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Elliptic Surface

Define an elliptic surface π : E → P1
Q (proper, flat, etc.).

The generic fiber π−1(η) gives an elliptic curve over the function field Q(T ).
This curve has discriminant ∆(T ), finitely many singular specializations over
the base.
Define U = {t ∈ P1 : ∆(t) ̸= 0}. Then π : E → U is smooth locus.
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Trace of Frobenius

For a a fixed E/Q, we care about a(p) = p + 1−#E(Fp).

Why? Because they encode a ton of arithmetic information, both algebraically
(cohomology) and analytically (coefficients of Hasse-Weil L-function).
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Moments

For the surface π : E → U, we may care to understand at(p) as t ∈ U varies
over the base.
First, reduce mod p by a base change E ′ → P1(Fp), then there are only finitely
many fibers.
Now define

A1(p) =
∑

t∈P1(Fp)

at(p)− a∞(p), A2(p) =
∑

t∈P1(Fp)

at(p)2 − a2
∞(p).
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Michel’s Result

Theorem ([Mic95])

For an elliptic surface π : ET → P1 with non-constant j-invariant, we have

A2(p) = p2 + O(p3/2).

Moreover, there are exactly four lower-order terms; they are O(p3/2), O(p),
O(p1/2), and O(1) respectively and each has a cohomological interpretation.

This suggests that we can normalize to isolate some weight-3 contribution,
defining

B2(p) :=
A2(p)− p2

p3/2 .
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B2(p) as a random variable

Cheek et al. [CGJ+24] plotted B2(p) as p →∞ over the primes.
Treating B2(p) as a random variable, we may be interested in the moments of
its distribution.
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Conjecture

They conjectured the following:

Conjecture
For an elliptic surface ET , the variance of B2(p) is always an integer.

After collecting more data, we believe that all moments should be integral.
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Pencils of Cubics

We say an elliptic surface π : E → P1
Q is a pencil of cubics if the generic fiber

E/Q(T ) has a model of the form

E : y2 = P(x)T + Q(x)

where degP(x), degQ(x) ≤ 3 That is, we need the Weierstrass equation to be
linear in the varying parameter.
Professors Matija Kazalicki and Bartosz Naskręcki recently confirmed Steven
J. Miller’s bias conjecture for the class of pencils of cubics [KN25].
In doing so, they give explicit formulae for the second moment A2(p) of such
families.
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Confirmation of the integral moment conjecture

Using their work, we were able to confirm our conjecture in this case.

Moreover, the distribution of B2(p) always ended up being distributed as
−b(p), where b(p) is the trace on a fixed genus one or two curve.

The only issue arises in the so-called typical case.
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Example (Typical Case)

A2,E(p) = p2 − p · dp − p ·#S(Fp)− a2
∞(p)

B2,E(p) =
A2,E(p)− p2

p3/2 = −
dp√

p
−

#S(Fp)√
p
− a2

∞
p3/2 .

Average over p to compute moments. We find that B2(p) is distributed exactly as
dp/
√

p.



Basic Definitions Cheek’s Conjecture Algebraic Approach n-Covers

Example (Typical Case)

A2,E(p) = p2 − p · dp − p ·#S(Fp)− a2
∞(p)

B2,E(p) =
A2,E(p)− p2

p3/2 = −
dp√

p
−

#S(Fp)√
p
− a2

∞
p3/2 .

Average over p to compute moments. We find that B2(p) is distributed exactly as
dp/
√

p.



Basic Definitions Cheek’s Conjecture Algebraic Approach n-Covers

Distribution of dp/
√

p

B2,E(p) ∼ dp/
√

p, so it suffices to show all moments are integers.
In the "typical" case considered in their paper, D is genus 2.

Hence, we can use the classification of Sato-Tate distributions for genus 2
curves [FKRS12].
All of these distributions have integer moments.
For generic curves, whose Jacobian has small endomorphism group, the
Sato-Tate conjecture has been verified and so we’re done.
In general, assuming Sato-Tate for genus two curves, we have the result. ■

It turns out that all other (non-typical) cases can be proven unconditionally.
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Algebraic Approach

Let i : U ↪→ P1
Q be the inclusion.

For any ℓ ̸= p, form the ℓ-adic lisse sheaf F := R1π∗Qℓ on the base U.

