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Introduction J




Goals of the Talk

@ Some linear recursions and decompositions.

@ Uncover some of the secrets of gaps.

@ Methods: Combinatorial vantage, Binet-like formulas.
@ Specific open problems.

Thanks to my advisor and his colleagues from the Williams
College 2010 and 2011 SMALL REU programs.




Previous Results

Fibonacci Numbers: Fni1 = Fn + Fp_1;
Fl:]-’ F2:2, F3:3, F4:5,....
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Previous Results

Fibonacci Numbers: Fniq = Fn + Fp_1;
Fl:]-’ F2:2, F3:3, F4:5,....

Zeckendorf’'s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 =1597+377+34+3+1=F6 + F13 +Fg + F3 + Fy.

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [F,, Fry1) tends to ﬁ A .276n,

where ¢ = 1+2—\/§ is the golden mean.
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Previous Results

Central Limit Type Theorem

As n — oo, the distribution of the number of summands in the
Zeckendorf decomposition for integers in [Fp, Fr11) is Gaussian
(normal).
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Figure: Number of summands in [F2o10, F2011); F2010 ~ 10%2°.




New Results

Theorem (Zeckendorf Gap Distribution (BM))

For Zeckendorf decompositions, P (k) = % for k > 2, with

¢ = 15 the golden mean.
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Figure: Distribution of gaps in [F1000, F1001); F2010 ~ 10?%8.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutionsto X; +--- +Xp = C with x; > 0 is
(“pZ1Y)-

Let phx = # {N € [Fn,Fnt1): the Zeckendorf decomposition of
N has exactly k summands}.
For N € [Fn,Fnt1), the largest summand is Fp.
N :Fil+Fi2+"'+Fik,l+Fn:
1§i1<i2<"'<ik,1<ik:n,ij*ij,122.
dq Z:il—l,dj Z:ij —ij_l—Z(j >1).
d1+d2+---+dk :n72k+1,dj > 0.

(n—2k+1—k—1) _ (n—k)l

Cookie counting = pp i = k_1 k—1
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Generalizations
°

Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hnhy1 =CiHn+CoHp 1 + - +ClHp L1, N> L
with Hy =1, Hht1 =ciHh+CcHp1 + - +cpHi +1, n <L,
coefficients ¢; > 0; cy,c. >0ifL>2;¢c; >1ifL=1.

@ Zeckendorf: Every positive integer can be written uniquely
as Y ajH; with natural constraints on the a;’s
(e.g. cannot use the recurrence relation to remove any
summand).

@ Lekkerkerker
@ Central Limit Type Theorem
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Generalizing Lekkerkerker

Generalized Lekkerkerker's Theorem

The average number of summands in the generalized
Zeckendorf decomposition for integers in [Hy, H, 1) tends to
Cn+d asn — oo, where C > 0 and d are computable
constants determined by the c;’s.

y'@) _ m=o(Sm + Sm11 — 1)(Smy1 — Sm)y™(1)
y(1) 2 moo(M+ 1)(Smez — Sm)y™(1)

So=0,Ssy=¢C1+Co+ -+ Cn.

y(x) is the root of 1 — S5 Yoomed ~ xlym+L,

y(1) is the root of 1 — c1y — Coy? — -+ — cLyt.
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Central Limit Type Theorem

Central Limit Type Theorem

As n — oo, the distribution of the number of summands, i.e.,

a; +a, +---+ an in the generalized Zeckendorf decomposition
>, ajH; for integers in [Hn, Hp 1) is Gaussian.
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Distribution of Gaps
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Distribution of Gaps

For F, +Fi, +--- + F;,, the gaps are the differences
in —in—1,In—1 —Ih—2,...,02 — 1.

Example: For F; + Fg + F1g, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fny1) is of length k.

What is P(k) = limp_c Pn(k)?

