Rank and Bias in Families of Curves via Nagao's Conjecture

Traian Hammonds and Steven J Miller CMU and CMU & Williams College

sjm1@williams.edu, Steven.Miller.MC.96@aya.yale.edu http://www.williams.edu/Mathematics/sjmiller Joint with Scott Arms, Seoyoung Kim, Ben Logsdon and Alvaro Lozano-Robledo

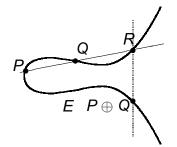
33rd Automorphic Forms Workshop, March 8, 2019

Outline

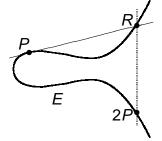
- Review Basics of Elliptic Curves.
- Describe Construction of Moderate Rank Families.
- Discuss Applications.
- Explore Generalizations.

Elliptic Curves: Mordell-Weil Group

Elliptic curve $y^2 = x^3 + ax + b$ with rational solutions $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ and connecting line y = mx + b.



Addition of distinct points P and Q



Adding a point P to itself

$$E(\mathbb{Q}) \approx E(\mathbb{Q})_{\mathsf{tors}} \oplus \mathbb{Z}^r$$

Elliptic curve L-function

$$E: y^2 = x^3 + ax + b$$
, associate L-function

$$L(s, E) = \sum_{n=1}^{\infty} \frac{a_E(n)}{n^s} = \prod_{p \text{ prime}} L_E(p^{-s}),$$

where

Introduction

0.000000

$$a_{E}(p) = p - \#\{(x,y) \in (\mathbb{Z}/p\mathbb{Z})^{2} : y^{2} \equiv x^{3} + ax + b \mod p\}.$$

Elliptic curve L-function

$$E: y^2 = x^3 + ax + b$$
, associate L-function

$$L(s, E) = \sum_{n=1}^{\infty} \frac{a_E(n)}{n^s} = \prod_{p \text{ prime}} L_E(p^{-s}),$$

where

Introduction

$$a_{E}(p) = p - \#\{(x,y) \in (\mathbb{Z}/p\mathbb{Z})^{2} : y^{2} \equiv x^{3} + ax + b \bmod p\}.$$

Birch and Swinnerton-Dyer Conjecture

Rank of group of rational solutions equals order of vanishing of L(s, E) at s = 1/2.

Theorem: Preliminaries

Consider a one-parameter family

$$\mathcal{E}: y^2 + a_1(T)xy + a_3(T)y = x^3 + a_2(T)x^2 + a_4(T)x + a_6(T).$$

Let $a_t(p) = p + 1 - N_p$, where N_p is the number of solutions mod p (including ∞). Define

$$A_{\mathcal{E}}(p) := \frac{1}{p} \sum_{t(p)} a_t(p).$$

 $A_{\mathcal{E}}(p)$ is bounded independent of p (Deligne).

Methods for Obtaining Explicit Formulas

For a family $\mathcal{E}: y^2 = x^3 + A(T)x + B(T)$, we can write

$$a_{\mathcal{E}(t)}(p) = -\sum_{x \mod p} \left(\frac{x^3 + A(t)x + B(t)}{p} \right)$$

where $\left(\frac{1}{p}\right)$ is the Legendre symbol mod p given by

$$\left(\frac{x}{p}\right) = \begin{cases} 1 & \text{if } x \text{ is a non-zero square modulo } p \\ 0 & \text{if } x \equiv 0 \bmod p \\ -1 & \text{otherwise.} \end{cases}$$

Introduction

0000000

Linear and Quadratic Legendre Sums

$$\sum_{x \bmod p} \left(\frac{ax + b}{p} \right) = 0 \quad \text{if } p \nmid a$$

$$\sum_{x \bmod p} \left(\frac{ax^2 + bx + c}{p} \right) = \begin{cases} -\left(\frac{a}{p}\right) & \text{if } p \nmid b^2 - 4ac \\ (p-1)\left(\frac{a}{p}\right) & \text{if } p \mid b^2 - 4ac \end{cases}$$

q

Linear and Quadratic Legendre Sums

$$\sum_{x \bmod p} \left(\frac{ax + b}{p} \right) = 0 \quad \text{if } p \nmid a$$

$$\sum_{x \bmod p} \left(\frac{ax^2 + bx + c}{p} \right) = \begin{cases} -\left(\frac{a}{p}\right) & \text{if } p \nmid b^2 - 4ac \\ (p-1)\left(\frac{a}{p}\right) & \text{if } p \mid b^2 - 4ac \end{cases}$$

Average Values of Legendre Symbols

The value of $\left(\frac{x}{\rho}\right)$ for $x \in \mathbb{Z}$, when averaged over all primes p, is 1 if x is a non-zero square, and 0 otherwise.

