Lower Order Biases in Fourier Coefficients of Elliptic Curve and Cuspidal Newform families

Jared Lichtman, Steven Miller, Eric Winsor & Jianing Yang jared.d.lichtman.18@dartmouth.edu, sjm1@williams.edu rcwnsr@umich.edu, jyang@colby.edu with Ryan Chen & Yujin H. Kim Advisor: Steven J. Miller

> Maine-Québec Number Theory Conference Univ. o. Maine, October XIV, MMXVII

Elliptic Curve Prelims

Interested in elliptic curves over

O

$$E/\mathbb{Q}: y^2 = x^3 + ax + b \cup \{\infty\}$$

where $a, b \in \mathbb{Q}$ and $4a^3 + 27b^2 \neq 0$, and their reduction $\operatorname{mod} p$.

Definition (Good reduction)

An elliptic curve E/\mathbb{Q} : $y^2 = x^3 + ax + b$ has good reduction at a prime p if $4a^3 + 27b^2 \not\equiv 0 \pmod{p}$. The reduction $E(\mathbb{F}_p)$ is defined as $y^2 = x^3 + [a]x + [b]$, where [a], [b] are the reductions of a and $b \pmod{p}$.

Recall

Elliptic Curve Prelims

000000

$$E(\mathbb{F}_{p}) := \{(x,y) : y^{2} = x^{3} + ax + b\}$$

$$\#E(\mathbb{F}_{p}) = \sum_{x \in \mathbb{F}_{p}} \left(1 - \left(\frac{x^{3} + ax + b}{p}\right)\right) + 1$$

$$= p + 1 - \sum_{x \in \mathbb{F}_{p}} \left(\frac{x^{3} + ax + b}{p}\right).$$

Define the *Frobenius trace* as $a_E(p) := p + 1 - \#E(\mathbb{F}_p)$, have Hasse bound $|a_E(p)| \le 2\sqrt{p}$.

Elliptic Curve Prelims

A one-parameter family of elliptic curves is given by

$$\mathcal{E}: y^2 = x^3 + A(T)x + B(T)$$

where A(T), B(T) are polynomials in $\mathbb{Z}[T]$.

- Each specialization of T to an integer t gives an elliptic curve $\mathcal{E}(t)$ over \mathbb{Q} .
- The r^{th} moment (note not normalizing by 1/p) is

$$A_{r,\mathcal{E}}(p) = \sum_{t \mod p} a_{\mathcal{E}(t)}(p)^r,$$

where $a_{\mathcal{E}(t)}(p) = p + 1 - \#\mathcal{E}_t(\mathbb{F}_p)$ is the Frobenius trace of $\mathcal{E}(t)$.

Negative Bias in the First Moment

Elliptic Curve Prelims

First moment related to the rank of the elliptic curve family.

$A_{1,\mathcal{E}}(p)$ and Family Rank (Rosen-Silverman)

Given technical assumptions (Tate's conjecture) related to L-functions associated with \mathcal{E} ,

$$\lim_{X\to\infty}\frac{1}{X}\sum_{p\leq X}\frac{A_{1,\mathcal{E}}(p)\log p}{p}\ =\ -\mathrm{rank}(\mathcal{E}/\mathbb{Q}).$$

Elliptic Curve Prelims

000000

The
$$j(T)$$
-invariant is $j(T) = 1728 \frac{4A(T)^3}{4A(T)^3 + 27B(T)^2}$.

Second Moment Asymptotic (Michel)

For families with j(T) non-constant, the second moment is

$$A_{2,\mathcal{E}}(p) = p^2 + O(p^{3/2}),$$

with lower order terms of sizes $p^{3/2}$, p, $p^{1/2}$, and 1.

Elliptic Curve Prelims

The j(T)-invariant is $j(T) = 1728 \frac{4A(T)^3}{4A(T)^3 + 27B(T)^2}$.

Second Moment Asymptotic (Michel)

For families with j(T) non-constant, the second moment is

$$A_{2,\mathcal{E}}(p) = p^2 + O(p^{3/2}),$$

with lower order terms of sizes $p^{3/2}$, p, $p^{1/2}$, and 1.

In every family studied, observe:

Bias Conjecture

The largest lower term in the second moment expansion which does not average to 0 is on average **negative**.

