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Background Irreducible Sets

Set Addition

De�nition

Given two sets A,B ⊆ Z, we say that A+B = {a+ b | a ∈ A, b ∈ B}.

Example

{0, 1, 2}+ {0, 1, 2, 4} = {0, 1, 2, 3, 4, 5, 6}

0 1 2

0 0 1 2
1 1 2 3
2 2 3 4
4 4 5 6
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Background Irreducible Sets

Irreducibility

De�nition

A set S ⊆ Z is reducible if S = A+B for two sets A,B such that

|A|, |B| ≥ 2. Otherwise, S is irreducible.

Example

For any set S ⊂ Z and n ∈ Z, we have S = (S + {−n}) + {n}, so it's
important to require |A|, |B| ≥ 2.

Example

The set {0, 1, 2} = {0, 1}+ {0, 1} is reducible. In contrast, {0, 1, 3} is
irreducible.
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Background Previous Results

Higher-Dimensional Irreducibility

De�nition

Let S ⊂ Zd. S is reducible if S = A+B for A,B ⊂ Zd with

|A|, |B| ≥ 2. Otherwise, S is irreducible.

Let S = {(0, 0), (1, 1), (2, 2)}. Then,

S = {(0, 0), (1, 1)}+ {(0, 0), (1, 1)}

so S is reducible.

+ =
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Methods and Results

Results

De�nition

Let [n]d = {0, 1, . . . , n} × {0, 1, . . . , n} · · · {0, 1, . . . , n}︸ ︷︷ ︸
d copies

.

For example, [5] = {0, 1, 2, 3, 4, 5}.

De�nition

For d, n ≥ 1 we de�ne fd(n) as follows.

fd(n) = min
S⊂[n]d,Sirreducible

|[n]d \ S|

Theorem

For all d, we have have fd(n) = Θ(log n).
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Methods and Results Large Irreducible Sets

What is the largest size of an irreducible subset of [n]d?

Lemma

Fix S ⊂ Zd such that |S| ≥ 3 and 0 ∈ S. Let A = {0, r} for r ∈ Zd \ {0}.
S = A+B for some B ⊂ S i� for all s ∈ S, s− r ∈ S or s+ r ∈ S.

• We consider the minimum size of the complement of an irreducible
subset of [n]d.

• For each r ∈ [n]d, in order for the set {0, r} to not be a summand
of S, there must exist s ∈ S such that both r − s, r + s /∈ S.
• If |[n]d \ S| � log n, the complement of S is too small for this to
hold for all r ∈ [n]d.
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Methods and Results Large Irreducible Sets

The Largest Irreducible Subset of [n]d

Theorem

Let S ⊆ [n]d. Let k =
∣∣[n]d \ S

∣∣. Then, S is reducible if

k

d
log 2 +Hd kde +Hd(k2)/de

< Hn−1

where Hn is the nth Harmonic number (Hn ≈ log(n)).

Corollary

We have fd(n) = Ω(log n).
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Methods and Results Local Irreducibility

How do you show a set is irreducible?

K. H. Kim and F. W. Roush showed in 2007 that the problem of
determining if a set is irreducible is NP-complete.

Proposition (Local Irreducibility)

Suppose S ⊂ Z≥0 with 0 ∈ S satis�es the following.

1 If m is the smallest nonzero element of S, then 2m /∈ S.
2 For each s ∈ S \ {0,m} there is some t ∈ S with t < s and

s+ t /∈ S.
Then, S is irreducible.

• Local irreducibility is de�ned to be easily computer veri�able.

• If S ⊂ [n], then veri�cation takes O(max(|S|2, ([n] \ S)3)) time.

• Irreducibility follows by an iterative argument.
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Methods and Results Local Irreducibility

Local Irreducibility Example

Proposition (Local Irreducibility)

Suppose S ⊂ Z≥0 with 0 ∈ S satis�es the following.