Tate's Conjecture

Tate's Conjecture for Elliptic Surfaces

Let \mathcal{E}/\mathbb{Q} be an elliptic surface and $L_2(\mathcal{E},s)$ be the L-series attached to $H^2_{\mathrm{\acute{e}t}}(\mathcal{E}/\overline{\mathbb{Q}},\mathbb{Q}_l)$. Then $L_2(\mathcal{E},s)$ has a meromorphic continuation to \mathbb{C} and satisfies

$$-\operatorname{ord}_{s=2}L_2(\mathcal{E},s) = \operatorname{rank} NS(\mathcal{E}/\mathbb{Q}),$$

where $NS(\mathcal{E}/\mathbb{Q})$ is the \mathbb{Q} -rational part of the Néron-Severi group of \mathcal{E} . Further, $L_2(\mathcal{E},s)$ does not vanish on the line Re(s) = 2.

Theorem: Preliminaries

Theorem

Introduction

Rosen-Silverman (Conjecture of Nagao): For an elliptic surface (a one-parameter family), assume Tate's conjecture. Then

$$\lim_{X\to\infty}\frac{1}{X}\sum_{p\leq X}-A_{\mathcal{E}}(p)\log p = \operatorname{rank} \mathcal{E}(\mathbb{Q}(T)).$$

Tate's conjecture is known for rational surfaces: An elliptic surface $y^2 = x^3 + A(T)x + B(T)$ is rational iff one of the following is true:

- 0 < max{3degA, 2degB} < 12;
- $3\deg A = 2\deg B = 12$ and $\operatorname{ord}_{T=0}T^{12}\Delta(T^{-1}) = 0$.

Small Rank

Moderate Rank

Rank 6 Family

Introduction

Rational Surface of Rank 6 over $\mathbb{Q}(T)$:

$$y^2 = x^3 + (2aT - B)x^2 + (2bT - C)(T^2 + 2T - A + 1)x + (2cT - D)(T^2 + 2T - A + 1)^2$$

$$A = 8,916,100,448,256,000,000$$
 $B = -811,365,140,824,616,222,208$
 $C = 26,497,490,347,321,493,520,384$
 $D = -343,107,594,345,448,813,363,200$
 $a = 16,660,111,104$
 $b = -1,603,174,809,600$
 $c = 2,149,908,480,000$

Constructing Rank 6 Family

Idea: can explicitly evaluate linear and quadratic Legendre sums.

Use: a and b are not both zero mod p and p > 2, then for $t \in \mathbb{Z}$

$$\sum_{t=0}^{p-1} \left(\frac{at^2 + bt + c}{p} \right) = \begin{cases} (p-1)(\frac{a}{p}) & \text{if } p | (b^2 - 4ac) \\ -(\frac{a}{p}) & \text{otherwise.} \end{cases}$$

Thus if $p|(b^2-4ac)$, the summands are $(\frac{a(t-t')^2}{p})=(\frac{a}{p})$, and the *t*-sum is large.

Constructing Rank 6 Family

Introduction

$$y^2 = f(x, T) = x^3T^2 + 2g(x)T - h(x)$$

 $g(x) = x^3 + ax^2 + bx + c, c \neq 0$
 $h(x) = (A-1)x^3 + Bx^2 + Cx + D$
 $D_T(x) = g(x)^2 + x^3h(x)$.

 $D_T(x)$ is one-fourth of the discriminant of the quadratic (in T) polynomial f(x, T).

