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Fibonacci Numbers: F,,1 = Fn + Fq_1;
Fl:]-a F2:2, F3:3, F4:5....

Zeckendorf's Theorem

Every positive integer can be written in a unique way as a
sum of non-consecutive Fibonacci numbers.

Example: 2010 = 1597+377+34+2 = F15 + F13 + Fg + Fo.

Lekkerkerker's Theorem

The average number of non-consecutive Fibonacci
summands in the Zeckendorf decomposition for integers

in [Fn, Fny1) tends to # ~ .276n, where ¢ = ”—2\/5 is the
golden mean.

¢




Main Results

Lemma: Application of Cookie Counting

The ‘probability’ (ie, percentage of the time) an integer in
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Main Results

Lemma: Application of Cookie Counting

The ‘probability’ (ie, percentage of the time) an integer in
[Fn, Fni1) has exactly k + 1 non-consecutive Fibonacci

summands is (") /Fa_1.

The above lemma yields Zeckendorf’'s Theorem,
Lekkerkerker's Theorem, and

An Erdos-Kac Type Theorem: SMALL 2010

As n — oo, the distribution of the number of
non-consecutive Fibonacci summands in the Zeckendorf
decomposition for integers in [F,, Fn.1) is Gaussian.




Properties of Fibonacci Numbers
and needed Combinatorial Results
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Binet's Formula

-1 <1+\/§>"+11<1¢§>n+1.
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Proof: Fni1 = Fy + Fp_1.

GuessF,=r" "l =" 4" lorr2=r+1.

Roots r = (1 +/5)/2.

General solution: F, = c1r7' 4 c,rj, solve for ¢;’s. O

Alternate proof via generating functions useful for
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Combinatorial Review

The Cookie Problem

The number of ways of dividing C identical cookies

among P distinct people is (17 1).

Proof: Consider C + P — 1 cookies in a line.
Cookie Monster eats P — 1 cookies: (“;F*) ways to do.

Divides the cookies into P sets. O

Example: 10 cookies and 5 people:

OORXKRXOORXIOOOOOXO
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Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutionsto x; +---+Xp = C with x; a

non-negative integer is (“;° ")

Generalization: If have constraints x; > ¢;, then number of
solutions is (°24% P,

This follows by setting x; = y; + ¢; with y; a non-negative
integer.
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Proof of Zeckendorf’s Theorem

Uniqueness: Same standard argument (induction).
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Proof of Zeckendorf’s Theorem

Uniqueness: Same standard argument (induction).

Existence: Consider all sums of non-consecutive
Fibonacci numbers equaling an m € [F,, F,.1); note there
are F,,1 — F, = F,_1 such integers.

Must have F, one of the summands, must not have F,_;.
For each Fibonacci number from F; to F,,_; we either

include or not, cannot have two consecutive, must end
with a non-taken number.
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Proof of Zeckendorf's Theorem (continued)

Consider all subsets of k + 1 non-consecutive Fibonaccis
from {F,,...,F,} where F, is taken. Let y, be number of
Fibonaccis not taken until first one taken, and then vy;

(2 <i <k) be the number not taken between two taken.
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Proof of Zeckendorf's Theorem (continued)

Consider all subsets of k + 1 non-consecutive Fibonaccis
from {F,,...,F,} where F, is taken. Let y, be number of
Fibonaccis not taken until first one taken, and then vy;

(2 <i <k) be the number not taken between two taken.

Example: 2010 = 1597+377+34+2 = F1g + F13 + Fg + F,
son=16,k+1=4,yo=1,y1 =5y, =4,y; = 2.

Equivalently: yo+y:1 +---+yc+k=n—-1,y; > 1ifi > 1.

Equivalently: xo+---+Xx +2k = n—1, x; > 0. Number of

solutions is ("1 7).

n-1
Obtain ZLZOJ (”_i_k) = F,_1 integers in [Fy, Fny1); as all

distinct and this many integers in interval, done. O
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Average number of summands in [F,, Fn.1) IS

£(n)
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Preliminaries

15

—1-Kk
g(n) == k(” )
k
k=0
Average number of summands in [F,, Fn.1) IS
£(n)
+ 1.

Fn—l

Recurrence Relation for £(n)

EN)+EN—-2) = (n—2)F_s.
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Recurrence Relation

Recurrence Relation for £(n)

EN)+&MN—-2) = (n—2)F,_3.

