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Elliptic Surface

@ Define an elliptic surface 7: £ — % (proper, flat, etc.).

@ The generic fiber 7=(n) gives an elliptic curve over the function field Q(T).

@ This curve has discriminant A(T), finitely many singular specializations over
the base.

@ Define U = {t ¢ P' : A(t) # 0}. Then 7 : £ — U is smooth locus.



Trace of Frobenius

@ For a afixed E/Q, we care about a(p) = p+ 1 — #E(Fp).

@ Why? Because they encode a ton of arithmetic information, both algebraically
(cohomology) and analytically (coefficients of Hasse-Weil L-function).



Basic Definitions
ooeo

@ For the surface 7: £ — U, we may care to understand a;(p) as t € U varies
over the base.

e First, reduce mod p by a base change & — P'(Fp), then there are only finitely
many fibers.

@ Now define

Alp) = > alp)—ax(p), Ap)= Y aip)®—a(p).

teP! (Fp) teP! (Fp)



Michel’s Result

Theorem ([Mic95])

For an elliptic surface 7 : £ — P with non-constant j-invariant, we have

Ag(p) = p* + O(p*?).

Moreover, there are exactly four lower-order terms; they are O(p®/?), O(p),
O(p'/?), and O(1) respectively and each has a cohomological interpretation.

This suggests that we can normalize to isolate some weight-3 contribution,
defining

Ax(p) — p?
Bx(p) == Z(pg/z .



Cheek’s Conjecture
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B,(p) as a random variable

Cheek et al. [CGJT24] plotted Bx(p) as p — oo over the primes.

Treating Bx(p) as a random variable, we may be interested in the moments of
its distribution.
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Conjecture

They conjectured the following:

For an elliptic surface £, the variance of B>(p) is always an integer.

After collecting more data, we believe that all moments should be integral.



Cheek’s Conjecture
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Pencils of Cubics

@ We say an elliptic surface 7: &€ — IPJ@ is a pencil of cubics if the generic fiber
E/Q(T) has a model of the form

E:y?=P(X)T+ Qx)
where deg P(x),deg Q(x) < 3 That is, we need the Weierstrass equation to be

linear in the varying parameter.

@ Professors Matija Kazalicki and Bartosz Naskrecki recently confirmed Steven
J. Miller’'s bias conjecture for the class of pencils of cubics [KN25].

@ In doing so, they give explicit formulae for the second moment Ax(p) of such
families.



Confirmation of the integral moment conjecture

@ Using their work, we were able to confirm our conjecture in this case.

@ Moreover, the distribution of B(p) always ended up being distributed as
—b(p), where b(p) is the trace on a fixed genus one or two curve.

@ The only issue arises in the so-called typical case.



Cheek’s Conjecture
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Example (Typical Case)

Az () = p* — p- dp— p- #S(Fp) — & (P)



Example (Typical Case)

Az () = p* — p- dp— p- #S(Fp) — & (P)

By el )_Az,s(P)—Pz__@_#S(Fp)_ &
Average over p to compute moments. We find that B,(p) is distributed exactly as

0b/ V-
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Distribution of d,//p

Bz £(p) ~ dp/+/P, s0 it suffices to show all moments are integers.
@ In the "typical" case considered in their paper, D is genus 2.

@ Hence, we can use the classification of Sato-Tate distributions for genus 2
curves [FKRS12].

@ All of these distributions have integer moments.

@ For generic curves, whose Jacobian has small endomorphism group, the
Sato-Tate conjecture has been verified and so we’re done.

@ In general, assuming Sato-Tate for genus two curves, we have the result. H
@ It turns out that all other (non-typical) cases can be proven unconditionally.



Algebraic Approach

Let i : U — PP}, be the inclusion.
@ For any ¢ # p, form the ¢-adic lisse sheaf F := R'r,Q, on the base U.

@ By Deligne, i.Sym™F is rank two and pure of weight m. [Del80]

@ We have the following results [KN25]:



Algebraic Approach

Putting W, = HL(P' ® Q, i.Sym™F) and letting Frob, € Gal(Q/Q) denote a
geometric Frobenius, we can compute traces fiber by fiber:

Trace(Frobp| W ¢) = — Z Trace(Frobp|(i.Sym" Fy)). (1)
teP! (Fp)



Algebraic Approach

Secondly, we have the following formulas. If the fiber £; = 7~ (t) is smooth, then
Trace(Frobp| (i.Sym' F¢)t) = p+ 1 — #E(Fp) = a(p) 2
and
Trace(Frobp|(i,Sym?F;);) = Trace(Frobp|(i.Sym' 7)) — p = a(p)> —p  (3)
If the fiber E; is singular, then

1 if the fiber is split multiplicative
Trace(Frobp|(i.Sym' F;)t) = < —1 if the fiber is nonsplit multiplicative
0 if the fiber is additive.



oooe
Analogy

@ Putting this all together, we have

— Trace(Frobp| Wa ¢) = Z ai(p)® — p? + O(p). 4)
t¢S

@ Averaging over primes, this gives that the moments of Bx(p) are the same as
those of —Trace(Frobp| Wa ;)/p%/2.

@ This is analogous with our above results, assuming some equidistribution on
the left.



n-Covers
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@ Condier an elliptic surface with fibers 1 : y2 = x3 + A(T)x + B(T).

@ We can form a sequence of families by considering

Emn:y? =x3+ A(T"x + B(T™).

@ How does the variance of B,(p) change as n varies? There are some nice
patterns.



n-Covers
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@ The family &1 : y? = x3 + (T + 1)x + (T + 1) has nice properties.

@ When n= g™ is a prime power, we noticed numerically that the variance of
Bs>(p) over £4m seems to always be m, the exponent in the prime power.

@ There aren’t a ton of tools to prove observations like this hold in general.
There are heuristics. The map t — t" has degree gcd(n,p — 1) on Fp. We
average

lim Wchd(q ,p—1)=m+1.

X—00
p<x

Using this and assuming the achieved fibers are random enough, we can
prove the observation.



n-Covers
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Modular Example

@ Another tractable case is 2-covers of universal elliptic curves.
© Example: consider the universal elliptic curve over I'¢(6).

© Deligne: traces on Sym2F «— coefficients of unique newform f € S4(I'{(6)).
[Del71]

© Rankin-Selberg method and “guessing representations”: Let g € S4(I'1(12))
be the unique newform, then the trace we want to compute is

_ 2a¢(p) + ag(p) p=1 mod4
—ag(p) p =3 mod4.

Averaging over primes gives variance of original family 1 with variance of
2-cover 3. This matches our data.



n-Covers
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