Can ask similar questions about binary or other expansions:
2011 =210 4 29 4 28 1 27 1 26 4+ 24 1 23 4 21 4 20,




Main Results (Beckwith-Miller 2011)

Theorem (Base B Gap Distribution)

For base B decompositions, P(0) = (5_133#, and fork > 1,

P(k) = cgB, with cg = E-D38-2),

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, P (k) = % for k > 2, with

¢ = 15 the golden mean.
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Proof of Fibonacci Result

Let X; j(n) = #{m < [Fn, Fny1): decomposition of m includes F;,
F;, but not Fq fori < q <j}.

Let Y (n) = total number of gaps in decompositions for integers
|n [I:n7 Fn+l)

Lekkerkerker = Y (n) ~ Fn—lﬁ-
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Calculating Xi,i+k

In the interval [Fn, Fry1):
How many decompositions contain a gap from F; to Fj «?

For the indices less than i: F;_; choices.
For the indices greater thani + k: F,_k_i_» choices.

So total choices number of choices is Fi_1Fn_k_i_2.

Xiitk(n) = Fi_1Fq_k—i—2
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Binet-like Formula : F, = cqrj' + car)
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Finding P (k)

Binet-like Formula : F, = cqrj' + car)

_5++5 145 )

C1 10 Co=Clandn =p=—F— =0
Xiitk(n) = Fi_1Fn_k_i—2 = c2r} 773 4 smaller




Finding P (k)

Binet-like Formula : F, = cqrj' + car)

5+v5 . 1+V5
Ci=——>—,C=Candrn =y¢= =T
! 10 12 1 1 ¥ 2 2 1
Xij+k(n) = Fi_1Fn_x_i_2 = c2r{ *~% 4+ smaller
Y(n)=F N smaller= — " c;r"! + smaller
= n_1<,02+1 _apz—i—lll
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Finding P (k)
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Gaps for other Linear Recurrences J
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More Gaps
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Tribonacci Gaps

Tribonacci Numbers: Tpy1 = Tn+ Tpo1 + Thoo;
Fl:]-’ F2:21 F3:4, F4:7,....
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Tribonacci Gaps

Tribonacci Numbers: Tpy1 = Tn+ Tpo1 + Thoo;
Fl:]-’ F2:21 F3:4, F4:7,....

Consider the interval [Ty, Try1):

Generalized Lekkerkerker:
Y (n) =Cn(Ty_1 + Tnh_2) + smaller
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More Gaps
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Tribonacci Gaps

Tribonacci Numbers: Tpy1 = Tn+ Tpo1 + Thoo;
Fl:]-’ F2:21 F3:4, F4:7,....

Consider the interval [Ty, Try1):

Generalized Lekkerkerker:
Y (n) =Cn(Ty_1 + Tnh_2) + smaller
Counting:

Xi i1k (n) = Ti—1(Tnoi—z + Tnoi—a) ifk =1
o (Tica +Ti2)(Thk—i—1 + Thk-i3) ifk>2
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Tribonacci Gaps

P(k) = limp5 00 Y(n) Z, X X |+k( )
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Tribonacci Gaps

P(k) = limp5 00 Y(n) Z, X X |+k( )

Closed form: Tn = c1 AT + CoAD 4+ €3A3,  [A1] > [Az| = | A3
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Tribonacci Gaps

P(K) = liMn o0 vy 2100 Xii k()
Closed form: Tp = c1A] + CoAJ +C3A3,  [A1] > [A2] = |As]

C1

P(1) = —=
M=
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Tribonacci Gaps

P(K) = liMn o0 vy 2100 Xii k()

Closed form: Tp = c1A] + CoAJ +C3A3,  [A1] > [A2] = |As]
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Tribonacci Gaps

P(K) = liMn o0 vy 2100 Xii k()

Closed form: Tp = c1A] + CoAJ +C3A3,  [A1] > [A2] = |As]

_ G
PR = CA$
2¢y &

3\ -1
i Pk)=1=C=c | —51t—=
LiesPU) =12 l((Ail)ﬁ)
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Other gaps?

Gaps longer than recurrence — should be geometric decay
Interesting behavior with “short” gaps

“Skiponaccis™ Spi1 = Sp+ Sp_2

“Doublanaccis™ Hpy1 = 2Hn + Hp_1

Generalize to all positive linear recurrences?

GO
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