Completeness of Positive Linear Recurrence
Sequences

Elzbieta Botdyriew (eboldyriew@colgate.edu)
John Haviland (havijw@umich.edu)
Phuc Lam (plam6@u.rochester.edu)
John Lentfer (jlentfer@hmc.edu)
Fernando Trejos Suérez (fernando.trejos@yale.edu)

Joint work with Steven J. Miller

The Nineteenth International Conference on Fibonacci Numbers
and Their Applications
07/21/2020

1/28



Introduction
00000

Introduction

2/28



Introduction
0e0000

Positive Linear Recurrence Sequences

Definition

A sequence {H;};>1 of positive integers is a Positive
Linear Recurrence Sequence (PLRS) if the following
properties hold:
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Definition
A sequence {H;};>1 of positive integers is a Positive
Linear Recurrence Sequence (PLRS) if the following
properties hold:
@ (Recurrence relation) There are non-negative
integers L, ¢y, ..., c. such that

Hni1 = CiHp+ -+ cLlHp -1

with L, ¢y, ¢, positive.
@ (Initial conditions) H; =1, andfor1 < n< L,
Hn+1 = CiHy+ -+ CoHy + 1
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Positive Linear Recurrence Sequences

e We write [cy,...,c] for Hypr = ciHy+ -+ cLHp 141

e For example, for the Fibonacci numbers, we write
[1,1]. This definition gives initial conditions
Fi=1, F, =2.

o Despite satisfying positive linear recurrences, the
Lucas and Pell numbers are not PLRS, since their
initial conditions do not meet the definition.
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Introduction to Completeness

Definition

A sequence {H;};>1 is called complete if every positive
integer is a sum of its terms, using each term at most
once.
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e The sequence with the recurrence [1, 3] is not
complete. lts terms are {1,2,5,11,... }; you cannot
get 4 or 9 as the sequence grows too quickly.
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Introduction to Completeness

Definition
A sequence {H;};>1 is called complete if every positive

integer is a sum of its terms, using each term at most
once.

e The sequence with the recurrence [1, 3] is not
complete. lts terms are {1,2,5,11,... }; you cannot
get 4 or 9 as the sequence grows too quickly.

e The Fibonacci sequence F, .1 = F, + F,_1, with initial
conditions F; = 1, F» = 2, is complete (follows from
Zeckendorf’s Theorem).
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The PLRS [2], which has the recurrence H,.1 = 2H,, has
terms H, = 2"~" and is complete because every integer
has a binary representation.
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The Doubling Sequence

The PLRS [2], which has the recurrence H,.1 = 2H,, has
terms H, = 2"~" and is complete because every integer
has a binary representation.

Theorem (Brown)
The complete sequence with maximal terms is H, = 2",

Any PLRS of the form [1,...,1,2] has the same terms as
[2], i.e., H, =21,
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Theorem (Brown)

A nondecreasing sequence {H;}~1 is complete if and
only if Hy =1 and for every n > 1,

n
Hopt <1+ H:

i=1
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Criterion?
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Brown'’s Criterion

Theorem (Brown)

A nondecreasing sequence {H;}~1 is complete if and
only if Hy =1 and for every n > 1,

n
Hopt <1+ H:

i=1

Can we bound where a sequence must fail Brown’s
Criterion? We think so!

Conjecture (SMALL 2020)

IfaPLRS H, 1 = citHy+ - - - + ¢ Hn 11 incomplete, then
it fails Brown’s criterion before the 2L-th term.
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Analyzing Families of Sequences

Theorem (SMALL 2020)
Q@ [1,0,...,0,N], is complete if and only if
~——

g NS{(k+2)4(k+3)+%J.

@ [1,1,0,...,0,N], is complete if and only if
——

k
Frie — (K + 5)J

<
V< [P

where F is the kth Fibonacci number.
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Proof Sketch

Theorem (SMALL 2020)

Q@ [1,0,...,0,N], with k zeros, is complete if and only if
N < {(k+2)4(k+3) X %J

Partial Proof. We sketch that if Ny, = {w + 2J,
then the sequence is complete. It is similar for N < N,,..
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Proof Sketch

Theorem (SMALL 2020)
Q@ [1,0,...,0,N], with k zeros, is complete if and only if
N < {(k+2)4(k+3) X %J

Partial Proof. We sketch that if N,.x = {

then the sequence is complete. It is similar for N < Npax-
With the recurrence relation and Brown’s Criterion,

Hn+1 = Hn + Nmaan—k—1
< Hp+ (Nmax — VHp—k—1 + Hooko + - -+ Hy + 1

By induction, (Nmax — 1)Hp-k—1 < Hp_1+ -+ + Hp_k_1, SO
<Hp+---+Hy+1.

(k+2)(k+3) +
2 L]
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Example for L = 6

By the previous theorem, [1,0,0,0, 0, N] is complete for
N < 11.
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Example for L = 6

By the previous theorem, [1,0,0,0, 0, N] is complete for
N < 11.