 \mathcal{E} not in standard form, as the coefficient of x^3 is T^2 , harmless. As $y^2 = f(x, T)$, for the fiber at T = t:

$$a_t(p) = -\sum_{x(p)} \left(\frac{f(x,t)}{p} \right) = -\sum_{x(p)} \left(\frac{x^3 t^2 + 2g(x)t - h(x)}{p} \right).$$

Constructing Rank 6 Family

We study $-pA_{\mathcal{E}}(p) = \sum_{x=0}^{p-1} \sum_{t=0}^{p-1} \left(\frac{f(x,t)}{p}\right)$. When $x \equiv 0$ the t-sum vanishes if $c \not\equiv 0$, as it is just $\sum_{t=0}^{p-1} \left(\frac{2ct-D}{p}\right)$.

Assume now $x \not\equiv 0$. By the lemma on Quadratic Legendre Sums

$$\sum_{t=0}^{p-1} \left(\frac{x^3 t^2 + 2g(x)t - h(x)}{p} \right) = \begin{cases} (p-1)(\frac{x^3}{p}) & \text{if } p \mid D_t(x) \\ -(\frac{x^3}{p}) & \text{otherwise.} \end{cases}$$

Goal:find coefficients a, b, c, A, B, C, D so that $D_t(x)$ has six distinct, non-zero roots that are squares.

Constructing Rank 6 Family

Assume we can find such coefficients. Then

$$-pA_{\mathcal{E}}(p) = \sum_{x=0}^{p-1} \sum_{t=0}^{p-1} \left(\frac{f(x,t)}{p} \right) = \sum_{x=0}^{p-1} \sum_{t=0}^{p-1} \left(\frac{x^3 t^2 + 2g(x)t - h(x)}{p} \right)$$

$$= \sum_{x=0}^{p-1} \sum_{t=0}^{p-1} \left(\frac{f(x,t)}{p} \right) + \sum_{x:D_t(x) \equiv 0} \sum_{t=0}^{p-1} \left(\frac{f(x,t)}{p} \right)$$

$$+ \sum_{x:xD_t(x) \not\equiv 0} \sum_{t=0}^{p-1} \left(\frac{f(x,t)}{p} \right)$$

$$= 0 + 6(p-1) - \sum_{x:xD_t(x) \not\equiv 0} \left(\frac{x^3}{p} \right) = 6p.$$

Constructing Rank 6 Family

Introduction

We must find a, \ldots, D such that $D_t(x)$ has six distinct, non-zero roots ρ_i^2 :

$$D_{t}(x) = g(x)^{2} + x^{3}h(x)$$

$$= Ax^{6} + (B + 2a)x^{5} + (C + a^{2} + 2b)x^{4}$$

$$+ (D + 2ab + 2c)x^{3}$$

$$+ (2ac + b^{2})x^{2} + (2bc)x + c^{2}$$

$$= A(x^{6} + R_{5}x^{5} + R_{4}x^{4} + R_{3}x^{3} + R_{2}x^{2} + R_{1}x + R_{0})$$

$$= A(x - \rho_{1}^{2})(x - \rho_{2}^{2})(x - \rho_{3}^{2})(x - \rho_{4}^{2})(x - \rho_{5}^{2})(x - \rho_{6}^{2}).$$

Constructing Rank 6 Family

Introduction

Because of the freedom to choose B, C, D there is no problem matching coefficients for the x^5, x^4, x^3 terms. We must simultaneously solve in integers

$$2ac + b^{2} = R_{2}A$$

$$2bc = R_{1}A$$

$$c^{2} = R_{0}A.$$

For simplicity, take $A = 64R_0^3$. Then

For an explicit example, take $r_i = \rho_i^2 = i^2$. For these choices of roots,

$$R_0 = 518400, R_1 = -773136, R_2 = 296296.$$

Solving for a through D yields

Α	=	$64R_0^3$	=	8916100448256000000
С	=	$8R_0^2$	=	2149908480000
b	=	$4R_0R_1$	=	-1603174809600
а	=	$4R_0R_2 - R_1^2$	=	16660111104
В	=	R_5A-2a	=	-811365140824616222208
С	=	$R_4A - a^2 - 2b$	=	26497490347321493520384
D	=	$R_3A - 2ab - 2c$	=	-343107594345448813363200

