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Positive Linear Recurrence Sequences

Definition
A sequence {Hi}i≥1 of positive integers is a Positive
Linear Recurrence Sequence (PLRS) if the following
properties hold:

(Recurrence relation) There are non-negative
integers L, c1, . . . , cL such that

Hn+1 = c1Hn + · · ·+ cLHn+1−L

with L, c1, cL positive.
(Initial conditions) H1 = 1, and for 1 ≤ n < L,

Hn+1 = c1Hn + · · ·+ cnH1 + 1
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Positive Linear Recurrence Sequences

We write [c1, . . . , cL] for Hn+1 = c1Hn + · · ·+ cLHn−L+1.

For example, for the Fibonacci numbers, we write
[1,1]. This definition gives initial conditions
F1 = 1, F2 = 2.

Despite satisfying positive linear recurrences, the
Lucas and Pell numbers are not PLRS, since their
initial conditions do not meet the definition.
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Introduction to Completeness

Definition
A sequence {Hi}i≥1 is called complete if every positive
integer is a sum of its terms, using each term at most
once.

The sequence with the recurrence [1,3] is not
complete. Its terms are {1,2,5,11, . . . }; you cannot
get 4 or 9 as the sequence grows too quickly.

The Fibonacci sequence Fn+1 = Fn + Fn−1, with initial
conditions F1 = 1, F2 = 2, is complete (follows from
Zeckendorf’s Theorem).
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The Doubling Sequence

The PLRS [2], which has the recurrence Hn+1 = 2Hn, has
terms Hn = 2n−1 and is complete because every integer
has a binary representation.

Theorem (Brown)

The complete sequence with maximal terms is Hn = 2n−1.

Any PLRS of the form [1, . . . ,1,2] has the same terms as
[2], i.e., Hn = 2n−1.
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Brown’s Criterion

Theorem (Brown)
A nondecreasing sequence {Hi}i≥1 is complete if and
only if H1 = 1 and for every n ≥ 1,

Hn+1 ≤ 1 +
n∑

i=1

Hi .

Can we bound where a sequence must fail Brown’s
Criterion? We think so!

Conjecture (SMALL 2020)
If a PLRS Hn+1 = c1Hn + · · ·+ cLHn+1−L incomplete, then
it fails Brown’s criterion before the 2L-th term.
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Families of Sequences
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Analyzing Families of Sequences

Theorem (SMALL 2020)
1 [1,0, . . . ,0︸ ︷︷ ︸

k

,N], is complete if and only if

N ≤
⌊
(k + 2)(k + 3)

4
+

1
2

⌋
.

2 [1,1,0, . . . ,0,︸ ︷︷ ︸
k

N], is complete if and only if

N ≤
⌊

Fk+6 − (k + 5)
4

⌋
,

where Fk is the kth Fibonacci number.
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Proof Sketch

Theorem (SMALL 2020)
1 [1,0, . . . ,0,N], with k zeros, is complete if and only if

N ≤
⌊
(k+2)(k+3)

4 + 1
2

⌋
.

Partial Proof. We sketch that if Nmax =
⌊
(k+2)(k+3)

4 + 1
2

⌋
,

then the sequence is complete. It is similar for N < Nmax.

With the recurrence relation and Brown’s Criterion,

Hn+1 = Hn + NmaxHn−k−1

≤ Hn + (Nmax − 1)Hn−k−1 + Hn−k−2 + · · ·+ H1 + 1

By induction, (Nmax − 1)Hn−k−1 ≤ Hn−1 + · · ·+ Hn−k−1, so

≤ Hn + · · ·+ H1 + 1.
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Example for L = 6

By the previous theorem, [1,0,0,0,0,N] is complete for
N ≤ 11.

Question
Does there exist a complete PLRS of length L = 6 with
N > 11?
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Example for L = 6

Here are the maximal last terms for preserving
completeness for several other sequences of length
L = 6:

[1,0,0,0,0,N] is complete for N ≤ 11.
[1,1,0,0,0,N] is complete for N ≤ 11.
[1,0,1,0,0,N] is complete for N ≤ 12.
[1,0,0,1,0,N] is complete for N ≤ 11.
[1,0,0,0,1,N] is complete for N ≤ 10.