Does there exist a complete PLRS of length L = 6 with
N> 117
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Example for L = 6

Here are the maximal last terms for preserving
completeness for several other sequences of length
L=6:
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Example for L = 6

Here are the maximal last terms for preserving
completeness for several other sequences of length
L=6:

@ [1,0,0,0,0, N] is complete for N < 11.
e [1,1,0,0,0, N] is complete for N < 11.
e [1,0,1,0,0,N] is complete for N < 12.
e [1,0,0,1,0,N] is complete for N < 11.
e [1,0,0,0,1, N] is complete for N < 10.

12/28



Families of Sequences
[ee]e]e] Telele]

Example for L = 6

Here are the maximal last terms for preserving
completeness for several other sequences of length
L=6:

@ [1,0,0,0,0, N] is complete for N < 11.

e [1,1,0,0,0, N] is complete for N < 11.

e [1,0,1,0,0,N] is complete for N < 12.

e [1,0,0,1,0,N] is complete for N < 11.

e [1,0,0,0,1, N] is complete for N < 10.

Why is [1,0,1,0,0, 12] complete, but [1,0,0,0,0,12] is
not complete?
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not complete?
@ [1,0,0,0,0,12] hasterms {1,2,3,4,5,6,18,42 ...}
and so computing the sums Y7 . H; + 1 we see
{2,4,7,11,16,22,40,...}
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Why is [1,0,1,0,0, 12] complete, but [1,0,0,0,0,12] is
not complete?

@ [1,0,0,0,0,12] hasterms {1,2,3,4,5,6,18,42 ...}
and so computing the sums Y7 . H; + 1 we see
{2,4,7,11,16,22,40,...}

@ [1,0,1,0,0,12] has terms {1,2,3,5,8,12,29,61,...}
and so computing the sums Y7 . H; + 1 we see
{2,4,7,12,20,32,61,...}

e [1,1,1,0,0,12] has terms {1,2,4,8,15,28,63,...}
and so computing the sums Y7, H; + 1 we see
{2,4,8,16,31,59,...}
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Sequences of Initial Ones

Theorem (SMALL 2020)
If asequence [1,...,1,0,...,0, N] is complete with
a seq [1, ] o

m k

m > 3, then

k+1 k+1—m (k+1)mod m
(m) (m)
N < 5 1+ ZF + Z Fm 4 Z F

where F\™ is the m-bonacci sequence, [1, ... 1].

m

|
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Theorem on Adding Ones

Theorem (SMALL 2020)

e For L > 6, consider the sequence {H,} given by
[1,0,...,0,1,0,...,0, M]. Then, if M is maximal such
that {H,} is complete, and N is maximal such that
[1,0,...,0,N] is complete, we have M > N.

e For a fixed length L, the sequence
[1,0,...,0,1,...,1, N] with m ones has a lower bound

—— ——

k m
on N than the sequence [1,0,...,0,1,... 1, N].
—— ——
k—1 m+-1
In particular, if m < £, the bound is precisely
NS{(L—m)(L+m+1) 1 1—2mJ.

7 +@m(m+1)(m+2)(m+3)+ 5
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recurrence coefficients preserve completeness or
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Modifying Coefficients of a PLRS

When studying a PLRS, what modifications to the
recurrence coefficients preserve completeness or
incompleteness?

Theorem (SMALL 2020)

e I/fa sequence [cy,...,CL_1,CL] is complete, then so is
[Ci,...,c_1,d] forany d. < c;.
Remark. This is not true for c; in any position.

e Ifasequence[1,...,1,0,...,0,c.] is complete and

m k
co=2"-11,...,1,0,...,0,¢c. +j] is incomplete
k
m

for any positive integer |.
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Modifying Lengths of a PLRS

Theorem (SMALL 2020)

e Ifa sequence [cy, ..., c] is incomplete, then so is
[Ci,...,Cc._1+cL).
e Ifa sequence [cy,. .., c] is incomplete, then so is

[Ci,...,CL,CLq] forany .1 > 0.
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Modifying Lengths of a PLRS

Theorem (SMALL 2020)

e Ifa sequence [cy, ..., c] is incomplete, then so is
[Ci,...,Cc._1+cL).

e Ifa sequence [cy,. .., c] is incomplete, then so is
[Ci,...,CL,CLq] forany .1 > 0.

Conjecture (SMALL 2020)
Ifasequence[1,...,1,0,...,0,c.] is complete, then so is
q L/_/ N—— L] p

m k
1,...,1,0,...,0,c] for any positive integer j.
N——

m-+j k
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Theorem (Binet's Formula)

Ifry, ..., rc are the distinct roots of the characteristic
polynomial of a PLRS {H,}, then there exist polynomials
Q1,...,Qk such that H, = gi(n)r + - - - + g(n)ry.