Relation with Excess Rank

Elliptic Curve Prelims

- Lower order negative bias increases the bound for average rank in families through statistics of zero densities near the central point.
- Unfortunately only a small amount, not enough to explain observed excess rank.

1-Parameter Families

Elliptic Curve Prelims

Preliminary Evidence and Patterns

Let $n_{3,2,p}$ equal the number of cube roots of 2 modulo p, and set $c_0(p) = \left[\left(\frac{-3}{p}\right) + \left(\frac{3}{p}\right)\right]p$, $c_1(p) = \left[\sum_{x \bmod p} \left(\frac{x^3 - x}{p}\right)\right]^2$, $c_{3/2}(p) = p \sum_{x(p)} \left(\frac{4x^3 + 1}{p}\right)$.

Family	$A_{1,\mathcal{E}}(p)$	$A_{2,\mathcal{E}}(oldsymbol{ ho})$
$y^2 = x^3 + Sx + T$	0	$p^3 - p^2$
$y^2 = x^3 + 2^4(-3)^3(9T + 1)^2$	0	$ \begin{cases} 2p^2 - 2p & p \equiv 2 \mod 3 \\ 0 & p \equiv 1 \mod 3 \end{cases} $
$y^2 = x^3 \pm 4(4T + 2)x$	0	$\begin{cases} 2p^2 - 2p & p \equiv 1 \mod 4 \\ 0 & p \equiv 3 \mod 4 \end{cases}$ $p^2 - 2p - 1$
$y^2 = x^3 + (T+1)x^2 + Tx$	0	$p^2 - 2p - 1$
$y^2 = x^3 + x^2 + 2T + 1$	0	$ ho^2-2 ho-\left(rac{-3}{ ho} ight)$
$y^2 = x^3 + Tx^2 + 1$	-p	$p^2 - n_{3,2,p}p - 1 + c_{3/2}(p)$
$y^2 = x^3 - T^2x + T^2$	−2 <i>p</i>	$p^2 - p - c_1(p) - c_0(p)$
$y^2 = x^3 - T^2x + T^4$	−2 <i>p</i>	$p^2 - p - c_1(p) - c_0(p)$
2 3 7 2 (7 0)	•	2

 $y^2 = x^3 + Tx^2 - (T+3)x + 1$ $-2c_{p,1;4}p$ $p^2 - 4c_{p,1;6}p - 1$ where $c_{p,a;m} = 1$ if $p \equiv a \mod m$ and otherwise is 0.

Tools: Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums

$$\sum_{x \mod p} \left(\frac{ax + b}{p} \right) = 0 \quad \text{if } p \nmid a$$

$$\sum_{x \mod p} \left(\frac{ax^2 + bx + c}{p} \right) = \begin{cases} -\left(\frac{a}{p}\right) & \text{if } p \nmid b^2 - 4ac \\ (p - 1)\left(\frac{a}{p}\right) & \text{if } p \mid b^2 - 4ac \end{cases}$$

Average Values of Legendre Symbols

The value of $\left(\frac{x}{p}\right)$ for $x \in \mathbb{Z}$, when averaged over all primes p, is 1 if x is a non-zero square, and 0 otherwise.

Lemma (SMALL '14)

Consider a one-parameter family of elliptic curves of the form

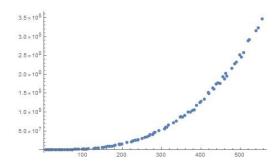
$$\mathcal{E}: y^2 = P(x)T + Q(x),$$

where P(x), $Q(x) \in \mathbb{Z}[x]$ have degrees at most 3. Then the second moment can be expanded as

$$A_{2,\varepsilon}(p) = p \left[\sum_{P(x) \equiv 0} \left(\frac{Q(x)}{p} \right) \right]^2 - \left[\sum_{x(p)} \left(\frac{P(x)}{p} \right) \right]^2 + p \sum_{\Delta(x,y) \equiv 0} \left(\frac{P(x)P(y)}{p} \right)$$

where $\Delta(x, y) = (P(x)Q(y) - P(y)Q(x))^2$.