By Deligne, i∗SymmF is rank two and pure of weight m. [Del80]

We have the following results [KN25]:
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Algebraic Approach

Putting Wm,ℓ = H1
ét(P

1 ⊗Q, i∗SymmFℓ) and letting Frobp ∈ Gal(Q/Q) denote a
geometric Frobenius, we can compute traces fiber by fiber:

Trace(Frobp|Wm,ℓ) = −
∑

t∈P1(Fp)

Trace(Frobp|(i∗SymmFℓ)t). (1)
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Algebraic Approach

Secondly, we have the following formulas. If the fiber Et = π−1(t) is smooth, then

Trace(Frobp|(i∗Sym1Fℓ)t) = p + 1−#Et(Fp) = at(p) (2)

and

Trace(Frobp|(i∗Sym2Fℓ)t) = Trace(Frobp|(i∗Sym1Fℓ)t)
2 − p = at(p)2 − p (3)

If the fiber Et is singular, then

Trace(Frobp|(i∗Sym1Fℓ)t) =


1 if the fiber is split multiplicative
−1 if the fiber is nonsplit multiplicative
0 if the fiber is additive.
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Analogy

Putting this all together, we have

− Trace(Frobp|W2,ℓ) =
∑
t ̸∈S

at(p)2 − p2 + O(p). (4)

Averaging over primes, this gives that the moments of B2(p) are the same as
those of −Trace(Frobp|W2,ℓ)/p3/2.

This is analogous with our above results, assuming some equidistribution on
the left.
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The idea

Condier an elliptic surface with fibers ET : y2 = x3 + A(T )x + B(T ).

We can form a sequence of families by considering

ET n : y2 = x3 + A(T n)x + B(T n).

How does the variance of B2(p) change as n varies? There are some nice
patterns.
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Examples

The family ET : y2 = x3 + (T + 1)x + (T + 1) has nice properties.

When n = qm is a prime power, we noticed numerically that the variance of
B2(p) over ET qm seems to always be m, the exponent in the prime power.

There aren’t a ton of tools to prove observations like this hold in general.
There are heuristics. The map t 7→ tn has degree gcd(n, p − 1) on Fp. We
average

lim
x→∞

1
π(x)

∑
p≤x

gcd(qm, p − 1) = m + 1.

Using this and assuming the achieved fibers are random enough, we can
prove the observation.
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Modular Example

1 Another tractable case is 2-covers of universal elliptic curves.
2 Example: consider the universal elliptic curve over Γ1(6).
3 Deligne: traces on Sym2F ←→ coefficients of unique newform f ∈ S4(Γ1(6)).

[Del71]
4 Rankin-Selberg method and “guessing representations”: Let g ∈ S4(Γ1(12))

be the unique newform, then the trace we want to compute is

=

{
2af (p) + ag(p) p ≡ 1 mod4
−ag(p) p ≡ 3 mod 4.

Averaging over primes gives variance of original family 1 with variance of
2-cover 3. This matches our data.
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correspondence.

This research was supported by the National Science Foundation, under grant
DMS2241623, the University of Washington, and the University of Wisconsin.



Basic Definitions Cheek’s Conjecture Algebraic Approach n-Covers

References I

Timothy Cheek, Pico Gilman, Kareem Jaber, Steven J. Miller, Vismay Sharan,
and Marie-Hélène Tomé, Lower order biases in moment expansions of one
parameter families of elliptic curves, 2024.

Pierre Deligne, Formes modulaires et représentations ℓ-adiques, Séminaire
Bourbaki : vol. 1968/69, exposés 347-363, Séminaire Bourbaki : vol. 1980/81,
exposés 561-578, no. 11, Springer-Verlag, Berlin/Heidelberg, 1971, talk:355,
pp. 139–172 (fr).

, La conjecture de Weil : II, Publications Mathématiques de l’IHÉS 52
(1980), 137–252 (fr). MR 601520

Francesc Fité, Kiran S. Kedlaya, Víctor Rotger, and Andrew V. Sutherland,
Sato-tate distributions and galois endomorphism modules in genus 2,
Compositio Mathematica 148 (2012), no. 5, 1390–1442.



Basic Definitions Cheek’s Conjecture Algebraic Approach n-Covers

References II

Matija Kazalicki and Bartosz Naskrȩcki, Second moments and the bias
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