Cookie Monster Meets the Fibonacci Numbers. Mmmmmm – Theorems!

Steven J Miller, Williams College

Steven.J.Miller@williams.edu
http://www.williams.edu/go/math/sjmiller
Hampshire College Summer Studies in
Mathematics, July 15, 2010

Summary / Acknowledgements

Intro

- Previous results: Zeckendorf and Lekkerkerker.
- New approach: Joint with Carlos Dominguez, Gene Kopp, Murat Kolğlu and Yinghui Wang.
- Thanks: Ed Burger and his SMALL REU students (David Clyde, Cory Colbert, Gea Shin and Nancy

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5...$

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5...$

Zeckendorf's Theorem

Every positive integer can be written in a unique way as a sum of non-consecutive Fibonacci numbers.

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1$, $F_2 = 2$, $F_3 = 3$, $F_4 = 5$

Zeckendorf's Theorem

Every positive integer can be written in a unique way as a sum of non-consecutive Fibonacci numbers.

Example: $2010 = 1597 + 377 + 34 + 2 = F_{16} + F_{13} + F_8 + F_2$.

Intro

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1$, $F_2 = 2$, $F_3 = 3$, $F_4 = 5$

Zeckendorf's Theorem

Every positive integer can be written in a unique way as a sum of non-consecutive Fibonacci numbers.

Example:
$$2010 = 1597 + 377 + 34 + 2 = F_{16} + F_{13} + F_8 + F_2$$
.

Lekkerkerker's Theorem

The average number of non-consecutive Fibonacci summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ tends to $\frac{n}{\varphi^2+1} \approx .276n$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

Main Results

Lemma: Application of Cookie Counting

The 'probability' (ie, percentage of the time) an integer in $[F_n, F_{n+1})$ has exactly k+1 non-consecutive Fibonacci summands is $\binom{n-1-k}{k}/F_{n-1}$.

Main Results

Intro

Lemma: Application of Cookie Counting

The 'probability' (ie, percentage of the time) an integer in $[F_n, F_{n+1})$ has exactly k+1 non-consecutive Fibonacci summands is $\binom{n-1-k}{k}/F_{n-1}$.

The above lemma yields Zeckendorf's Theorem, Lekkerker's Theorem, and

An Erdos-Kac Type Theorem: SMALL 2010

As $n \to \infty$, the distribution of the number of non-consecutive Fibonacci summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1}]$ is Gaussian.

Properties of Fibonacci Numbers and needed Combinatorial Results

Binet's Formula

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{n+1}$$

Binet's Formula

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{n+1}$$

Proof:
$$F_{n+1} = F_n + F_{n-1}$$
.

Binet's Formula

$$F_n = rac{1}{\sqrt{5}} \left(rac{1+\sqrt{5}}{2}
ight)^{n+1} - rac{1}{\sqrt{5}} \left(rac{1-\sqrt{5}}{2}
ight)^{n+1}.$$

Proof:
$$F_{n+1} = F_n + F_{n-1}$$
.

Guess
$$F_n = r^n$$
: $r^{n+1} = r^n + r^{n-1}$ or $r^2 = r + 1$.

Binet's Formula

$$F_n = rac{1}{\sqrt{5}} \left(rac{1+\sqrt{5}}{2}
ight)^{n+1} - rac{1}{\sqrt{5}} \left(rac{1-\sqrt{5}}{2}
ight)^{n+1}.$$

Proof: $F_{n+1} = F_n + F_{n-1}$.

Guess $F_n = r^n$: $r^{n+1} = r^n + r^{n-1}$ or $r^2 = r + 1$.

Roots $r = (1 \pm \sqrt{5})/2$.

Binet's Formula

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{n+1}.$$

Proof: $F_{n+1} = F_n + F_{n-1}$.

Guess $F_n = r^n$: $r^{n+1} = r^n + r^{n-1}$ or $r^2 = r + 1$.

Roots $r = (1 \pm \sqrt{5})/2$.

