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Plan of the talk

@ Classical ergodic theory of continued fractions.
o Almost surely geometric mean {/a; - - - an — Ko.
o Almost surely arithmetic mean (a; + - -- 4+ ap)/n — oo.

@ Symmetric averages and Maclaurin’s inequalities.
© S(X’n’k) T (k) Zl§i1<i2<---<ik§n X|1X|2 “'Xlk'

o AM = S(x,n, 1)1 > S(x,n,2)¥/2 > ... > S(x,n,n)/" = GM.

@ Results / conjectures on typical / periodic continued
fraction averages.

@ Elementary proofs of weak results, sketch of stronger
results.

To appear in Exp. Math.:ht t p: // ar xi v. or g/ abs/ 1402. 0208.



http://arxiv.org/abs/1402.0208

Continued Fractions

@ Every real number « € (0,1) can be expressed as
1
X = = [aj,ap,a3,...], & €{1,2,...}.
ap +
az +
az + —
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Continued Fractions

@ Every real number a € (0,1) can be expressed as

1
X = = [al,az,a;g,...], a; 6{1,2,...}.

@ The sequence {a;}; is finite iff « € Q.




Continued Fractions

@ Every real number « € (0,1) can be expressed as

1
X = = [al,az,a;g,...], a; 6{1,2,...}.

ao + 1
az + —

o X = g € Q then a;’'s the partial quotients of Euclidean Alg.

333 = 3-106 + 15
106
333 = 137,15 106 = 7-15+1
15 = 15-1+0.

¢




Continued Fractions

@ Every real number « € (0,1) can be expressed as

X = = [ai,az,as,...], & €{1,2,...}.

@ {a}; preperiodic iff « a quadratic irrational;
ex:vV3-1=1[1,2,1,2,1,2,...].

y




Gauss Map: Definition

@ TheGaussmap T : (0,1] — (0,1], T(x) = {£} =% — | 1]
generates the continued fraction digits

a1 = [1/T%)), a1 = 1T ()],
corresponding to the Markov partition
> 1 1
(07 1] - k|j|l (k——i-l’E] .

@ T preserves the measure d;; = = —L_dx and it is mixing.
H log2 1+x




Gauss Map: Example: v3-1=1[1,2,1,2,1,2,...]

T:(0,1] — (0,1], T(x) = {1} = 1 — | 2] generates digits

a1 = [1/T%0)), a1 = [1/T (o)),

a=+v3-1=1[1,2,1,2,...]: Note a; = |=1

1
L\/§_1




Gauss Map: Example: v3-1=1[1,2,1,2,1,2,...]

T:(0,1] — (0,1], T(x) = {1} = 1 — | 2] generates digits

a1 = [1/T%0)), a1 = [1/T (o)),

a:\/§—1:[l,2,1,2,...]:NotealzLﬁjzland
TIVE-1) = —{ ! J:ﬁ+1—1:\/§1
VvV3-1 [V3-1 3-1 2

o - [
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Gauss Map: Example: v3-1=1[1,2,1,2,1,2,...]
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Intro

Gauss Map: Example: v3-1=1[1,2,1,2,1,2,...]

T:(0,1] — (0,1], T(x) = {1} = 1 — | 2] generates digits

a1 = [1/T%0)), a1 = [1/T (o)),

a=+3-1=1[1,2,1,2,...]: Notea; = | 2| = 1 and

V31

Te- = \/§11_ {\/§11J B ?jll_l B \/§21
« - ]

T3(V3-1) = \/§2—1{\/§2—1J = 2\/‘3;22 =+v3-1

. - [




Statistics of Continued Fraction Digits 1/3

@ The digits a; follow the Gauss-Kuzmin distribution:

. 1
nIl_)mC>O P(an = k) = log, (1 + m)

(note the expectation is infinite).




Statistics of Continued Fraction Digits 1/3

@ The digits a; follow the Gauss-Kuzmin distribution:
lim P(apn =k) =log, | 1+ =
n—o0 n =KX) =100, k(k +2)
(note the expectation is infinite).

@ The function x — f(x) = |1/T (x)] on (0, 1] is not
integrable wrt ;.. However, logf € L1(1).




Statistics of Continued Fraction Digits 1/3

@ The digits a; follow the Gauss-Kuzmin distribution:
lim P(apn =k) =log, | 1+ =
n—o0 n =KX) =100, k(k +2)
(note the expectation is infinite).