We convert $y^2 = f(x, t)$ to $y^2 = F(x, T)$, which is in Weierstrass normal form. We send $y \to \frac{y}{T^2 + 2T - 4 + 1}$, $x \to \frac{x}{T^2 + 2T - A + 1}$, and then multiply both sides by $(T^2 + 2T - A + 1)^2$. For future reference, we note that

$$T^2 + 2T - A + 1 = (T + 1 - \sqrt{A})(T + 1 + \sqrt{A})$$

= $(T - t_1)(T - t_2)$
= $(T - 2985983999)(T + 2985984001).$

We have

Introduction

$$f(x,T) = T^2x^3 + (2x^3 + 2ax^2 + 2bx + 2c)T - (A-1)x^3 - Bx^2 - Cx - D$$

$$= (T^2 + 2T - A + 1)x^3 + (2aT - B)x^2 + (2bT - C)x + (2cT - D)$$

$$F(x,T) = x^3 + (2aT - B)x^2 + (2bT - C)(T^2 + 2T - A + 1)x$$

$$+ (2cT - D)(T^2 + 2T - A + 1)^2.$$

We now study the $-pA_{\mathcal{E}}(p)$ arising from $y^2 = F(x, T)$. It is enough to show this is 6p + O(1) for all p greater than some p_0 . Note that t_1, t_2 are the unique roots of $t^2 + 2t - A + 1 \equiv 0 \mod p$. We find

$$-\rho A_{\mathcal{E}}(\rho) = \sum_{t=0}^{\rho-1} \sum_{x=0}^{\rho-1} \left(\frac{F(x,t)}{\rho} \right) = \sum_{t \neq t_1,t_2} \sum_{x=0}^{\rho-1} \left(\frac{F(x,t)}{\rho} \right) + \sum_{t=t_1,t_2} \sum_{x=0}^{\rho-1} \left(\frac{F(x,t)}{\rho} \right).$$

For $t \neq t_1, t_2$, send $x \longrightarrow (t^2 + 2t - A + 1)x$. As $(t^2 + 2t - A + 1) \not\equiv 0$, $\left(\frac{(t^2 + 2t - A + 1)^2}{p}\right) = 1$. Simple algebra yields

$$-pA_{\mathcal{E}}(p) = 6p + O(1) + \sum_{t=t_1,t_2} \sum_{x=0}^{p-1} \left(\frac{f_t(x)}{p}\right) + O(1) \\
= 6p + O(1) + \sum_{t=t_1,t_2} \sum_{x=0}^{p-1} \left(\frac{(2at - B)x^2 + (2bt - C)x + (2ct - D)}{p}\right).$$

Constructing Rank 6 Family

Introduction

The last sum above is negligible (i.e., is O(1)) if

$$D(t) = (2bt - C)^2 - 4(2at - B)(2ct - D) \not\equiv 0(p).$$

Calculating yields

$$D(t_1) = 4291243480243836561123092143580209905401856$$

$$= 2^{32} \cdot 3^{25} \cdot 7^5 \cdot 11^2 \cdot 13 \cdot 19 \cdot 29 \cdot 31 \cdot 47 \cdot 67 \cdot 83 \cdot 97 \cdot 103$$

$$D(t_2) = 4291243816662452751895093255391719515488256$$

$$= 2^{33} \cdot 3^{12} \cdot 7 \cdot 11 \cdot 13 \cdot 41 \cdot 173 \cdot 17389 \cdot 805873 \cdot 9447850813.$$

Constructing Rank 6 Family

Hence, except for finitely many primes (coming from factors of $D(t_i)$, a, ..., D, t_1 and t_2), $-A_{\mathcal{E}}(p) = 6p + O(1)$ as desired.

We have shown: There exist integers a, b, c, A, B, C, D so that the curve $\mathcal{E}: y^2 = x^3T^2 + 2g(x)T - h(x)$ over $\mathbb{Q}(T)$, with $g(x) = x^3 + ax^2 + bx + c$ and $h(x) = (A-1)x^3 + Bx^2 + Cx + D$, has rank 6 over $\mathbb{Q}(T)$. In particular, with the choices of a through D above, \mathcal{E} is a rational elliptic surface and has Weierstrass form

$$y^{2} = x^{3} + (2aT - B)x^{2} + (2bT - C)(T^{2} + 2T - A + 1)x + (2cT - D)(T^{2} + 2T - A + 1)^{2}$$

Constructing Rank 6 Family

We show \mathcal{E} is a rational elliptic surface by translating $x \mapsto x - (2aT - B)/3$, which yields $y^2 = x^3 + A(T)x + B(T)$ with $\deg(A) = 3$, $\deg(B) = 5$.