Proof by algebra (details in appendix):

gn) = Zk(”_i_k)
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Solving Recurrence Relation

Formula for &(n) (i.e., Lekkerkerker's Theorem)

= (—1)£(n -2 Zf)Fn_;g_zg.
(=0

Result follows from Binet's formula, the geometric series
formula, and differentiating identities: Zj”;o X =

 (MALX™ (x=1)— (<1 —1)
(x—1)?

. Details in appendix.
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Generalizing Lekkerkerker

Theorem (SMALL 2010)

As n — oo, the distribution of the number of summands in
Zeckendorf’'s Theorem is a Gaussian.
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Figure: Number of summands in [F2010, F2011)
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“Erdos-Kac”
[ ]

Generalizing Lekkerkerker: Erdos-Kac type result

Theorem (SMALL 2010)

As n — oo, the distribution of the number of summands in
Zeckendorf’'s Theorem is a Gaussian.

Numerics: At Fig0000: Ratio of 2m" moment o, to
(2m — 1)o7 is between .999955 and 1 for 2m < 10.

Sketch of proof: Use Stirling’s formula,
n! ~ n"e "Vv2xn

to approximates binomial coefficients, after a few pages of
algebra find the probabilities are approximately Gaussian.

A
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Further Generalization

Generalized Fibonacci Numbers

LetH, =ciH_1 +---+c Hn_L with CiL>--->cL>1.
Then every positive integer can be written as a unique
sum of the H;’s such that cannot use the recurrence
relation to remove any summands.

Key ingredients in proof: generating functions, matching
coefficients of polynomials.

AR
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Further Generalization (cont)

In 2009 Hannah Alpert proved every positive integer can
be written uniquely as a sum and difference of Fibonacci
numbers, such that all terms of the same sign are at least
4 apart and those of different sign at least 3. We can show

Signed Representations

The number of positive and negative summands are
Gaussianly distributed as n — oo. They are not
independent, and have a negative correlation coefficient.

A
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Conclusion

@ Re-derive Zeckendorf and Lekkerkerker’'s results
through combinatorics.

@ Method yields an Erdos-Kac type result on Gaussian
behavior of the number of summands.

@ Method applicable to other, related questions.

NOTE: These and similar questions are being studied by
the students at the 2010 SMALL REU at Williams
College; we expect to be able to provide papers and
proofs by the end of the summer.

A
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Appendix:
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Needed Binomial Identity

Binomial identity involving Fibonacci Numbers

Let F denote the mt" Fibonacci number, with F1 =1,F, =2,F3 = 3,F4 = 5andsoon. Then

n—1
L2J(n—1—k) .

= Fn-1-
k=0 k

Proof by induction: The base case is trivially verified. Assume our claim holds for n and show that it holds for n + 1.
We may extend the sumton — 1, as ("’&’k) = O wheneverk > \_%J. Using the standard identity that

()-(7) - ()

and the convention that (’E) = 01if £ is a negative integer, we find

" /n—k n n—1-—k n—1-—k

Z(k) - Z[(k 1>+( K >]
k=0 -

- ()09

k=1
n n—2—(k—1)) "o/n—1-k
= Z( +Z( ) = Fh2+Fno1
k=1 k-1 k=0 k
by the inductive assumption; noting F, _» + F,_1 = Fp completes the proof. [m]
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Derivation of Recurrence Relation for  £(n)

LanlJ n—1-—k
£(n) = k
> (")
1252
N (n—1—k)!
a kgl = 1= 20!
1252
_ (n—2—k)!
BD P v e o]
125

(n—3— (k —1)!