@ The function x — f(x) = |1/T (x)] on (0, 1] is not
integrable wrt ;.. However, logf € L1(1).

@ Pointwise ergodic theorem (applied to f and log f) reads
aytax+---+an

lim = oo almost surely
n—o0 n

lim (aja,---ay)Y" = e/'97dx  aimost surely.
n—oo




Statistics of Continued Fraction Digits 2/3

@ Geometric mean converges a.s. to Khinchin’s constant:

00 1 log, k
lim (aya,---an)Y" = H (1 + 7+> = Ko ~ 2.6854.

n— o0
k=1




Statistics of Continued Fraction Digits 2/3

@ Geometric mean converges a.s. to Khinchin’s constant:

1 00 1 log, k
. n o o %
lim (azaz---an)"" = kl—[l (1 + kK2 2)> = Ko ~ 2.6854.

@ Hdlder means: For p < 1, almost surely

. 1 1/p 1 1/p
Y O e I e =




Statistics of Continued Fraction Digits 2/3

@ Geometric mean converges a.s. to Khinchin’s constant:

00 1 log, k
lim (aya,---an)Y" = H (1 + 7+> = Ko ~ 2.6854.

n— o0
k=1

@ Hdlder means: For p < 1, almost surely

1 n 1/p oo 1 1/p
- 1 p K. — kP ot
(3] —rom (S (i)
1= =

@ Example: The harmonic mean K_; = 1.74540566.. . ..




Statistics of Continued Fraction Digits 2/3

@ Geometric mean converges a.s. to Khinchin’s constant:

00 1 log, k
lim (aya,---an)Y" = H (1 + 7+> = Ko ~ 2.6854.

n—oo
k=1
@ Hdlder means: For p < 1, almost surely
1 n 1/p o0 1 1/p
m (32) ron(Soew (o))

@ Example: The harmonic mean K_; = 1.74540566.. . ..

(*] |imp_,0 Kp = Kp.




Statistics of Continued Fraction Digits 3/3

@ Khinchin also proved: For a}, = an if am < m(log m)*/3
and 0 otherwise:

n /
jim =13 _

= in measure.
n—oo nlogn log 2




Statistics of Continued Fraction Digits 3/3

@ Khinchin also proved: For a}, = an if am < m(log m)*/3
and 0 otherwise:

n /
jim =13 _

= in measure.
n—oo nlogn log 2

@ Diamond and Vaaler (1986) showed that

n
lim Zi:l Qi — MaXi<j<n 4,

= almost surely.
n—oo nlogn log 2




Maclaurin Inequalities

Maclaurin Inequalities J




Maclaurin Inequalities
°

Definitions and Maclaurin’s Inequalities

@ Both 31, x; and (T, xi)l/n are defined in terms of
elementary symmetric polynomials in Xy, ..., Xy.
@ Define k™" elementary symmetric mean of  Xy,...,X, by

S(x,n,k) = % Z Xi, X, -+ X, -

k 1<ip<ip<-+-<ix<n




Maclaurin Inequalities
°

Definitions and Maclaurin’s Inequalities

@ Both 31, x; and (T, xi)l/n are defined in terms of
elementary symmetric polynomials in Xy, ..., Xy.
@ Define k™" elementary symmetric mean of  Xy,...,X, by

S(x,n,k) = % Z Xi, X, -+ X, -

k 1<ip<ip<-+-<ix<n

Maclaurin’s Inequalities

For positive X4, ..., X, we have
AM := S(x,n, 1)1 > S(x,n,2)¥2 > ... > S(x,n,n)¥/" = GM

(and equalities hold iff x; = - - - = X;).




Maclaurin Inequalities
°

Maclaurin’s work

This laft is the Theorem publithed by the learn.

1V. 4 fecond Letter from Mr. Colin M¢ Laurin, :l?)WNI[]?ghB ?Ziﬁ’i’é égn‘clﬁdfil{slf;ﬁ?Lexx?: 1 Ii;';
Profeffor of Mathematicks in the Univerfity of Jou may:gocept.of itigs & Prouf ot that Relped and
Edinburgh and F. ®. S. to Martin Folkes, Efy; eem with which
concerning the Roots of Equations, with the De- Tam,
monftration of other Rules in Algebra 5 being the SIR,

Continuation of the Letter publifbed in  the 2our moft Obedient,

Philefophical Tranfactions, N° 394. Mapt Fiumble Servant

Edinburgh, April 19th, 1729.