1 If m is the smallest nonzero element of S, then 2m /∈ S.
2 For each s ∈ S \ {0,m} there is some t ∈ S with t < s and

s+ t /∈ S.
Then, S is irreducible.

Suppose S = {0, 1, 3} = A+B.
• WLOG, 0 ∈ A,B and A,B ⊂ S by shifting the sets.
• 1 must be in A or B. Suppose 1 ∈ B.
• Then, since 1 + 1 6∈ S, 1 6∈ A.
• Since 1 + 3 6∈ S, we know 3 6∈ A.
• So, A = {0} and S is irreducible.

A = {} B = {}
9
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Local Irreducibility Example

Proposition (Local Irreducibility)

Suppose S ⊂ Z≥0 with 0 ∈ S satis�es the following.

1 If m is the smallest nonzero element of S, then 2m /∈ S.
2 For each s ∈ S \ {0,m} there is some t ∈ S with t < s and

s+ t /∈ S.
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• 1 must be in A or B. Suppose 1 ∈ B.
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Methods and Results Local Irreducibility

Local Irreducibility in Higher Dimensions

Proposition (Local Irreducibility)

Suppose a set S ⊂ Zd≥0 with 0 ∈ S satis�es the following.

1 If m is the lexicographically �rst nonzero element of S, then
2m /∈ S.

2 For each s ∈ S \ {0,m} there is some t ∈ S with t ≺ s and

s+ t /∈ S.
Then, S is irreducible.
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Methods and Results Local Irreducibility

Constructive Bounds

• We construct explicit families of large locally irreducible subsets of
Z≥0

• Use pseudo-greedy construction algorithm to construct the
1-dimensional set

• In higher dimensions, place a copy of the 1-dimensional set along
each axis of the cube

Proposition

For all n, d there exists an irreducible subset S ⊂ [n]d such that

|[n]d \ S| = O(log n).

Corollary

We have fd(n) = Θ(log n).
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Methods and Results Local Irreducibility

1-Dimensional Construction

• Start with the set Q0 = {0, 1}

• After stage i of the process, Qi has maximum element Mi

• Find the largest number N such that Qi ∪ {Mi + 1, . . . , N − 1} is
locally irreducible

• Set Qi+1 = Qi ∪ {Mi + 1, . . . , N − 1}

12
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Methods and Results Local Irreducibility

1-Dimensional Construction (Continued)

• The set Q :=
⋃∞
i=1Qi is locally irreducible by construction.

• For each n, the set [n] ∩Q is also locally irreducible.

• Problem: Hard to estimate the size of [n] ∩Q.
• Solution: After constructing Q9, change the construction.

• For 0 ≤ i ≤ 9, set Pi := Qi, and for each 0 ≤ i ≤ 9, set
Ni = max(Pi) + 1.

• For i ≥ 10, set Ni = Ni−2 +Ni−3 and let

Pi = Pi−1 ∪ {Ni−1 + 1, . . . , Ni − 1}

13
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1-Dimensional Results

• Let P :=
⋃∞
i=1 Pi.

• For each n, the set [n] ∩P is locally irreducible and its complement
in [n] is (up to �nitely many edits) a linear recurrence sequence.

• We are able to estimate the number of terms in a linear recurrence
sequence up to n.

• Let λ denote the largest complex root of the polynomial
x3 − x− 1 = 0.

Proposition

Let λ = 1.325 . . . denote the largest complex root of the polynomial

x3 − x− 1 = 0. Then |[n] \ P| ∼ logλ n.
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Conclusion

Recap

1 We let fd(n) denote the minimum size complement of an
irreducible subset of [n]d.

2 By showing that every su�ciently large subset S ⊂ [n]d admits a
factorization of the form S = A+B with A = {0, r}, we proved
that fd(n) = Ω(logn).

3 De�ne local irreducibility, a strong condition on a subset of Zd
such that every locally irreducible set is also irreducible.

4 Construct large locally irreducible subsets of [n]d to prove that
fd(n) = O(log n).

5 Conclude that fd(n) = Θ(log n).
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