We computed explicit formulas for the second moments of some one-parameter families with linear coefficients in T:


Family	$A_{2,\mathcal{E}}(p)$
$y^2 = (ax+b)(cx^2+dx+e+T)$	$\begin{cases} p^2 - p\left(2 + \left(\frac{-1}{p}\right)\right) & \text{if } p \nmid ad - 2bc \\ \left(p^2 - p\right)\left(1 + \left(\frac{-1}{p}\right)\right) & \text{if } p \mid ad - 2bc \end{cases}$
	$\left((p^2 - p) \left(1 + \left(\frac{-1}{p} \right) \right) \text{if } p \mid ad - 2bc \right)$
$y^2 = (ax^2 + bx + c)(dx + e + T)$	$\left(p^2 - p \left(1 + \left(\frac{b^2 - 4ac}{p} \right) \right) - 1 \right)$ if $p \nmid b^2 - 4ac$
	$\begin{cases} p-1 & \text{if } p \mid b^2-4ac \end{cases}$
$y^2 = x(ax^2 + bx + c + dTx)$	$-1-p\left(rac{ac}{p} ight)$
,	. (þ)
$y^2 = x(ax+b)(cx+d+Tx)$	$\rho-1$

Elliptic Curve Prelims

Numerics for Higher Even Moments

Want to compute all higher moments; however, going beyond the second leads to intractable Legendre sums. Have some numerical results for higher moments.

For example, the 4th moment of $y^2 \equiv x^3 + (t+1)x^2 + tx$:

Families with Constant j(T)

Families with Constant j(T)•••••

Constant j(T)—invariant families

Question: What happens in families with constant j(T)-?

• $\mathcal{E}(T)$: $y^2 = x^3 + A(T)x$ has $j(T) = 1728, \forall T \in \mathbb{Z}$.

Families with Constant i(T)

• $\mathcal{E}(T)$: $y^2 = x^3 + B(T)$ has j(T) = 0.

For these families we can compute any moment.

Computation is *fast* when j(T) is constant.

j = 0 Curves

Consider $\mathcal{E}: y^2 = x^3 + B$ over \mathbb{F}_p .

If $p \equiv 2 \pmod{3}$, then $a_E(p) = 0$.

Gauss' Six-Order Theorem

If $p \equiv 1 \pmod{3}$, can write $p = a^2 + 3b^2$, $a \equiv 2 \pmod{3}$, b > 0, and

$$a_E(p) = egin{cases} -2a & B ext{ is a sextic residue in } \mathbb{F}_p \ 2a & B ext{ cubic, non-sextic residue} \ a \pm 3b & B ext{ quadratic, non-sextic} \ -a \pm 3b & B ext{ non-quadratic, non-cubic.} \end{cases}$$

17

Moments of One-Parameter j = 0 Families

For $r \ge 0$, compute k^{th} moment of $\mathcal{E}_T : y^2 = x^3 - AT^r$.

Have $A_k(p) = 0$ when $p \equiv 3(4)$, and moments determined only by $r \pmod{6}$:

$$r \equiv 1,5(6) : A_k(p) = \begin{cases} 0 & k \text{ is odd} \\ \frac{p-1}{3} \left((2a)^k + (a-3b)^k + (a+3b)^k \right) & k \text{ is even} \end{cases}$$

$$r \equiv 2,4(6) : A_k(p) = \begin{cases} \frac{p-1}{3} \left((-2a)^k + (a-3b)^k + (a+3b)^k \right) & A \text{ quadratic residue} \\ \frac{p-1}{3} \left((2a)^k + (-a-3b)^k + (-a+3b)^k \right) & A \text{ quadratic nonresidue} \end{cases}$$

$$r \equiv 3 : A_k(p) = \begin{cases} \frac{p-1}{2} \left((-2a)^k + (2a)^k \right) & A \text{ cubic residue} \\ \frac{p-1}{2} \left((a\pm 3b)^k + (-a\mp 3b)^k \right) & A \text{ cubic nonresidue}. \end{cases}$$

18

j = 1728 Curves

Consider $\mathcal{E}: y^2 = x^3 - Ax$ over \mathbb{F}_p .

If $p \equiv 3 \pmod{4}$, then $a_E(p) = 0$.