S IR, Colin ‘Mac Laurin,
N the Y ar 1725, I wrote to you that I had a Me-
thod of demonftrating Sic Z/zac Newton’s Rule con-
cerning the impoffible Roots of Equations, deduced
from this obvious Principle, that the Squares of the
Differences of real Quantities muft always be pofitive 3
and fome time after, I fent you the firft Principles of
that Method, which were publifhed in the Philofophi-
cal Tranfaétions for the Month of May, 1726, The




Maclaurin Inequalities
°

Standard proof through Newton’s inequalities.

Define the k" elementary symmetric function by

Sk(X) = Z Xi1Xi2 "'Xika

1<i;<ip<-+-<ix<n

and the k™ elementary symmetric mean by

Newton’s inequality: Ey (x)? > Ex_1(X)Ex11(X)-
New proof by Iddo Ben-Ari and Keith Conrad:

http://homepages. uconn. edu/ benari / pdf / macl aur i nMat hvagFi nal . pdf.

OGS


http://homepages.uconn.edu/benari/pdf/maclaurinMathMagFinal.pdf

Maclaurin Inequalities
°

Sketch of Ben-Ari and Conrad’s Proof

Bernoulli's inequality: t > —1: (1 +t)" > 1 +nt or
1+ x> (1+x)/n.

Generalized Bernoulli: x > —1:

1 2 \1/2 1/3 1/n
1+—X2<1+—x> Z<1+§X> Z---Z(l—i—EX) )
n n n n




Maclaurin Inequalities
°

Sketch of Ben-Ari and Conrad’s Proof

Bernoulli's inequality: t > —1: (1 +t)" > 1 +nt or
1+ x> (1+x)/n.

Generalized Bernoulli: x > —1:
1 2 \? 3\ n \1/n
1+—x2<1+—x> 2<1+—x> Z---Z<1+—x> .
n n n n

Proof: Equivalentto {log (1 + £x) > 3 log (1 + ¥£x),
which follows by logt is strictly concave:
A= 1+ 8 =214 (1-2)- (1+52x).




Maclaurin Inequalities
.

Sketch of Ben-Ari and Conrad’s Proof

Proof of Maclaurin’s Inequalities:

Trivial for n € {1,2}, wlog assume x; < Xp < -+ < Xp.




Maclaurin Inequalities
.

Sketch of Ben-Ari and Conrad’s Proof

Proof of Maclaurin’s Inequalities:
Trivial for n € {1,2}, wlog assume x; < Xp < -+ < Xp.

Set Ey = Sk(X)/(E), €k ‘= Ek(Xl7 R 7Xn_l).




Maclaurin Inequalities
.

Sketch of Ben-Ari and Conrad’s Proof

Proof of Maclaurin’s Inequalities:
Trivial for n € {1,2}, wlog assume x; < Xp < -+ < Xp.
Set Ey = Sk(X)/(E), €k ‘= Ek(Xl7 R 7Xn_l).

Have
Ex(Xt,---»%n) = (L — $) Ex(X1, .-, Xn_1) + KEk(X1, - - -, Xn_1)Xn.




Maclaurin Inequalities
.

Sketch of Ben-Ari and Conrad’s Proof

Proof of Maclaurin’s Inequalities:
Trivial for n € {1,2}, wlog assume x; < Xp < -+ < Xp.
Set Ey = Sk(X)/(E), €k ‘= Ek(Xl7 R 7Xn_l).

Have
Ex(Xt,---»%n) = (L — $) Ex(X1, .-, Xn_1) + KEk(X1, - - -, Xn_1)Xn.

Proceed by induction in number of variables, use Generalized
Bernoulli.




Main Results (Elementary)

Main Results
(Elementary Techniques)




Main Results (Elementary)
°

Symmetric Averages and Maclaurin’s Inequalities

1
@ Recall: S(x,n,k) = = Z Xi -
(k) 1§i1<---<ik§n
and S(x,n, 1)/t > S(x,n,2)Y/2 > ... > S(x,n,n)¥/".