General solution: $F_n = c_1 r_1^n + c_2 r_2^n$, solve for c_i 's.

Binet's Formula

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{n+1}.$$

Proof:
$$F_{n+1} = F_n + F_{n-1}$$
.

Guess
$$F_n = r^n$$
: $r^{n+1} = r^n + r^{n-1}$ or $r^2 = r + 1$.

Roots
$$r = (1 \pm \sqrt{5})/2$$
.

General solution:
$$F_n = c_1 r_1^n + c_2 r_2^n$$
, solve for c_i 's.

Alternate proof via generating functions useful for

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into P sets.

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into P sets.

Example: 10 cookies and 5 people:

Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with x_i a non-negative integer is $\binom{C+P-1}{P-1}$.

Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with x_i a non-negative integer is $\binom{C+P-1}{P-1}$.

Generalization: If have constraints $x_i \ge c_i$, then number of solutions is $\binom{C-\sum_i c_i + P-1}{P-1}$.

Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with x_i a non-negative integer is $\binom{C+P-1}{P-1}$.

Generalization: If have constraints $x_i \ge c_i$, then number of solutions is $\binom{C-\sum_i c_i + P-1}{P-1}$.

This follows by setting $x_i = y_i + c_i$ with y_i a non-negative integer.

Zeckendorf's Theorem

Uniqueness: Same standard argument (induction).

Uniqueness: Same standard argument (induction).

Existence: Consider all sums of non-consecutive Fibonacci numbers equaling an $m \in [F_n, F_{n+1})$; note there are $F_{n+1} - F_n = F_{n-1}$ such integers.

Uniqueness: Same standard argument (induction).

Existence: Consider all sums of non-consecutive Fibonacci numbers equaling an $m \in [F_n, F_{n+1})$; note there are $F_{n+1} - F_n = F_{n-1}$ such integers.

Must have F_n one of the summands, must not have F_{n-1} .

Uniqueness: Same standard argument (induction).

Existence: Consider all sums of non-consecutive Fibonacci numbers equaling an $m \in [F_n, F_{n+1})$; note there are $F_{n+1} - F_n = F_{n-1}$ such integers.

Must have F_n one of the summands, must not have F_{n-1} .

For each Fibonacci number from F_1 to F_{n-1} we either include or not, cannot have two consecutive, must end with a non-taken number.

Consider all subsets of k + 1 non-consecutive Fibonaccis from $\{F_1, \ldots, F_n\}$ where F_n is taken. Let y_0 be number of Fibonaccis not taken until first one taken, and then y_i $(1 \le i \le k)$ be the number not taken between two taken.

Consider all subsets of k + 1 non-consecutive Fibonaccis from $\{F_1, \ldots, F_n\}$ where F_n is taken. Let y_0 be number of Fibonaccis not taken until first one taken, and then y_i $(1 \le i \le k)$ be the number not taken between two taken.

Example: 2010 = 1597+377+34+2 =
$$F_{16} + F_{13} + F_8 + F_2$$
, so $n = 16$, $k + 1 = 4$, $y_0 = 1$, $y_1 = 5$, $y_2 = 4$, $y_3 = 2$.

Equivalently: $y_0 + y_1 + \cdots + y_k + k = n - 1$, $y_i \ge 1$ if $i \ge 1$.

Consider all subsets of k + 1 non-consecutive Fibonaccis from $\{F_1, \ldots, F_n\}$ where F_n is taken. Let y_0 be number of Fibonaccis not taken until first one taken, and then y_i $(1 \le i \le k)$ be the number not taken between two taken.

Example: 2010 = 1597+377+34+2 =
$$F_{16} + F_{13} + F_8 + F_2$$
, so $n = 16$, $k + 1 = 4$, $y_0 = 1$, $y_1 = 5$, $y_2 = 4$, $y_3 = 2$.

Equivalently:
$$y_0 + y_1 + \cdots + y_k + k = n - 1$$
, $y_i \ge 1$ if $i \ge 1$.