20/28



Principal Roots
[e] Jele]e}

Principal Roots

Theorem (Binet's Formula)
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positive root r; which is the largest in absolute value,
called the principal root.
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Principal Roots

Theorem (Binet's Formula)

Ifry, ..., rc are the distinct roots of the characteristic
polynomial of a PLRS {H,}, then there exist polynomials
Q1,...,Qk such that H, = gi(n)r + - - - + g(n)ry.

For PLRS, the characteristic polynomial has a unique
positive root r; which is the largest in absolute value,
called the principal root.

Theorem (SMALL 2020)

If H, is a complete PLRS and r is its principal root, then
rp <2.
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e If a sequence is complete, r; < 2.
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e If a sequence is complete, r; < 2.

@ There exists a second bound 1 < B, < 2 on the
principal roots, so that if a sequence is incomplete,
the its principal root ry satisfies r; > B;. This bound is
dependent on the length of the generating sequence
[c1,...,c]. We conjecture the following:

Conjecture (SMALL 2020)
For any given L, the incomplete sequence of length L with

the lowest principal root is 1,0, ... ,0, P(Ljﬂ +1].
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Bounding Principal Roots

e If a sequence is complete, r; < 2.

@ There exists a second bound 1 < B, < 2 on the
principal roots, so that if a sequence is incomplete,
the its principal root ry satisfies r; > B;. This bound is
dependent on the length of the generating sequence
[c1,...,c]. We conjecture the following:

Conjecture (SMALL 2020)
For any given L, the incomplete sequence of length L with

the lowest principal root is 1,0, ... ,0, P(Ljﬂ +1].

e If this holds, then for large L, we would have
B, ~ (L/2)%*. In particular, lim;_,., B, = 1.
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For any given L, the incomplete sequence of length L with
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Suppose [cy, . .., ¢.] is an incomplete sequence.
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Case1: 5, ,ck>2+ {%
We combine the following two invariant arguments:
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the lowest principal root is 1,0, . .., 0, {@W +1].

Suppose [cy, . .., ¢.] is an incomplete sequence.
. L L(L41
Case1: 5, ,ck>2+ {%
We combine the following two invariant arguments:

e The principal root of [cy, ..., ¢/] is strictly greater than
that of [cy,...,ck—1,...,c. + 1], for any k.
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For any given L, the incomplete sequence of length L with

the lowest principal root is 1,0, . .., 0, {@W +1].

Suppose [cy, . .., ¢.] is an incomplete sequence.
Case1: Y .ck>2+ {@
We combine the following two invariant arguments:
e The principal root of [cy, ..., ¢/] is strictly greater than
that of [cy,...,ck—1,...,c. + 1], for any k.
@ The principal root of [1,0,...,0, §] is strictly greater
than that of [1,0,...,0,S —1].
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Root-Bounding Proof Sketch

Conjecture (SMALL 2020)
For any given L, the incomplete sequence of length L with
the lowest principal root is [1,0, ..., 0, P(Lf W 1].

Suppose [cy, . .., ¢.] is an incomplete sequence.
Case1: Y .ck>2+ {@1
We combine the following two invariant arguments:
e The principal root of [cy, ..., ¢/] is strictly greater than
that of [cy,...,ck—1,...,c. + 1], for any k.
@ The principal root of [1,0,...,0, §] is strictly greater
than that of [1,0,...,0,S —1].
Combining these two, any sequence with large sum can
be "reduced" to [1,0, ... 0, [ (L’Lﬂ +1].
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Root-Bounding Proof Sketch

Case2: S .ok <1+ {@
It can be shown any “counterexample” would fulfill:
o VI <k<L+1,

3o [H62D)

i=2

; : L+2 .
° Z (A=A < % where )\, is the root of

2
[1,0,...,0,[L(L+1)/4] + 1.
This forces the coefficients of [cy, ..., ¢.] to be small

enough to force a contradiction; for example, an analytical
argument shows the first 32.5% or so must be 0.
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[1,...,1,0,...,0, N], which involves the m-bonacci
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numbers, defined by [1, ..., 1].
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Future Directions

e Extend analysis of the bound of N in
[1,...,1,0,...,0, N], which involves the m-bonacci

m
numbers, defined by [1, ..., 1].
m

e Find the bound N for arbitrary coefficients ¢,,...,c._4
in [1,02,...,CL,1,N].
@ Prove the conjectures made in this presentation.
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Legal Decompositions vs. Completeness

@ Previous work on PLRS relates to legal
decompositions, which are another way to write
integers as sums of sequence terms.

e Given any PLRS, there is a legal decomposition of
every positive integer. Does this mean that all PLRS
are complete?

@ No. For legal decompositions, sequence terms can
be used more than once. This is not allowed for
completeness decompositions.

Example
The PLRS [1,3] has terms 1,2,5,11,.... The unique legal

decomposition for 9 is 5 + 2(2), where the term 2 is used
twice. However, no complete decomposition for 9 exists.
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