- =2 =k =) =3 — 2k — D)

- (1Y)

which proves the claim (note we used the binomial identity to replace the sum of binomial coefficients with a
Fibonacci number).
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Formula for &(

Formula for £(n)

nFn_q
@2 +1

£(n) = +O(Fn_2)-

Proof: The proof follows from using telescoping sums to get an expression for £(n), which is then evaluated by
inputting Binet's formula and differentiating identities. Explicitly, consider

L1273y L1223
ST (—DF(E(M —20) + E(n —2(£ + 1)) = (—1)%(n — 2 — 20)Fy_3_20
£=0 £=0
L1253 1252
= Y (-)(n-3-20)F_3_p + (—1)*(20)Fn_3_2¢
£=0 £=0

E
|
w

I
Ny

1
(=1)(n — 3 — 20)Fy_3_2¢ + O(Fn_2):

o~
1
o

while we could evaluate the last sum exactly, trivially estimating it suffices to obtain the main term (as we have a sum
of every other Fibonacci number, the sum is at most the next Fibonacci number after the largest one in our sum).
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Formula for £(n) (continued)

We now use Binet's formula to convert the sum into a geometric series. Letting o = ”2‘/5 be the golden mean, we
have
E, = R (Pn _ 1-¢
n \/g

7 (L= )"

(our constants are because our counting has F; = 1, F, = 2and so on). As |1 — ¢| < 1, the error from dropping
the (1 — ¢)" termis O(3, <, n) = 0(n?) = o(F,_»), and may thus safely be absorbed in our error term. We

thus find
. 1852
£m = = > (n—3-20)(-1)" "> 1 O(Fy_»)
-2 %53 L1253

= -3 (—¢72) -2 EZZO o~ 72" +O(Fn_).

o~
1
o
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Formula for £(n) (continued)

We use the geometric series formula to evaluate the first term. We drop the upper boundary term of

(—¢ Hl==l , as this term is negligible since ¢ > 1. We may also move the 3 from the n — 3 into the error
term, and are left with

n—3
Lpn—z n LTJ ot
E(n) = — | -2 L= )" | +O(Fh—2)
V5 1+ (p*z Z(:) n
n—2
@ n n—3 >]
—2S , = + O(Fh—2),
/5 1+o-2 (\_ 2 J ® (Fn—2)
where
m
S(m,x) = ZJXJ
j=0
There is a simple formula for S(m, x). As
m m+l g
> = ,
i—o x—1
applying the operator x (?7 gives
(m+1)xM(x — 1) — (x™ —1 mx™+2 — (m 4+ 1)xM L 4 x
Stmx) — ZJX‘:XH( )~ ( ) _ (m+ x™ 4

(x— 172 (x— 172
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Formula for £(n) (continued)

Taking x = —cp’z, we see that the contribution from this piece may safely be absorbed into the error term
O(Fn_2), leaving us with

0 = = oF, ) N O(F2)
n = ——— o) = ———— _2).
VB + ¢2) " (2 1 1) -z
Noting that for large n we have F,,_1 = 5\"/—% + O(1), we finally obtain
e = M=l L o(F, )0
n = —— _2)-
Lp2+1 n—2
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(Sketch of the) Proof of Gaussianity

The probability density for the number of Fibonacci numbers that add up to an integer in [Fn, Fp 1) is
fa(k) = (”’1 k)/Fn,l Consider the density for the n + 1 case. Then we have, by Stirling

fapa(k) = (n ; k)%

-k 1 1 (n— k)"—k+D) 1

(n—2K)k! Fn V27 k(k+%)(n B Zk)(n—2k+%) Fn

plus a lower order correction term.
Also we can write Fp = % ¢>”+1 = —\% ¢" for large n, where ¢ is the golden ratio (we are using relabeled

Fibonacci numbers where 1 = F; occurs once to help dealing with uniqueness and F, = 2). We can now split the
terms that exponentially depend on n.

3 1 (n—k) V5 _n (n=k)n=k
fpak) = (¢— PCEETIS ) (¢ m)
Define
N 1 (n—k) \/ L (=K
"7 VamVkin—2k) 60 T T kk(n— 2620

Thus, write the density function as
fap1(k) = NnSn

where Ny, is the first term that is of order n—1/2 and Sy, is the second term with exponential dependence on n.
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(Sketch of the) Proof of Gaussianity (cont)

Model the distribution as centered around the mean by the change of variable k = i + xo where . and o are the
mean and the standard deviation, and depend on n. The discrete weights of f, (k) will become continuous. This
requires us to use the change of variable formula to compensate for the change of scales:

fa(k)dk = fa(p + ox)odx.