Equivalently: $x_0 + \cdots + x_k + 2k = n - 1$, $x_i \ge 0$. Number of solutions is $\binom{n-1-k}{k}$.

Consider all subsets of k + 1 non-consecutive Fibonaccis from $\{F_1, \ldots, F_n\}$ where F_n is taken. Let y_0 be number of Fibonaccis not taken until first one taken, and then y_i $(1 \le i \le k)$ be the number not taken between two taken.

Example: 2010 = 1597+377+34+2 =
$$F_{16} + F_{13} + F_8 + F_2$$
, so $n = 16$, $k + 1 = 4$, $y_0 = 1$, $y_1 = 5$, $y_2 = 4$, $y_3 = 2$.

Equivalently:
$$y_0 + y_1 + \cdots + y_k + k = n - 1$$
, $y_i \ge 1$ if $i \ge 1$.

Equivalently: $x_0 + \cdots + x_k + 2k = n - 1$, $x_i \ge 0$. Number of solutions is $\binom{n-1-k}{k}$.

Obtain
$$\sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} \binom{n-1-k}{k} = F_{n-1}$$
 integers in $[F_n, F_{n+1}]$; as all distinct and this many integers in interval, done.

Lekkerker's Theorem

Preliminaries

$$\mathcal{E}(n) := \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} k \binom{n-1-k}{k}.$$

Preliminaries

$$\mathcal{E}(n) := \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} k \binom{n-1-k}{k}.$$

Average number of summands in $[F_n, F_{n+1}]$ is

$$\frac{\mathcal{E}(n)}{F_{n-1}}+1.$$

Preliminaries

$$\mathcal{E}(n) := \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} k \binom{n-1-k}{k}.$$

Average number of summands in $[F_n, F_{n+1}]$ is

$$\frac{\mathcal{E}(n)}{F_{n-1}}+1.$$

Recurrence Relation for $\mathcal{E}(n)$

$$\mathcal{E}(n) + \mathcal{E}(n-2) = (n-2)F_{n-3}.$$

Recurrence Relation

Recurrence Relation for $\mathcal{E}(n)$

$$\mathcal{E}(n) + \mathcal{E}(n-2) = (n-2)F_{n-3}.$$

Proof by algebra (details in appendix):

$$\mathcal{E}(n) = \sum_{k=0}^{\lfloor \frac{n-2}{2} \rfloor} k \binom{n-1-k}{k}$$

$$= (n-2) \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} \binom{n-3-\ell}{\ell} - \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} \ell \binom{n-3-\ell}{\ell}$$

$$= (n-2)F_{n-3} - \mathcal{E}(n-2).$$

37

Solving Recurrence Relation

Formula for $\mathcal{E}(n)$ (i.e., Lekkerkerker's Theorem)

$$\mathcal{E}(n) = \frac{nF_{n-1}}{\varphi^2 + 1} + O(F_{n-2}).$$

$$egin{aligned} &\sum_{\ell=0}^{\lfloor rac{n-3}{2}
floor} (-1)^\ell \left(\mathcal{E}(n-2\ell) + \mathcal{E}(n-2(\ell+1))
ight) \ &= &\sum_{\ell=0}^{\lfloor rac{n-3}{2}
floor} (-1)^\ell (n-2-2\ell) \mathcal{F}_{n-3-2\ell}. \end{aligned}$$

Result follows from Binet's formula, the geometric series formula, and differentiating identities: $\sum_{j=0}^{m} jx^{j} = x \frac{(m+1)x^{m}(x-1)-(x^{m+1}-1)}{(x-1)^{2}}$. Details in appendix.

An Erdos-Kac Type Theorem

Generalizing Lekkerkerker

Theorem (SMALL 2010)

As $n \to \infty$, the distribution of the number of summands in Zeckendorf's Theorem is a Gaussian.

Figure: Number of summands in $[F_{2010}, F_{2011})$

Generalizing Lekkerkerker: Erdos-Kac type result

Theorem (SMALL 2010)

As $n \to \infty$, the distribution of the number of summands in Zeckendorf's Theorem is a Gaussian.