The Rosen-Silverman theorem is applicable, and as we can compute $A_{\mathcal{E}}(p)$, we know the rank is exactly 6 (and we never need to calculate height matrices).

Applications

Biases in Lower Order Terms

Introduction

Let $n_{3,2,p}$ equal the number of cube roots of 2 modulo p, and set $c_0(p) = \left[\left(\frac{-3}{p}\right) + \left(\frac{3}{p}\right)\right]p$, $c_1(p) = \left[\sum_{x \bmod p} \left(\frac{x^3 - x}{p}\right)\right]^2$, $c_{3/2}(p) = p \sum_{x(p)} \left(\frac{4x^3 + 1}{p}\right)$.

Family	$A_{1,\mathcal{E}}(p)$	$A_{2,\mathcal{E}}(p)$
$y^2 = x^3 + Sx + T$	0	$\rho^3 - \rho^2$
$y^2 = x^3 + 2^4(-3)^3(9T+1)^2$	0	$\begin{cases} 2p^2 - 2p & p \equiv 2 \mod 3 \\ 0 & p \equiv 1 \mod 3 \end{cases}$
$y^2 = x^3 \pm 4(4T + 2)x$	0	$\begin{cases} 2p^2 - 2p & p \equiv 1 \mod 4 \\ 0 & p \equiv 3 \mod 4 \end{cases}$
$y^2 = x^3 + (T+1)x^2 + Tx$	0	$p^2 - 2p - 1$
$y^2 = x^3 + x^2 + 2T + 1$	0	$p^2-2p-\left(\frac{-3}{p}\right)$
$y^2 = x^3 + Tx^2 + 1$	-p	$p^2 - n_{3,2,p}p - 1 + c_{3/2}(p)$
$y^2 = x^3 - T^2x + T^2$	−2 <i>p</i>	$p^2-p-c_1(p)-c_0(p)$
$y^2 = x^3 - T^2x + T^4$	−2 <i>p</i>	$p^2-p-c_1(p)-c_0(p)$
$y^2 = x^3 + Tx^2 - (T+3)x + 1$	$-2c_{p,1;4}p$	$p^2 - 4c_{p,1;6}p - 1$

where $c_{p,a;m} = 1$ if $p \equiv a \mod m$ and otherwise is 0.

Biases in Lower Order Terms

The first family is the family of all elliptic curves; it is a two parameter family and we expect the main term of its second moment to be p^3 .

Note that except for our family $y^2 = x^3 + Tx^2 + 1$, all the families \mathcal{E} have $A_{2,\mathcal{E}}(p) = p^2 - h(p)p + O(1)$, where h(p) is non-negative. Further, many of the families have $h(p) = m_{\mathcal{E}} > 0$.

Note $c_1(p)$ is the square of the coefficients from an elliptic curve with complex multiplication. It is non-negative and of size p for $p \not\equiv 3 \mod 4$, and zero for $p \equiv 1 \mod 4$ (send $x \mapsto -x \mod p$ and note $\left(\frac{-1}{p}\right) = -1$).

It is somewhat remarkable that all these families have a correction to the main term in Michel's theorem in the same direction, and we analyze the consequence this has on the average rank. For our family which has a $p^{3/2}$ term, note that on average this term is zero and the p term is negative.

Lower order terms and average rank

$$\frac{1}{N} \sum_{t=N}^{2N} \sum_{\gamma_t} \phi\left(\gamma_t \frac{\log R}{2\pi}\right) = \widehat{\phi}(0) + \phi(0) - \frac{2}{N} \sum_{t=N}^{2N} \sum_{p} \frac{\log p}{\log R} \frac{1}{p} \widehat{\phi}\left(\frac{\log p}{\log R}\right) a_t(p) \\
- \frac{2}{N} \sum_{t=N}^{2N} \sum_{r} \frac{\log p}{\log R} \frac{1}{p^2} \widehat{\phi}\left(\frac{2\log p}{\log R}\right) a_t(p)^2 + O\left(\frac{\log \log R}{\log R}\right).$$

If ϕ is non-negative, we obtain a bound for the average rank in the family by restricting the sum to be only over zeros at the central point. The error $O\left(\frac{\log\log R}{\log R}\right)$ comes from trivial estimation and ignores probable cancellation, and we expect $O\left(\frac{1}{\log R}\right)$ or smaller to be the correct magnitude. For most families $\log R \sim \log N^a$ for some integer a.