Why is [1,0,1,0,0,12] complete, but [1,0,0,0,0,12] is
not complete?
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Example for L = 6

Why is [1,0,1,0,0,12] complete, but [1,0,0,0,0,12] is
not complete?

[1,0,0,0,0,12] has terms {1,2,3,4,5,6,18,42, . . . }
and so computing the sums

∑n
i=1 Hi + 1 we see

{2,4,7,11,16,22,40, . . . }
[1,0,1,0,0,12] has terms {1,2,3,5,8,12,29,61, . . . }
and so computing the sums

∑n
i=1 Hi + 1 we see

{2,4,7,12,20,32,61, . . . }
[1,1,1,0,0,12] has terms {1,2,4,8,15,28,63, . . . }
and so computing the sums

∑n
i=1 Hi + 1 we see

{2,4,8,16,31,59, . . . }
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Sequences of Initial Ones

Theorem (SMALL 2020)
If a sequence [1, . . . ,1︸ ︷︷ ︸

m

,0, . . . ,0︸ ︷︷ ︸
k

,N] is complete with

m ≥ 3, then

N ≤ 1
2

1 +
k+1∑
i=1

F (m)
i +

k+1−m∑
i=1

F (m)
i + · · ·+

(k+1)modm∑
i=1

F (m)
i


where F (m)

i is the m-bonacci sequence, [1, . . . ,1︸ ︷︷ ︸
m

].
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Theorem on Adding Ones

Theorem (SMALL 2020)
For L ≥ 6, consider the sequence {Hn} given by
[1,0, . . . ,0,1,0, . . . ,0,M]. Then, if M is maximal such
that {Hn} is complete, and N is maximal such that
[1,0, . . . ,0,N] is complete, we have M ≥ N.
For a fixed length L, the sequence
[1,0, . . . ,0︸ ︷︷ ︸

k

,1, . . . ,1︸ ︷︷ ︸
m

,N] with m ones has a lower bound

on N than the sequence [1,0, . . . ,0︸ ︷︷ ︸
k−1

,1, . . . ,1︸ ︷︷ ︸
m+1

,N].

In particular, if m < L
2 , the bound is precisely

N ≤
⌊
(L−m) (L + m + 1)

4
+

1
48

m(m + 1)(m + 2)(m + 3) +
1− 2m

2

⌋
.
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Modifying Sequences
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Modifying Coefficients of a PLRS

When studying a PLRS, what modifications to the
recurrence coefficients preserve completeness or
incompleteness?

Theorem (SMALL 2020)
If a sequence [c1, . . . , cL−1, cL] is complete, then so is
[c1, . . . , cL−1,dL] for any dL ≤ cL.
Remark. This is not true for ci in any position.
If a sequence [1, . . . ,1︸ ︷︷ ︸

m

,0, . . . ,0︸ ︷︷ ︸
k

, cL] is complete and

cL = 2k+1 − 1, [1, . . . ,1︸ ︷︷ ︸
m

,0, . . . ,0︸ ︷︷ ︸
k

, cL + j ] is incomplete

for any positive integer j.
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Modifying Lengths of a PLRS

Theorem (SMALL 2020)
If a sequence [c1, . . . , cL] is incomplete, then so is
[c1, . . . , cL−1 + cL].
If a sequence [c1, . . . , cL] is incomplete, then so is
[c1, . . . , cL, cL+1] for any cL+1 > 0.

Conjecture (SMALL 2020)
If a sequence [1, . . . ,1︸ ︷︷ ︸

m

,0, . . . ,0︸ ︷︷ ︸
k

, cL] is complete, then so is

[1, . . . ,1︸ ︷︷ ︸
m+j

,0, . . . ,0︸ ︷︷ ︸
k

, cL] for any positive integer j .
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Principal Roots
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Principal Roots

Theorem (Binet’s Formula)
If r1, . . . , rk are the distinct roots of the characteristic
polynomial of a PLRS {Hn}, then there exist polynomials
q1, . . . ,qk such that Hn = q1(n)r n

1 + · · ·+ qk(n)r n
k .