Numerics: At $F_{100,000}$: Ratio of $2m^{th}$ moment σ_{2m} to $(2m-1)!!\sigma_2^m$ is between .999955 and 1 for $2m \le 10$.

Sketch of proof: Use Stirling's formula,

$$n! \approx n^n e^{-n} \sqrt{2\pi n}$$

to approximates binomial coefficients, after a few pages of algebra find the probabilities are approximately Gaussian.

41

Additional Generalizations

Further Generalization

Generalized Fibonacci Numbers

Let $H_n = c_1 H_{n-1} + \cdots + c_L H_{n-L}$ with $c_1 \ge \cdots \ge c_L \ge 1$. Then every positive integer can be written as a unique sum of the H_i 's such that cannot use the recurrence relation to remove any summands.

Key ingredients in proof: generating functions, matching coefficients of polynomials.

Further Generalization (cont)

In 2009 Hannah Alpert proved every positive integer can be written uniquely as a sum and difference of Fibonacci numbers, such that all terms of the same sign are at least 4 apart and those of different sign at least 3. We can show

Signed Representations

The number of positive and negative summands are Gaussianly distributed as $n \to \infty$. They are not independent, and have a negative correlation coefficient.

Conclusion

Conclusion

- Re-derive Zeckendorf and Lekkerkerker's results through combinatorics.
- Method yields an Erdos-Kac type result on Gaussian behavior of the number of summands.
- Method applicable to other, related questions.

NOTE: These and similar questions are being studied by the students at the 2010 SMALL REU at Williams College; we expect to be able to provide papers and proofs by the end of the summer.

Appendix: Details of Computations

Needed Binomial Identity

Binomial identity involving Fibonacci Numbers

Let F_m denote the m^{th} Fibonacci number, with $F_1 = 1$, $F_2 = 2$, $F_3 = 3$, $F_4 = 5$ and so on. Then

$$\sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} \binom{n-1-k}{k} = F_{n-1}.$$

Proof by induction: The base case is trivially verified. Assume our claim holds for n and show that it holds for n+1. We may extend the sum to n-1, as $\binom{n-1-k}{k}=0$ whenever $k>\lfloor\frac{n-1}{2}\rfloor$. Using the standard identity that

$$\binom{m}{\ell} + \binom{m}{\ell+1} = \binom{m+1}{\ell+1},$$

and the convention that $\binom{m}{\ell} = 0$ if ℓ is a negative integer, we find

$$\sum_{k=0}^{n} \binom{n-k}{k} = \sum_{k=0}^{n} \left[\binom{n-1-k}{k-1} + \binom{n-1-k}{k} \right]$$

$$= \sum_{k=1}^{n} \binom{n-1-k}{k-1} + \sum_{k=0}^{n} \binom{n-1-k}{k}$$

$$= \sum_{k=1}^{n} \binom{n-2-(k-1)}{k-1} + \sum_{k=0}^{n} \binom{n-1-k}{k} = F_{n-2} + F_{n-1}$$

by the inductive assumption; noting $F_{n-2} + F_{n-1} = F_n$ completes the proof.

Derivation of Recurrence Relation for $\mathcal{E}(n)$

$$\mathcal{E}(n) = \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} k \binom{n-1-k}{k}$$

$$= \sum_{k=1}^{\lfloor \frac{n-1}{2} \rfloor} k \frac{(n-1-k)!}{k!(n-1-2k)!}$$

$$= \sum_{k=1}^{\lfloor \frac{n-1}{2} \rfloor} (n-1-k) \frac{(n-2-k)!}{(k-1)!(n-1-2k)!}$$

$$= \sum_{k=1}^{\lfloor \frac{n-1}{2} \rfloor} (n-2-(k-1)) \frac{(n-3-(k-1)!)}{(k-1)!(n-3-2(k-1))!}$$

$$= \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} (n-2-\ell) \binom{n-3-\ell}{\ell}$$

$$= (n-2) \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} \binom{n-3-\ell}{\ell} - \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} \ell \binom{n-3-\ell}{\ell}$$

$$= (n-2) F_{n-3} - \mathcal{E}(n-2).$$

which proves the claim (note we used the binomial identity to replace the sum of binomial coefficients with a Fibonacci number).