Gauss' Four-Order Theorem

If $p \equiv 1 \pmod{4}$, then write $p = a^2 + b^2$, where b is even and $a + b \equiv 1 \pmod{4}$. We have:

$$a_E(p) = \begin{cases} 2a & A \text{ is a quartic residue} \\ -2a & A \text{ quadratic, non-quartic residue} \\ \pm 2b & A \text{ not a quadratic residue.} \end{cases}$$

Moments of One-Parameter j = 1728 Families

For $r \ge 0$, consider $\mathcal{E}(T)$: $y^2 = x^3 - AT^rx$. When $p \equiv 3 \pmod 4$, all moments are 0. Have

$$r \equiv 1,3(4) : A_k(p) = \begin{cases} 0 & k \text{ is odd} \\ (p-1)2^{k-1}(a^k+b^k) & k \text{ is even} \end{cases}$$

$$r \equiv 2(4) : A_k(p) = \begin{cases} 0 & k \text{ is odd} \\ (p-1)(2a)^k & A \text{ quadratic residue, } k \text{ is even} \\ (p-1)(2b)^k & A \text{ quadratic nonresidue, } k \text{ is even} \end{cases}$$

For $r \equiv 0(4)$, we get similar but more elaborate results.

Bias in L-functions of Cuspidal Newforms

Cuspidal Newforms

Definition (Holomorphic Form of Weight k, level N)

A holomorphic function $f(z): \mathbb{H} \to \mathbb{C}$, of moderate growth, for which

$$f\left(\frac{az+b}{cz+d}\right)=(cz+d)^kf(z), \quad \forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N) \text{ where }$$

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : c \equiv 0 \pmod{N} \right\}.$$

Modular forms are *periodic* and have a Fourier expansion, if constant term equals 0 called a **cusp form**. A cuspidal **newform** of level N is a cusp form that cannot be reduced to a cusp form of level M, where $M \mid N$.

Let $\mathcal{F}_{X,\delta,N}$ be the family of cuspidal newforms of weights smaller than some positive X^{δ} of a square-free level N.

Averaging over primes less than X^{σ} , define the r^{th} moment of the family $\mathcal{F}_{X,\delta,N}$ as:

$$M_{r,\sigma}(\mathcal{F}_{X,\delta,N}) = \frac{1}{\pi(X^{\sigma})} \sum_{\rho < X^{\sigma}} \frac{1}{\sum_{k < X^{\delta}} |H_k^*(N)|} \sum_{k < X^{\delta}} \sum_{f \in H_k^*(N)} \lambda_f^r(\rho).$$

Averaging over Weights

Let $\mathcal{F}_{X,\delta,N}$ be the family of cuspidal newforms of weights smaller than some positive X^{δ} of a square-free level N.

Averaging over primes less than X^{σ} , define the r^{th} moment of the family $\mathcal{F}_{X,\delta,N}$ as:

$$M_{r,\sigma}(\mathcal{F}_{X,\delta,N}) = \frac{1}{\pi(X^{\sigma})} \sum_{\rho < X^{\sigma}} \frac{1}{\sum_{k < X^{\delta}} |H_k^*(N)|} \sum_{k < X^{\delta}} \sum_{f \in H_k^*(N)} \lambda_f^r(\rho).$$

Study the asymptotic behavior of the moments as $N \to \infty$:

$$M_{r,\sigma}(\mathcal{F}_{X,\delta}) = \lim_{N \to \infty} M_{r,\sigma}(\mathcal{F}_{X,\delta,N}).$$

Averaging over Weights

Theorem (SMALL '17)

Let $\mathcal{F}_{X,\delta,N}$ be the family of cuspidal newforms of weights $k \leq X^{\delta}$ of a square-free level N, and $M_{r,\sigma}(\mathcal{F}_{X,\delta})$ the limiting r^{th} moment of the family as the level $N \to \infty$. Then

$$M_{r,\sigma}(\mathcal{F}_{X,\delta}) \ = \ egin{cases} C_{r/2} + C_{r/2-1} rac{\log\log X^{\sigma}}{\pi(X^{\sigma})} & ext{even r} \ + O\left(rac{1}{X^{2\delta}} + rac{1}{\pi(X^{\sigma})}
ight) \ 0 & ext{odd } r, \end{cases}$$

where $C_n = \frac{1}{n+1} \binom{2n}{n}$ is the n^{th} Catalan number.

Bias for cuspidal newforms is a positive integer, instead of the negative bias in elliptic curve families.