Lower order terms and average rank (cont)

The main term of the first and second moments of the $a_t(p)$ give $r\phi(0)$ and $-\frac{1}{2}\phi(0)$.

Assume the second moment of $a_t(p)^2$ is $p^2 - m_{\mathcal{E}}p + O(1)$, $m_{\mathcal{E}} > 0$.

We have already handled the contribution from p^2 , and $-m_{\varepsilon}p$ contributes

$$S_{2} \sim \frac{-2}{N} \sum_{p} \frac{\log p}{\log R} \widehat{\phi} \left(2 \frac{\log p}{\log R} \right) \frac{1}{p^{2}} \frac{N}{p} (-m_{\varepsilon} p)$$

$$= \frac{2m_{\varepsilon}}{\log R} \sum_{p} \widehat{\phi} \left(2 \frac{\log p}{\log R} \right) \frac{\log p}{p^{2}}.$$

Thus there is a contribution of size $1/\log R$.

Lower order terms and average rank (cont)

A good choice of test functions (see Appendix A of [ILS]) is the Fourier pair

$$\phi(x) = \frac{\sin^2(2\pi\frac{\sigma}{2}x)}{(2\pi x)^2}, \quad \widehat{\phi}(u) = \begin{cases} \frac{\sigma - |u|}{4} & \text{if } |u| \leq \sigma \\ 0 & \text{otherwise.} \end{cases}$$

Note $\phi(0) = \frac{\sigma^2}{4}$, $\widehat{\phi}(0) = \frac{\sigma}{4} = \frac{\phi(0)}{\sigma}$, and evaluating the prime sum gives

$$S_2 \sim \left(\frac{.986}{\sigma} - \frac{2.966}{\sigma^2 \log R}\right) \frac{m_{\mathcal{E}}}{\log R} \phi(0).$$

Lower order terms and average rank (cont)

Let r_t denote the number of zeros of E_t at the central point (i.e., the analytic rank). Then up to our $O\left(\frac{\log\log R}{\log R}\right)$ errors (which we think should be smaller), we have

$$\frac{1}{N} \sum_{t=N}^{2N} r_t \phi(0) \leq \frac{\phi(0)}{\sigma} + \left(r + \frac{1}{2}\right) \phi(0) + \left(\frac{.986}{\sigma} - \frac{2.966}{\sigma^2 \log R}\right) \frac{m_{\mathcal{E}}}{\log R} \phi(0)$$

$$\mathsf{Ave}\;\mathsf{Rank}_{[\mathit{N},2\mathit{N}]}(\mathcal{E}) \quad \leq \quad \frac{1}{\sigma} + r + \frac{1}{2} + \left(\frac{.986}{\sigma} - \frac{2.966}{\sigma^2 \log R}\right) \frac{m_{\mathcal{E}}}{\log R}.$$

 $\sigma=$ 1, $m_{\mathcal{E}}=$ 1: for conductors of size 10^{12} , the average rank is bounded by $1+r+\frac{1}{2}+.03=r+\frac{1}{2}+1.03$. This is significantly higher than Fermigier's observed $r+\frac{1}{2}+.40$.

 $\sigma=2$: lower order correction contributes .02 for conductors of size 10^{12} , the average rank bounded by $\frac{1}{2}+r+\frac{1}{2}+.02=r+\frac{1}{2}+.52$. Now in the ballpark of Fermigier's bound (already there without the potential correction term!).

Q/Refs

Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$

Hyperelliptic Curves

Introduction

Define a hyperelliptic curve of genus g over $\mathbb{Q}(T)$:

$$\mathcal{X}: y^2 = f(x,T) = x^{2g+1} + A_{2g}(T)x^{2g} + \cdots + A_1(T)x + A_0(T).$$

Let $a_{\mathcal{X}}(p) = p + 1 - \#\mathcal{X}(\mathbb{F}_p)$. Then

$$a_{\mathcal{X}}(p) = -\sum_{\mathbf{x}(p)} \left(\frac{f(\mathbf{x},t)}{p}\right)$$

and its m^{th} power sum

$$A_{m,\mathcal{X}}(p) = \sum_{t(p)} a_{\mathcal{X}}(p)^m.$$

000000

Generalized Nagao's conjecture

Generalized Nagao's Conjecture

$$\lim_{X\to\infty}\frac{1}{X}\sum_{\rho< X}-\frac{1}{\rho}A_{1,\chi}(\rho)\log\rho=\mathrm{rank}\;\mathrm{J}_{\mathcal{X}}\left(\mathbb{Q}(\mathrm{T})\right).$$

Goal: Construct families of hyperelliptic curves with high rank.