Formula for $\mathcal{E}(n)$

Formula for $\overline{\mathcal{E}(n)}$

$$\mathcal{E}(n) = \frac{nF_{n-1}}{\varphi^2 + 1} + O(F_{n-2}).$$

Proof: The proof follows from using telescoping sums to get an expression for $\mathcal{E}(n)$, which is then evaluated by inputting Binet's formula and differentiating identities. Explicitly, consider

$$\begin{split} & \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} (-1)^{\ell} \left(\mathcal{E}(n-2\ell) + \mathcal{E}(n-2(\ell+1)) \right) = \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} (-1)^{\ell} (n-2-2\ell) F_{n-3-2\ell} \\ & = \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} (-1)^{\ell} (n-3-2\ell) F_{n-3-2\ell} + \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} (-1)^{\ell} (2\ell) F_{n-3-2\ell} \\ & = \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} (-1)^{\ell} (n-3-2\ell) F_{n-3-2\ell} + O(F_{n-2}); \end{split}$$

while we could evaluate the last sum exactly, trivially estimating it suffices to obtain the main term (as we have a sum of every other Fibonacci number, the sum is at most the next Fibonacci number after the largest one in our sum).

Formula for $\mathcal{E}(n)$ (continued)

We now use Binet's formula to convert the sum into a geometric series. Letting $\varphi=\frac{1+\sqrt{5}}{2}$ be the golden mean, we have

$$F_n = \frac{\varphi}{\sqrt{5}} \cdot \varphi^n - \frac{1-\varphi}{\sqrt{5}} \cdot (1-\varphi)^n$$

(our constants are because our counting has $F_1=1$, $F_2=2$ and so on). As $|1-\varphi|<1$, the error from dropping the $(1-\varphi)^n$ term is $O(\sum_{\ell \le n} n) = O(n^2) = o(F_{n-2})$, and may thus safely be absorbed in our error term. We thus find

$$\begin{split} \mathcal{E}(n) &= \frac{\varphi}{\sqrt{5}} \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} (n-3-2\ell)(-1)^{\ell} \varphi^{n-3-2\ell} + O(F_{n-2}) \\ &= \frac{\varphi^{n-2}}{\sqrt{5}} \left[(n-3) \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} (-\varphi^{-2})^{\ell} - 2 \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} \ell (-\varphi^{-2})^{\ell} \right] + O(F_{n-2}). \end{split}$$

Refs

Formula for $\mathcal{E}(n)$ (continued)

term, and are left with

We use the geometric series formula to evaluate the first term. We drop the upper boundary term of $(-\omega^{-1})^{\lfloor \frac{n-3}{2} \rfloor}$, as this term is negligible since $\varphi>1$. We may also move the 3 from the n-3 into the error

$$\mathcal{E}(n) = \frac{\varphi^{n-2}}{\sqrt{5}} \left[\frac{n}{1+\varphi^{-2}} - 2 \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} \ell(-\varphi^{-2})^{\ell} \right] + O(F_{n-2})$$
$$= \frac{\varphi^{n-2}}{\sqrt{5}} \left[\frac{n}{1+\varphi^{-2}} - 2S\left(\left\lfloor \frac{n-3}{2} \right\rfloor, -\varphi^{-2} \right) \right] + O(F_{n-2}),$$

where

$$S(m,x) = \sum_{i=0}^{m} jx^{j}.$$

There is a simple formula for S(m, x). As

$$\sum_{i=0}^{m} x^{i} = \frac{x^{m+1} - 1}{x - 1},$$

applying the operator $x \frac{d}{dx}$ gives

$$S(m,x) = \sum_{i=0}^{m} i x^{i} = x \frac{(m+1)x^{m}(x-1) - (x^{m+1}-1)}{(x-1)^{2}} = \frac{mx^{m+2} - (m+1)x^{m+1} + x}{(x-1)^{2}}$$

