fn’) log R 4(0)

Append
L]




Lower order terms and average rank (cont)

Let r; denote the number of zeros of E; at the central point (i.e., the analytic
rank). Then up to our O ('°g '°gn> errors (which we think should be smaller),

we have
2N

] 4(0) 1 986 2966 \ me

aa < =2 5

N ;r@(o) < S+ (r+ 2) #(0) + ( - 2|ogR> |0gH¢(O)

1 1, (.98 2966 \ me
< 1 .

Ave Rankpyonj(€) < + r+3 2 + ( o o?log F?) log R

o =1, me = 1: for conductors of size 10'2, the average rank is bounded by
14 r+ 31 +4.03=r+ % +1.03. This is significantly higher than Fermigier’s
observed r + 1 + .40.

o = 2: lower order correction contributes .02 for conductors of size 102, the
average rank bounded by % +r+ % +.02=r+ % + .52. Now in the ballpark
of Fermigier’'s bound (already there without the potential correction term!).

L OOSSGSS



Constructing Rank 6 Family

Idea: can explicitly evaluate linear and quadratic
Legendre sums.

Use: a and b are not both zero mod p and p > 2, then for
teZ

! (arcotie) [0 1p(07 -4
5 (2 pe) - {8, 06

p — (9 otherwise.

t=0 p.

Thus if p|(b? — 4ac), the summands are (-1°) = (2),
and the t-sum is large.




Constructing Rank 6 Family

y2 = f(x,T) = x3T?+2g9(x)T — h(x)
g(x) = x*+ax*+bx+c c#0
h(x) = (A-1)x*+Bx*+Cx+D
Dr(x) = 9(x)*+ x3h(x).

Dr(x) is one-fourth of the discriminant of the quadratic (in
T) polynomial f(x, T).

& not in standard form, as the coefficient of x3 is T2,
harmless. As y? = f(x, T), for the fiber at T = t:

ap) = - (@) _ _Z(X3t2+2gijx)t—h(x)>_

x(p) x(p)




Constructing Rank 6 Family

We study —pAg(p) = >-5—g > (15Y).
When x = 0 the t-sum vanlshes if ;é 0, as it is just

Z (2ct D)

Assume now x # 0. By the lemma on Quadratic
Legendre Sums

2 (X3t2 +2g(x)t — h(x)) _ {(p— 1)(5) if p| Dy(x)

p - (X;f) otherwise.

Goal: find coefficients a, b, ¢, A, B, C, D so that Dy(x) has
six distinct, non-zero roots that are squares.




Constructing Rank 6 Family

Assume we can find such coefficients. Then

—PAs(p)

p—1p-1 (,«();t)) _ ’X’;‘:; (x3t2 +2gl(ox)t— h(X)>

pP— p—1
f(x,t f
(1) , (1)
x=0 t=0 p x:Dy(x)=0 t=0 p




Constructing Rank 6 Family

We must find a, ..., D such that D;(x) has six distinct,
non-zero roots p?:

Di(x) = g(x)*+x°h(x)
= Ax® 4 (B+2a)x° + (C+ & +2b)x*
+ (D + 2ab + 2¢)x®
+ (2ac + b?)x® + (2bc)x + ¢?
=  AX® 4+ Rsx® 4 Ryx* + Rax® + Rox® + Rix + Ry)
= A(x = p5)(x = p3)(x = p3)(x — p3)(x — pB)(Xx — ).




Constructing Rank 6 Family

Because of the freedom to choose B, C, D there is no
problem matching coefficients for the x°, x*, x3 terms. We
must simultaneously solve in integers

2ac+b> = RA
2bc = RA
c® = RyA.

For simplicity, take A = 64R3. Then

2 = B4R — c = 82
2bc = 64R8R1 — b = 4ROR1
2ac + > = 64R8R2 — a = 4ROR2 — R12




Constructing Rank 6 Family

For an explicit example, take r; = p? = i2. For these
choices of roots,

R, = 518400, Ry = —773136, R, = 296296.
Solving for a through D yields
A = B4RS = 8916100448256000000
c = 8R: = 2149908480000
b = 4RyRy = —1603174809600
a = 4RyRo — R? = 16660111104
B = RsA—2a = —811365140824616222208
C = RA-2-2b = 26497490347321493520384
D = RsA—2ab—-2c = —343107594345448813363200




Constructing Rank 6 Family

We convert y? = f(x, t) to y? = F(x, T), which is in
Weierstrass normal form. We send y — ¢,
X — m, and then multiply both sides by

(T2 +2T — A+ 1)2. For future reference, we note that

T2+2T—A+1 = (T+1-VA(T+1+VA)
= (T-t)(T-1t)
(T — 2985983999)( T + 2985984001).

We have

Ty = T2+ @ +2a® +2bx+20)T— (A—1)x° = B2 —Cx— D
= (T2 +2T — A+ 1)x® + (2aT — B)x® + (2bT — C)x + (2¢T — D)
F(x,T) = x>+ (2aT — B)x? + (2bT — C)(T> + 2T — A+ 1)x
+(2¢T — D)(T? + 2T — A+ 1)2.

)



Constructing Rank 6 Family

We now study the —pAg(p) arising from y2 = F(x, T). It is enough to show
this is 6p + O(1) for all p greater than some py. Note that t, t, are the unique
roots of t* 42t — A+ 1 = 0 mod p. We find

p—1p—1
(x,1) (x, 1)
o) = S5 (Fet) o 3 SR 3 5 ()
=0 x= tt; tp x=0 t=t;,t x=0
Fort#t, t,sendx — (2 +2t—A+1)x. As (P +2t— A+ 1) #0,

(w) = 1. Simple algebra yields

—pPAe(p)

6p+0(1)+ 3 Z(ﬂ(x>+0 )

t=t;,t, x=0

6p+ O(1) +ZZ(2at— VX2 + (2bt — C)x+(20t—D)>.

t=t;,t, x=0 p




Constructing Rank 6 Family

The last sum above is negligible (i.e., is O(1)) if
D(t) = (2bt — C)? — 4(2at — B)(2¢ct — D) # 0(p).

Calculating yields

D(t) = 4291243480243836561123092143580209905401856
= 2%2.3%5.75.112.13.19.29.31.47.67-83-97-103

D(t) = 4291243816662452751895093255391719515488256
= 2%.32.7.11.13.41-173-17389 - 805873 - 9447850813.




Constructing Rank 6 Family

Hence, except for finitely many primes (coming from factors of D(),
a,...,D, ty and ), —Ac(p) = 6p + O(1) as desired.

We have shown: There exist integers a, b, ¢, A, B, C, D so that the
curve & : y2 = x3T2 4+ 2g(x) T — h(x) over Q(T), with

g(x) = x3+ax® + bx + cand h(x) = (A—1)x% + Bx? + Cx + D, has
rank 6 over Q(T). In particular, with the choices of a through D
above, € is a rational elliptic surface and has Weierstrass form

y? = X*4(2aT — B)x* + (2bT — C)(T? + 2T — A+ 1)x
4+ (2cT —D)(T? +2T —A+1)?




Constructing Rank 6 Family

We show £ is a rational elliptic surface by translating
X — x — (2aT — B)/3, which yields
y? = x3+ A(T)x + B(T) with deg(A) = 3, deg(B) = 5.

The Rosen-Silverman theorem is applicable, and as we
can compute A¢(p), we know the rank is exactly 6 (and
we never need to calculate height matrices). O
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