An Important Tool: Petersson Trace Formula

Petersson Trace Formula

Elliptic Curve Prelims

For any n, m > 1, we have

$$\frac{\Gamma(k-1)}{(4\pi\rho)^{k-1}} \sum_{f \in H_{k,N}^*(\chi_0)} |\lambda_f(\rho)|^2 = \delta(\rho,\rho) + 2\pi i^{-k} \sum_{c \equiv 0(N)} \frac{S_c(\rho,\rho)}{c} J_{k-1}\left(\frac{4\pi\rho}{c}\right)$$

where $\lambda_f(n)$ is the *n*-th Hecke eigenvalue of f, $\delta(m, n)$ is Kronecker's delta, $S_c(m,n)$ is the classical Kloosterman sum, and $J_{k-1}(t)$ is the k-Bessel function.

An Important Tool: Petersson Trace Formula

[ILS] gives the following bound for the Petersson Trace Formula:

$$\sum_{f \in H_k^*(N)} \lambda_f(\textbf{\textit{n}}) = \begin{cases} \delta_{\textbf{\textit{n}}, \Box} \frac{k-1}{12} \frac{\varphi(\textbf{\textit{N}})}{\sqrt{n}} & \textbf{\textit{n}}^{\frac{9}{7}} \leq k^{\frac{16}{21}} \textbf{\textit{N}}^{\frac{6}{7}} \\ 0 & \text{else} \end{cases} + O\left((\textbf{\textit{n}}, \textbf{\textit{N}})^{-\frac{1}{2}} \textbf{\textit{n}}^{\frac{1}{6}} k^{\frac{2}{3}} \textbf{\textit{N}}^{\frac{2}{3}}\right)$$

where level N and n are square-free, $(n, N^2) \mid N$, and $\varphi(n)$ denotes the Euler totient function.

We also find the following relation that allows us to compute higher moments of cuspidal newform families.

$$\lambda_f(p)^r = \sum_{0 \le l \le r/2} C(r-l,l) \lambda_f(p^{r-2l})$$

where $C(n,k) = \binom{n+k}{k} - \binom{n+k}{k-1}$ are numbers in the Catalan's Triangle.

- Does the Bias Conjecture hold for elliptic families with constant *i*-invariant?
- Are there cuspidal newform families with negative biases in their moments?
- Does the average bias always occur in the terms of size p or 1?
- How is the Bias Conjecture formulated for all higher even moments? Can they be modeled by polynomials?
- What other families obey the Bias Conjecture?
 Kloosterman sums? Higher genus curves?

- B. Mackall, S.J. Miller, C. Rapti, K. Winsor, Lower-Order Biases in Elliptic Curve Fourier Coefficients in Families, Frobenius Distributions: Lang-Trotter and Sato-Tate Conjectures (David Kohel and Igor Shparlinski, editors), Contemporary Mathematics 663, AMS, Providence, RI 2016.https://web.williams.edu/Mathematics/similler/public html/math/bapers/BiasCIRM30.pdf
- S.J. Miller, 1- and 2-level densities for families of elliptic curves: evidence for the underlying group symmetries, Compositio Mathematica 140 (2004), 952–992. http://arxiv.org/pdf/math/0310159.
- S.J. Miller, Variation in the number of points on elliptic curves and applications to excess rank, C. R. Math. Rep. Acad. Sci. Canada 27 (2005), no. 4, 111–120. http://arxiv.org/abs/math/0506461.
- S.J. Miller, Investigations of zeros near the central point of elliptic curve L-functions, Experimental Mathematics 15 (2006), no. 3, 257–279. http://arxiv.org/pdf/math/0508150.
- S.J. Miller, Lower order terms in the 1-level density for families of holomorphic cuspidal newforms, Acta Arithmetica 137 (2009), 51–98. http://arxiv.org/pdf/0704.0924v4.
- S.J. Miller, S. Wong, Moments of the rank of elliptic curves, Canad. J. of Math. 64 (2012), no. 1, 151–182. http://web.williams.edu/Mathematics/sjmiller/public_html/math/papers/mwMomentsRanksEC812final.pdf

Thank you! Questions?

Families with Constant *i*(*T*)

Work supported by NSF Grants DMS1561945 and DMS1659037, Dartmouth College, Princeton University and Williams College.