Formula for $\mathcal{E}(n)$ (continued)

Taking $x=-\varphi^{-2}$, we see that the contribution from this piece may safely be absorbed into the error term $O(F_{n-2})$, leaving us with

$$\mathcal{E}(n) \; = \; \frac{n\varphi^{n-2}}{\sqrt{5}(1+\varphi^{-2})} \, + \, O(F_{n-2}) \; = \; \frac{n\varphi^n}{\sqrt{5}(\varphi^2+1)} \, + \, O(F_{n-2}).$$

Noting that for large n we have $F_{n-1} = \frac{\varphi^n}{\sqrt{5}} + O(1)$, we finally obtain

$$\mathcal{E}(n) = \frac{nF_{n-1}}{\varphi^2 + 1} + O(F_{n-2}).\Box$$

The probability density for the number of Fibonacci numbers that add up to an integer in $[F_n,F_{n+1})$ is $f_n(k)=\binom{n-1-k}{k}/F_{n-1}$. Consider the density for the n+1 case. Then we have, by Stirling

$$f_{n+1}(k) = {n-k \choose k} \frac{1}{F_n}$$

$$= \frac{(n-k)!}{(n-2k)!k!} \frac{1}{F_n} = \frac{1}{\sqrt{2\pi}} \frac{(n-k)^{(n-k+\frac{1}{2})}}{k^{(k+\frac{1}{2})}(n-2k)^{(n-2k+\frac{1}{2})}} \frac{1}{F_n}$$

plus a lower order correction term.

Also we can write $F_n=\frac{1}{\sqrt{5}}\phi^{n+1}=\frac{\phi}{\sqrt{5}}\phi^n$ for large n, where ϕ is the golden ratio (we are using relabeled Fibonacci numbers where $1=F_1$ occurs once to help dealing with uniqueness and $F_2=2$). We can now split the terms that exponentially depend on n.

$$f_{n+1}(k) = \left(\frac{1}{\sqrt{2\pi}}\sqrt{\frac{(n-k)}{k(n-2k)}}\frac{\sqrt{5}}{\phi}\right)\left(\phi^{-n}\frac{(n-k)^{(n-k)}}{k^k(n-2k)^{(n-2k)}}\right)$$

Define

$$N_n = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{(n-k)}{k(n-2k)}} \frac{\sqrt{5}}{\phi}, \quad S_n = \phi^{-n} \frac{(n-k)^{(n-k)}}{k^k(n-2k)^{(n-2k)}}.$$

Thus, write the density function as

$$f_{n+1}(k) = N_n S_n$$

where N_0 is the first term that is of order $n^{-1/2}$ and S_0 is the second term with exponential dependence on n.

Model the distribution as centered around the mean by the change of variable $k = \mu + x\sigma$ where μ and σ are the mean and the standard deviation, and depend on n. The discrete weights of $f_n(k)$ will become continuous. This requires us to use the change of variable formula to compensate for the change of scales;

$$f_n(k)dk = f_n(\mu + \sigma x)\sigma dx.$$

Using the change of variable, we can write N_n as

$$\begin{split} N_{n} &= \frac{1}{\sqrt{2\pi}} \sqrt{\frac{n-k}{k(n-2k)}} \frac{\phi}{\sqrt{5}} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-k/n}{(k/n)(1-2k/n)}} \frac{\sqrt{5}}{\phi} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-(\mu+\sigma x)/n}{((\mu+\sigma x)/n)(1-2(\mu+\sigma x)/n)}} \frac{\sqrt{5}}{\phi} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-C-y}{(C+y)(1-2C-2y)}} \frac{\sqrt{5}}{\phi} \end{split}$$