Moderate-Rank Family

Theorem (HLKM, 2018)

Assume the Generalized Nagao Conjecture and trivial Chow trace Jacobian. For any $g \ge 1$, we can construct infinitely many genus g hyperelliptic curves \mathcal{X} over $\mathbb{Q}(T)$ such that

rank
$$J_{\mathcal{X}}(\mathbb{Q}(T)) = 4g + 2$$
.

- Close to current record of 4g + 7.
- No height matrix or basis computation.

Generalizes construction of Arms, Lozano-Robledo, and Miller in the elliptic surface case.

Idea of Construction

Introduction

Define a genus g curve

$$\mathcal{X}: y^2 = f(x, T) = x^{2g+1}T^2 + 2g(x)T - h(x)$$

$$g(x) = x^{2g+1} + \sum_{i=0}^{2g} a_i x^i$$

$$h(x) = (A-1)x^{2g+1} + \sum_{i=0}^{2g} A_i x^i.$$

The discriminant of the quadratic polynomial is

$$D_T(x) := g(x)^2 + x^{2g+1}h(x).$$

Idea of Construction

Introduction

$$\begin{aligned}
-A_{1,\mathcal{X}}(\rho) &= \sum_{t(\rho)} \sum_{x(\rho)} \left(\frac{f(x,t)}{\rho} \right) \\
&= \sum_{\substack{x(\rho) \\ D_t(x) \equiv 0}} (\rho - 1) \left(\frac{x^{2g+1}}{\rho} \right) + \sum_{\substack{x(\rho) \\ D_t(x) \not\equiv 0}} (-1) \left(\frac{x^{2g+1}}{\rho} \right) \\
&= \sum_{\substack{x(\rho) \\ D_t(x) \equiv 0}} \rho \left(\frac{x}{\rho} \right)
\end{aligned}$$

Therefore, $-A_{1,\mathcal{X}}(p)$ is $p\left(\frac{x}{p}\right)$ summed over the roots of $D_t(x)$. To maximize the sum, we make each x a perfect square.

Idea of Construction

Key Idea

Introduction

Make the roots of $D_t(x)$ distinct nonzero perfect squares.

• Choose roots ρ_i^2 of $D_t(x)$ so that

$$D_t(x) = A \prod_{i=1}^{4g+2} \left(x - \rho_i^2 \right).$$

Equate coefficients in

$$D_t(x) = A \prod_{i=1}^{4g+2} (x - \rho_i^2) = g(x)^2 + x^{2g+1}h(x).$$

• Solve the nonlinear system for the coefficients of g, h.

$$\begin{aligned} -A_{1,\chi}(\rho) &= \rho \sum_{\substack{x \mod \rho \\ D_t(x) \equiv 0}} \left(\frac{x^{2g+1}}{\rho}\right) \\ &= \rho \cdot (\text{\# of perfect-square roots of } D_t(x)) \\ &= \rho \cdot (4g+2) \,. \end{aligned}$$

Then by the Generalized Nagao Conjecture

$$\lim_{X\to\infty}\frac{1}{X}\sum_{p\leq X}\frac{1}{p}\cdot p\cdot (4g+2)\log p=4g+2=\mathrm{rank}\ J_{\mathcal{X}}\left(\mathbb{Q}(T)\right).$$

42

Bias Conjecture

Bias Conjecture

Michel's Theorem

For one-parameter families of elliptic curves \mathcal{E} , the second moment $A_{2,\mathcal{E}}(p)$ is

$$A_{2,\mathcal{E}}(p)=p^2+O\left(p^{3/2}\right).$$

Bias Conjecture (Miller)

The largest lower order term in the second moment expansion that does not average to 0 is on average **negative**.

Goal: Find as many hyperelliptic families with as much bias as possible.