Main Results (Elementary)
°

Symmetric Averages and Maclaurin’s Inequalities

1
o Recall: S(x,n,k) = > XX,
(k) 1<i; <<k <n
and S(x,n, 1)/t > S(x,n,2)Y/2 > ... > S(x,n,n)¥/".

@ Khinchin’s results: almost surely as h — oo

S(a,1,1)"* w00 and S(a,n,n)¥" = Kq.

@ We study the intermediate means S(a,n,k)¥¥ asn — oo
when k = k(n), with

S(a, n, k(n)Y*M = s(a,n, [k(n)])Y kM1,




Main Results (Elementary)
°

Our results on typical continued fraction averages

1
Recall: S(a,n,k) = ﬁ Z a;, - - - g

k/ 1<iy<--<ig<n
and S(a,n, 1)1 > S(a,n,2)/2 > ... > S(a, n,n)*/".

Theorem 1
Let f(n) = o(loglogn) as n — co. Then, almost surely,

lim S(a,n,f(n)Yf ™M = oo,

n—o00

Let f(n) = o(n) as n — oco. Then, almost surely,

lim S(a,n,n —f(n))YO=1M) — K,

n—oo

Note: Theorems do not cover the case f(n) =cnfor0 < c < 1.

OGS



Main Results (Elementary)
°

Sketch of Proofs of Theorems 1 and 2

Theorem 1: For f(n) = o(loglogn) as n — oc:

Almost surely  lim S(a, n, f(N)VIM = .

Uses Niculescu’s strengthening of Maclaurin (2000):

S(n,tj + (1 —t)k) > S(n,j)t-S(n, k)




Main Results (Elementary)

Sketch of Proofs of Theorems 1 and 2

Theorem 1: For f(n) = o(loglogn) as n — oc:

Almost surely  lim S(a, n, f(N)VIM = .

Uses Niculescu’s strengthening of Maclaurin (2000):

S(n,tj + (1 —t)k) > S(n,j)t-S(n, k)

Theorem 2: For f(n) =o(n)as n — oo:

Almost surely lim S(a,n,n — f(n))YO=FM) = K.

Use (as.) Ko < limsup S(a, n,cn)Y/e" < Kol/C <o0,0<c <1

n—o0

e



Main Results (Elementary)
°

Proof of Theorem 1: Preliminaries

Lemma
Let X be a sequence of positive real numbers. Suppose
limn_ 00 S(X, N, k(n))¥k() exists. Then, for any f(n) = o(k(n))
as n — oo, we have

lim S(X,n,k(n) + f(n))Y&KM+HO) — jim S(n,k(n))2/*M.

n—o0 n—oo

Proof: Assume f(n) > 0 for large enough n, and for display
purposes write k and f for k(n) and f(n).

From Newton’s inequalities and Maclaurin’s inequalities, we get
k.
(S(x,n,k)l/k)k“ — S(X,n, k)Y < 5(x,n k)Y E < 5, n, k)E.

Qe




Main Results (Elementary)
°

Proof of Theorem 1: f(n) = o(loglogn)

Each entry of « is at least 1.
Letf(n) = o(loglogn). Sett =1/2 and (j,k) = (1,2f(n) — 1),
so thattj 4+ (1 — t)k = f(n). Niculescu’s result yields
S(a.n,f(n)) > v/S(a.n,1)-S(a,n,2f(n) — 1) > /S(a.n, 1).
Square both sides, raise to the power 1/f(n):

S(a,n,f(n))?>"™ > S(a,n,1)/fM.
From Khinchin almost surely if g(n) = o(log n)

S(a,n,1)

A gy

Let g(n) = logn/loglogn. Taking logs:

logg(n) loglogn
1/f(n)
log <S(a,n,1) ) > f(n) > 2(n)

A




Main Results (Elementary)
°

Proof of Theorem 2

Theorem 2: Letf(n) =o(n) as n — co. Then, almost surely,

lim S(a,n,n —f(n))YO=1M) — K,

n—oo

Proof: Follows immediately from:
For any constant 0 < ¢ < 1 and almost all « have

Ko S I|msups(a,n,cn)l/cn S K(;I-/C < o0

n—oo

To see this, note

1/cn

n njen | Z 1/(341(04) s ai(lfc)n(a))
S(a,n,en)/e" = <H ai(Oé)l/n) < <ia-on<n
i=1 n
(@)