where $C = \mu/n \approx 1/(\phi + 2)$ (note that $\phi^2 = \phi + 1$) and $y = \sigma x/n$. But for large n, the y term vanishes since $\sigma \sim \sqrt{n}$ and thus $v \sim n^{-1/2}$. Thus

$$N_{n} \quad \approx \quad \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-C}{C(1-2C)}} \frac{\sqrt{5}}{\phi} = \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{(\phi+1)(\phi+2)}{\phi}} \frac{\sqrt{5}}{\phi} = \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{5(\phi+2)}{\phi}} = \frac{1}{\sqrt{2\pi\sigma^{2}}}$$

since $\sigma^2 = n \frac{\phi}{5(\phi+2)}$

Review

For the second term S_n , take the logarithm and once again change variable $k = \mu + x\sigma$,

$$\begin{split} \log(S_n) &= \log \left(\phi^{-n} \frac{(n-k)^{(n-k)}}{k^k (n-2k)^{(n-2k)}} \right) \\ &= -n \log(\phi) + (n-k) \log(n-k) - (k) \log(k) \\ &- (n-2k) \log(n-2k) \\ &= -n \log(\phi) + (n-(\mu+x\sigma)) \log(n-(\mu+x\sigma)) \\ &- (\mu+x\sigma) \log(\mu+x\sigma) \\ &- (n-2(\mu+x\sigma)) \log(n-2(\mu+x\sigma)) \\ &= -n \log(\phi) \\ &+ (n-(\mu+x\sigma)) \left(\log(n-\mu) + \log\left(1-\frac{x\sigma}{n-\mu}\right) \right) \\ &- (\mu+x\sigma) \left(\log(\mu) + \log\left(1+\frac{x\sigma}{\mu}\right) \right) \\ &- (n-2(\mu+x\sigma)) \left(\log(n-2\mu) + \log\left(1-\frac{x\sigma}{n-2\mu}\right) \right) \\ &= -n \log(\phi) \\ &+ (n-(\mu+x\sigma)) \left(\log\left(\frac{n}{\mu}-1\right) + \log\left(1-\frac{x\sigma}{n-\mu}\right) \right) \\ &- (\mu+x\sigma) \log\left(1+\frac{x\sigma}{\mu}\right) \\ &- (\mu+x\sigma) \log\left(1+\frac{x\sigma}{\mu}\right) \\ &- (n-2(\mu+x\sigma)) \left(\log\left(\frac{n}{\mu}-2\right) + \log\left(1-\frac{x\sigma}{n-2\mu}\right) \right) . \end{split}$$

Note that, since $n/\mu = \phi + 2$ for large n, the constant terms vanish. We have $\log(S_n)$

$$= -n\log(\phi) + (n-k)\log\left(\frac{n}{\mu} - 1\right) - (n-2k)\log\left(\frac{n}{\mu} - 2\right) + (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right)$$

$$- (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-2\mu}\right)$$

$$= -n\log(\phi) + (n-k)\log(\phi+1) - (n-2k)\log(\phi) + (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right)$$

$$- (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-2\mu}\right)$$

$$= n(-\log(\phi) + \log\left(\phi^2\right) - \log(\phi)) + k(\log(\phi^2) + 2\log(\phi)) + (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right)$$

$$- (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1 - 2\frac{x\sigma}{n-2\mu}\right)$$

$$= (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right) - (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right)$$