Using the change of variable, we can write N as

N _ 1 n—k o}
"7 Vaa\ k(n—2k) VB
1 1—k/n 5

Vamn \ (k/n) (@ = 2k/n) &

1— (p+ox)/n V5

- V_\/ (b + o) /ML — 2+ ox)/n) &
1-C—y V5
ﬁ (C+y)1—-2C—-2y) ¢

where C = p/n = 1/(¢ + 2) (note that #? =¢+1)andy = ox/n. But for large n, the y term vanishes since
o ~ vnandthusy ~ n~1/2 Thus

Ne o~ L [ 1=C V5 / Vs _ 1 s+ 1
" - V2 C(1—-2C) ¢ V2 [ - V27w [ 7\/277(72




(Sketch of the) Proof of Gaussianity (cont)

For the second term Sp, take the logarithm and once again change variable k = p + xo,

log(Sn) =

— (N — 2(n +x0)) ('09(5 —2> +log (1_ nioz ))
"\ . .\

o (410
kk(n — 2k)(n—2k)
—nlog(¢) + (n — k) log(n — k) — (k) log(k)
— (n — 2k) log(n — 2k)
—nlog(¢) 4 (n — (1 +xo))log(n — (1 + x0))
— (4 +x0) log(u + xo)
— (0 — 2(u + x0)) log(n — 2(u + X))
—nlog(¢)

0= (u-t x) (loo(n = )+ 1og (1 7))

— (u +x0) (|09(H) + log (1 + XTU))

—(n = 2(u + x0)) (log(” — 2u) + log (1 Th ioz;))

—nlog(¢)

+ 0= ot xo) (g (2 —) g (1= 27

— (p + xo) log (1+ Xf)

Appendix
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(Sketch of the) Proof of Gaussianity (cont)

Note that, since n/p = ¢ + 2 for large n, the constant terms vanish. We have log(Sp)

n

= —nlog(¢) + (n —k)log (; *1) — (n—2k)log (E 72> +(n — (u +x0))log (17 %)

— (4 x0)log <1+ Xf) — (n — 2(p +x0))log (17 niazu)

= —nlog(¢) + (n — k)log (¢ + 1) — (n — 2k) log (¢) + (n — (i + x0o)) log (1 — nxou>

Xo )
n—2up

~ n(=10g(6) + Iog (9) ~ log (¢)) + K(loa(?) + 2Iog()) + (n — (u + xe)og (1 - )

Xo >
n—2up

= (n— (u+x0))log (1— n):—oJ — (4 +x0)log (1+ %’)

— (1 + xo)log (1+ Xf) — (n —2(p + xo))log (l -

— (u +xo)log (1+ Xf) — (n —2(pn + x0))log (1—2

~(n — 2(i + xo)) log (1—2ni"2#> A
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(Sketch of the) Proof of Gaussianity (cont)

Finally, we expand the logarithms and collect powers of xo /n. log(Sn)

Xo 1 Xo 2
= (n_(H+XU))<_n7u_E<n—u> + >
Xo 1 /xo\?2
7(u+xa)<7—£(u) + >
Xo 1 Xo 2
_(n—2(”+xo))<—2n72p‘—5(2n72#> +)
2
_ (n_(ﬁx(,))(_x_v_&(X_v) . >
nletl) 2\ | (o41)
(%+2) (%+2)
1 2
7(u+xa)<X: —(X:> + )
5z 2\ 92
2
7(n72(,u+xa))<7 2xo 73<2X:) n )
ngrz 2 \Ngp
I A Y PR Y A ) _ 2 \¢+2
- n"( (l ¢+z>(¢+1) 2(1 ¢+2> ¢)

(xU>2 ( p+2 ¢+2
— n({—-2——+
n o+1 ¢+1

o2
S a0+ - (o4 2)+att)
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(Sketch of the) Proof of Gaussianity (cont)

xon( ¢+1¢p+2 142 ¢ ¢>+2>
¢+2¢+1 ¢ +2

- % (32:1) >+O< (%)3>
_ % <¢+4+2¢+1>+O<n(7>>
= % ( 5 )> (n(XU/n))
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(Sketch of the) Proof of Gaussianity (cont)

But recall that

Also, since o ~ n~1/2 n (XTU

with

2_ _ o
5(¢ + 2)

n

3
) ~ n~1/2_ 350 for large n, the O (n (X"

I
|

|

x

log Sn

Il
@
Nl

Sn

Appendix

3
) ) term vanishes. Thus we are left
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