For PLRS, the characteristic polynomial has a unique
positive root r1 which is the largest in absolute value,
called the principal root.

Theorem (SMALL 2020)
If Hn is a complete PLRS and r1 is its principal root, then
r1 ≤ 2.
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Bounding Principal Roots

If a sequence is complete, r1 ≤ 2.

There exists a second bound 1 < BL < 2 on the
principal roots, so that if a sequence is incomplete,
the its principal root r1 satisfies r1 ≥ BL. This bound is
dependent on the length of the generating sequence
[c1, . . . , cL]. We conjecture the following:

Conjecture (SMALL 2020)
For any given L, the incomplete sequence of length L with
the lowest principal root is [1,0, . . . ,0,

⌈
L(L+1)

4

⌉
+ 1].

If this holds, then for large L, we would have
BL ≈ (L/2)2/L. In particular, limL→∞ BL = 1.

21 / 28



Introduction Families of Sequences Modifying Sequences Principal Roots Future Directions

Bounding Principal Roots

If a sequence is complete, r1 ≤ 2.
There exists a second bound 1 < BL < 2 on the
principal roots, so that if a sequence is incomplete,
the its principal root r1 satisfies r1 ≥ BL. This bound is
dependent on the length of the generating sequence
[c1, . . . , cL]. We conjecture the following:

Conjecture (SMALL 2020)
For any given L, the incomplete sequence of length L with
the lowest principal root is [1,0, . . . ,0,

⌈
L(L+1)

4

⌉
+ 1].

If this holds, then for large L, we would have
BL ≈ (L/2)2/L. In particular, limL→∞ BL = 1.
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Root-Bounding Proof Sketch

Conjecture (SMALL 2020)
For any given L, the incomplete sequence of length L with
the lowest principal root is [1,0, . . . ,0,

⌈
L(L+1)

4

⌉
+ 1].

Suppose [c1, . . . , cL] is an incomplete sequence.
Case 1:

∑L
k=1 ck ≥ 2 +

⌈
L(L+1)

4

⌉
We combine the following two invariant arguments:

The principal root of [c1, . . . , cL] is strictly greater than
that of [c1, . . . , ck − 1, . . . , cL + 1], for any k .
The principal root of [1,0, . . . ,0,S] is strictly greater
than that of [1,0, . . . ,0,S − 1].

Combining these two, any sequence with large sum can
be "reduced" to [1,0, . . . ,0,

⌈
L(L+1)

4

⌉
+ 1].
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Root-Bounding Proof Sketch

Case 2:
∑L

k=1 ck ≤ 1 +
⌈

L(L+1)
4

⌉
It can be shown any “counterexample” would fulfill:
∀1 ≤ k ≤ L + 1,

k∑
i=2

ci ≤
⌈

k(k + 1)
4

⌉
.

L∑
i=2

ci
(
λL+1−i

L+1 − λL−i
L

)
<

L + 2
2

, where λL is the root of

[1,0, . . . ,0, dL(L + 1)/4e+ 1.
This forces the coefficients of [c1, . . . , cL] to be small
enough to force a contradiction; for example, an analytical
argument shows the first 32.5% or so must be 0.
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Future Directions
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Future Directions

Extend analysis of the bound of N in
[1, . . . ,1︸ ︷︷ ︸

m

,0, . . . ,0,N], which involves the m-bonacci

numbers, defined by [1, . . . ,1︸ ︷︷ ︸
m

].

Find the bound N for arbitrary coefficients c2, . . . , cL−1
in [1, c2, . . . , cL−1,N].
Prove the conjectures made in this presentation.
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Legal Decompositions vs. Completeness

Previous work on PLRS relates to legal
decompositions, which are another way to write
integers as sums of sequence terms.
Given any PLRS, there is a legal decomposition of
every positive integer. Does this mean that all PLRS
are complete?
No. For legal decompositions, sequence terms can
be used more than once. This is not allowed for
completeness decompositions.

Example
The PLRS [1,3] has terms 1,2,5,11, . . .. The unique legal
decomposition for 9 is 5 + 2(2), where the term 2 is used
twice. However, no complete decomposition for 9 exists.
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