$$- (n-2(\mu+x\sigma))\log\left(1 - 2\frac{x\sigma}{n-2\mu}\right) .$$

Finally, we expand the logarithms and collect powers of $x\sigma/n$. $\log(S_n)$

$$= (n - (\mu + x\sigma)) \left(-\frac{x\sigma}{n - \mu} - \frac{1}{2} \left(\frac{x\sigma}{n - \mu} \right)^2 + \dots \right) \\ - (\mu + x\sigma) \left(\frac{x\sigma}{\mu} - \frac{1}{2} \left(\frac{x\sigma}{\mu} \right)^2 + \dots \right) \\ - (n - 2(\mu + x\sigma)) \left(-2\frac{x\sigma}{n - 2\mu} - \frac{1}{2} \left(2\frac{x\sigma}{n - 2\mu} \right)^2 + \dots \right) \\ = (n - (\mu + x\sigma)) \left(-\frac{x\sigma}{n\frac{(\phi+1)}{(\phi+2)}} - \frac{1}{2} \left(\frac{x\sigma}{n\frac{(\phi+1)}{(\phi+2)}} \right)^2 + \dots \right) \\ - (\mu + x\sigma) \left(\frac{x\sigma}{\frac{n}{\phi+2}} - \frac{1}{2} \left(\frac{x\sigma}{\frac{n}{\phi+2}} \right)^2 + \dots \right) \\ - (n - 2(\mu + x\sigma)) \left(-\frac{2x\sigma}{n\frac{\phi}{\phi+2}} - \frac{1}{2} \left(\frac{2x\sigma}{n\frac{\phi}{\phi+2}} \right)^2 + \dots \right) \\ = \frac{x\sigma}{n} n \left(-\left(1 - \frac{1}{\phi+2} \right) \frac{(\phi+2)}{(\phi+1)} - 1 + 2\left(1 - \frac{2}{\phi+2} \right) \frac{\phi+2}{\phi} \right) \\ - \frac{1}{2} \left(\frac{x\sigma}{n} \right)^2 n \left(-2\frac{\phi+2}{\phi+1} + \frac{\phi+2}{\phi+1} + 2(\phi+2) - (\phi+2) + 4\frac{\phi+2}{\phi} \right) \\ + O\left(n(x\sigma/n)^3 \right)$$

58

$$= \frac{x\sigma}{n} n \left(-\frac{\phi+1}{\phi+2} \frac{\phi+2}{\phi+1} - 1 + 2 \frac{\phi}{\phi+2} \frac{\phi+2}{\phi} \right) \\ -\frac{1}{2} \left(\frac{x\sigma}{n} \right)^2 n (\phi+2) \left(-\frac{1}{\phi+1} + 1 + \frac{4}{\phi} \right) \\ + O\left(n \left(\frac{x\sigma}{n} \right)^3 \right) \\ = -\frac{1}{2} \frac{(x\sigma)^2}{n} (\phi+2) \left(\frac{3\phi+4}{\phi(\phi+1)} + 1 \right) + O\left(n \left(\frac{x\sigma}{n} \right)^3 \right) \\ = -\frac{1}{2} \frac{(x\sigma)^2}{n} (\phi+2) \left(\frac{3\phi+4+2\phi+1}{\phi(\phi+1)} \right) + O\left(n \left(\frac{x\sigma}{n} \right)^3 \right) \\ = -\frac{1}{2} x^2 \sigma^2 \left(\frac{5(\phi+2)}{\phi n} \right) + O\left(n (x\sigma/n)^3 \right)$$

But recall that

$$\sigma^2 = \frac{\phi n}{5(\phi + 2)}$$

Also, since $\sigma \sim n^{-1/2}$, $n\left(\frac{\chi\sigma}{n}\right)^3 \sim n^{-1/2}$. So for large n, the $O\left(n\left(\frac{\chi\sigma}{n}\right)^3\right)$ term vanishes. Thus we are left with

$$\log S_n = -\frac{1}{2}x^2$$

$$S_n = e^{-\frac{1}{2}x^2}$$

Hence, as *n* gets large, the density converges to the normal distribution.

$$f_n(k)dk = N_n S_n dk$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}x^2} \sigma dx$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx$$

References

- D. E. Daykin, Representation of natural numbers as sums of generalized Fibonacci numbers, J. London Mathematical Society **35** (1960), 143–160.
- C. G. Lekkerkerker, Voorstelling van natuurlyke getallen door een som van getallen van Fibonacci, Simon Stevin **29** (1951-1952), 190–195.
- SMALL REU (2010, Williams College), preprint.