A



Main Results (Elementary)
°

Limiting Behavior

Recall S(a,n,k) = (n) Z aj, - qQj

1<ij<--<ig<n
and S(a,n, 1)1 > S(a,n,2)/2 > ... > S(a,n,n)¥/",

Proposition

For 0 < ¢ < 1 and for almost every «

Ko < limsup S(a,n,cn)t/" < KJ/°(K_p)t-1/e.
n—oo

| \

Conjecture
Almost surely F¢(c) = F2(c) = F(c) forall0 < ¢ < 1, with

F2(c) = limsupS(a,n,cn)/c",
n—oo

o — limi 1/cn

F%c) = ILrngfS(a,n,cn) .

A7




Main Results (Elementary)
°

Limiting Behavior

Recall
F¥(c) = limsupS(«, n7C”)l/Cn
n—oo
o . Lo 1/cn
F(c) = liminfS(a,n,cn)¥e",

and we conjecture F¢(c) = F%(c) = F(c) a.s.

Assuming conjecture, can show that the function ¢ — F(c) is
continuous.

Assuming conjecture is false, we can show that for every
0 < ¢ < 1 the set of limit points of the sequence
{S(a,n,cn)/®)} oy is a non-empty interval inside [K,K1/°].

A




Main Results (Elementary)
°

Evidence for Conjecture 1

@ n— S(a,n,cn)t/forc =32 2and o= — 3,7,

5.0

W

' N, e e
iy SN o e T,
9

(L NIRPRONN

1000 2000 3000 4000
7 5




Main Results (Elementary)
°

Our results on periodic continued fraction averages 1/2

A

@ Fora=+v3-1=1[1,2,1,2,1,2,.. ],

Hms@mﬂng#m

n—o00

lim S(a,n,n)¥" =2 +£ Ky

n—o0




Main Results (Elementary)
°

Our results on periodic continued fraction averages 1/2

@ Fora=+v3-1=1[1,2,1,2,1,2,.. ],

Hms@mﬂng#m

n—oo
lim S(a,n,n)¥" =2 +£ Ky

n—o0

@ What can we say about lim,_,, S(a, n, cn)t/c?

AR




Main Results (Elementary)
°

Our results on periodic continued fraction averages 1/2

@ Fora=+v3-1=1[1,2,1,2,1,2,.. ],

Hms@mﬂng#m

n—o00

lim S(a,n,n)¥" =2 +£ Ky

n—o0

@ What can we say about lim,_,, S(a, n, cn)t/c?
@ Consider the quadratic irrational o = [x,y,X,Y,X,Y,...].

A7




Main Results (Elementary)
°

Our results on periodic continued fraction averages 1/2

@ Fora=+v3-1=1[1,2,1,2,1,2,.. ],

Hms@mﬂng#m

n—o00

lim S(a,n,n)¥" =2 +£ Ky

n—o0

@ What can we say about lim,_,, S(a, n, cn)t/c?

@ Consider the quadratic irrational o« = [x,y,X,Y,X,Y,..

@ Letus look at S(a,n,cn)Y/e forc = 1/2.

~ [S(e,n, D) if n =0 mod 2;
S(a,n, [3]) = {(mn,”T“) if n =1 mod 2.

]

AR




Main Results (Elementary)
°

Our results on periodic continued fraction averages 1/2

@ Fora=+v3-1=1[1,2,1,2,1,2,.. ],

Hms@mﬂng#m

n—o00

lim S(a,n,n)¥" = V2 +£ K,

n—o0

@ What can we say about lim,_,, S(a, n, cn)t/c?
@ Consider the quadratic irrational o = [x,y,X,Y,X,Y,...].
@ Let us look at S(a, n,cn)Y/e forc = 1/2.

S(a,n, 3) if n = 0 mod 2;
S(a,n, 41) ifn=1mod 2.

S(a7n7 (%—I) = {

@ We find the limit limp_,o S(a, N, [%1)1”%1 in terms of X, y.

AQ




Main Results (Elementary)
°

Our results on periodic continued fraction averages 2/2

n
Let o = [X,y]. Then S(a,n, [%1)1”51 converges as h — oo to
the 3-Holder mean of x and y:

2
1/2 1/2

: /51 _ (X2 Ay

nlﬂ;noos(avnv(ZW) 2 _< 2 .