Bias Example

Introduction

Theorem (HLKM 2018)

Consider $\mathcal{X}: y^2 = x^n + x^h T^k$. If h is odd assume $\nu_2(p-1) > \nu_2(n-h)$, where ν_2 is the 2-adic valuation. If $\gcd(k, n-h, p-1) = 1$, then

$$A_{2,\mathcal{X}}(p) = \begin{cases} (\gcd(n-h,p-1)-1)(p^2-p) & h \text{ even} \\ \gcd(n-h,p-1)(p^2-p) & h \text{ odd} \\ 0 & \text{otherwise.} \end{cases}$$

45

Calculations Part 1: k-Periodicity

$$A_{2,\mathcal{X}}(p) = \sum_{t,x,y(p)} \left(\frac{x^n + x^h t^k}{p}\right) \left(\frac{y^n + y^h t^k}{p}\right)$$

$$= \sum_{t,x,y(p)} \left(\frac{(t^{-n}x^n) + (t^{-h}x^h)t^k}{p}\right) \left(\frac{(t^{-n}y^n) + (t^{-h}y^h)t^k}{p}\right)$$

$$= \sum_{t,x,y(p)} \left(\frac{x^n + x^h t^{(k+(n-h))}}{p}\right) \left(\frac{y^n + y^h t^{(k+(n-h))}}{p}\right)$$

The second moment is periodic in k with period (n - h).

Calculations Part 2: Assume gcd(n-h, k, p-1) = 1

$$A_{2,\mathcal{X}}(p) = \sum_{t,x,y(p)} \left(\frac{x^n + x^h t^k}{p}\right) \left(\frac{y^n + y^h t^k}{p}\right)$$

$$= \sum_{t,x,y(p)} \left(\frac{x^n + x^h t^m}{p}\right) \left(\frac{y^n + y^h t^m}{p}\right) \quad (m \equiv_{n-h} k)$$

$$= \sum_{t,x,y(p)} \left(\frac{x^n + x^h t}{p}\right) \left(\frac{y^n + y^h t}{p}\right) \quad (Frobenius)$$

Thus, this reduces to calculating the second moment of $y^2 = x^n + x^h T$, which is straightforward.

47

Q/Refs

Open Questions and References

Open Questions

- Higher rank.
- Bias conjecture.
- Higher moments.
- Higher degrees.

Publications: Elliptic Curves

Introduction

- 1- and 2-level densities for families of elliptic curves: evidence for the underlying group symmetries, Compositio Mathematica 140 (2004), 952–992. http://arxiv.org/pdf/math/0310159
- Variation in the number of points on elliptic curves and applications to excess rank, C. R. Math. Rep. Acad. Sci. Canada 27 (2005), no. 4, 111–120. http://arxiv.org/abs/math/0506461
- Constructing one-parameter families of elliptic curves over Q(T) with moderate rank (with Scott Arms and Álvaro Lozano-Robledo), Journal of Number Theory 123 (2007), no. 2, 388–402. http://arxiv.org/ abs/math/0406579
- Towards an 'average' version of the Birch and Swinnerton-Dyer Conjecture (with John Goes), Journal of Number Theory 130 (2010), no. 10, 2341–2358. http://arxiv.org/abs/0911.2871
- Moments of the rank of elliptic curves (with Siman Wong), Canad. J. of Math. 64 (2012), no. 1, 151-182. http://web.williams.edu/Mathematics/sjmiller/public_html/math/papers/mwMomentsRanksEC812final.pdf
- Lower-Order Biases in Elliptic Curve Fourier Coefficients in Families (with B. Mackall, C. Rapti and K. Winsor), Frobenius Distributions: Lang-Trotter and Sato-Tate Conjectures (David Kohel and Igor Shparlinski, editors), Contemporary Mathematics 663, AMS, Providence, RI 2016.
- Lower-Order Biases Second Moments of Fourier Coefficients in Families of L-Functions (with Megumi Asada, Ryan Chen, Eva Fourakis, Yujin Kim, Andrew Kwon, Jared Lichtman, Blake Mackall, Eric Winsor, Karl Winsor, Jianing Yang, Kevin Yang), preprint.
- Rank and Bias in Families of Hyperelliptic Curves via Nagao's Conjecture (with Trajan Hammonds, Seovoung Kim. Benjamin Logsdon). 2019. in preparation.