Main Results (Elementary)
°

Our results on periodic continued fraction averages 2/2

n
Let o = [X,y]. Then S(a,n, [%1)1”51 converges as h — oo to
the 3-Holder mean of x and y:

2
1/2 1/2

: /51 _ (X2 Ay

nII_U;OS(a’n,(ZW) 2 _< 2 .

Suffices to show for n = 0 mod 2, say n = 2k.

2
In this case we have that S(a, 2k, k)/% — (M)
monotonically as k — ooc.




Main Results (Elementary)
°

On the proof of Theorem 3, 1/2

2
1/2 | y1/2

o= KV i a5l (XY
Goal.a_[x,y]:>nll_r>noo8(a,n,(21) 2 _< 5 ,

The proof uses an asymptotic formula for Legendre
polynomials Py (with t = % < 1andu = > 1)

i=0
k 2 kK Kk 2
1 k Do y k
S(a’Zk’k):z—k)Z<j> XJykJ_WZQ) t
k/ j=0 k/ j=0
k




Main Results (Elementary)
°

On the proof of Theorem 3, 2/2

2
1/2 1/2

o= XV i o /5T [ XT Y
Goal 'Q_[va]:nhl'}noos(avnv(z-l) 2 _< 2 .

Using the generalized Laplace-Heine asymptotic formula for
Pc(u)foru>1landt=% <landu= 15 > 1gives

1/k
S(a, 2k, k)6 = y(1-1) (sz(k”)>

(i)

2
u++vuz-1 1+t
4 - Yl

— y(1-1)

x1/2 4 y1/2 2




Main Results (Elementary)
°

A conjecture on periodic continued fraction averages 1/3

Expect the same result of Theorem 3 to hold for every quadratic
irrational « and for every c.

For every o = [Xq, ..., X ] and every 0 < ¢ < 1 the limit

lim S(a,n, [cn])Y e =: F(a,c)

n—oo

exists and it is a continuous function of c.

Notice ¢ — F(«, ¢) is automatically decreasing by Maclaurin’s
inequalities.




Main Results (Elementary)
°

A conjecture on periodic continued fraction averages 2/3

Conjecture 2 for period 2 and period 3,0 < c¢ < 1.

X = (xy =(1212.) X = (%y%.Y0) = (1,10,1,10..) X = (xyx.y) = (1,100,1,100..)
150 ()2 55 -

(x+y)/2 50 (x+y)2

30

¥ V27

Fylke)
Fy(ke)

(«

142

02 04 06 08 1.0

2,.) = (1,2,100,1,2,100, ...)

(v +20,+x3)/3

X = (x10,03,00,02,03, .0 = (1,2,3,1,2.3, ...)

1) = (1,100,100,1,100,100, ...)

(143 +x3)/3 (¥ +x+33)/3

50
- = = a0
30
Vi xx;
0.0




Main Results (Technical)

Main Results
(Sketch of More Technical Arguments)




Main Results (Technical)
°

Explicit Formula for F(c)

Result of Halasz and Székely yields conjecture and F(c).

Theorem 4

If limn_o0 £ = ¢ € (0, 1], then for almost all « € [0, 1]

lim S(a,n, k)% = F(c)

n—oo

exists, and F(c) is continuous and given explicitly by

1 = 1
c(1- c) c exp{ ((cl)logrcglog(rc+k)|092 <1m)>}7

where r. is the unique nonnegative solution of the equation

oo

> Jrrklogz( ﬁ):c—l.

k=1




Main Results (Technical)
°

Proof: Work of Halasz and Székely

@ Halasz and Székely calculate asymptotic properties of iidrv
&1,...,&0 when
oc=limp_.k/n €]0,1].
¢ § non-negative.
o Eflogg] < ccifc = 1.
o Eflog(1+¢§) < ccif0<c < 1.
o E[§] < coifc =0.

@ Prove limn_, {/S(¢,n,k)/() exists with probability 1 and
determine it.




Main Results (Technical)
.

Proof: Work of Halasz and Székely

Random variables a;(«) not independent, but Haldsz and
Székely only use independence to conclude sum of the form

1n
— f(TK(a
F AT )

(where T is the Gauss map and f is some function integrable
with respect to the Gauss measure) converges a.e. to Ef as
n — oo.

Arrive at the same conclusion by appealing to the pointwise
ergodic theorem.
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