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Introduction
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Goals of the Talk

Some linear recursions and decompositions.

Uncover some of the secrets of gaps.

Methods: Combinatorial vantage, Binet-like formulas.

Specific open problems.

Thanks to my advisor and his colleagues from the Williams
College 2010 and 2011 SMALL REU programs.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .
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non-consecutive Fibonacci numbers.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 + 1 = F16 + F13 + F8 + F3 + F1.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 + 1 = F16 + F13 + F8 + F3 + F1.

Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.
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Previous Results

Central Limit Type Theorem

As n → ∞, the distribution of the number of summands in the
Zeckendorf decomposition for integers in [Fn,Fn+1) is Gaussian
(normal).
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Figure: Number of summands in [F2010,F2011); F2010 ≈ 10420.
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New Results

Theorem (Zeckendorf Gap Distribution (BM))

For Zeckendorf decompositions, P(k) = ϕ(ϕ−1)
ϕk for k ≥ 2, with

ϕ = 1+
√

5
2 the golden mean.
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Figure: Distribution of gaps in [F1000,F1001); F2010 ≈ 10208.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
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Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · · + Fik−1
+ Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.

Cookie counting ⇒ pn,k =
(n−2k+1−k−1

k−1

)

=
(n−k

k−1

)

.

17



Intro Generalizations Gaps More Gaps

Generalizations
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Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hn+1 = c1Hn + c2Hn−1 + · · · + cLHn−L+1, n ≥ L

with H1 = 1, Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1, n < L,
coefficients ci ≥ 0; c1, cL > 0 if L ≥ 2; c1 > 1 if L = 1.

Zeckendorf: Every positive integer can be written uniquely
as
∑

aiHi with natural constraints on the ai ’s
(e.g. cannot use the recurrence relation to remove any
summand).

Lekkerkerker

Central Limit Type Theorem

19



Intro Generalizations Gaps More Gaps

Generalizing Lekkerkerker

Generalized Lekkerkerker’s Theorem
The average number of summands in the generalized
Zeckendorf decomposition for integers in [Hn,Hn+1) tends to
Cn + d as n → ∞, where C > 0 and d are computable
constants determined by the ci ’s.

C = −y ′(1)
y(1)

=

∑L−1
m=0(sm + sm+1 − 1)(sm+1 − sm)ym(1)

2
∑L−1

m=0(m + 1)(sm+1 − sm)ym(1)
.

s0 = 0, sm = c1 + c2 + · · ·+ cm.

y(x) is the root of 1 −
∑L−1

m=0

∑sm+1−1
j=sm

x jym+1.

y(1) is the root of 1 − c1y − c2y2 − · · · − cLyL.
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Central Limit Type Theorem

Central Limit Type Theorem

As n → ∞, the distribution of the number of summands, i.e.,
a1 + a2 + · · ·+ am in the generalized Zeckendorf decomposition
∑m

i=1 aiHi for integers in [Hn,Hn+1) is Gaussian.
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Gaps Between Summands
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length k .
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length k .

What is P(k) = limn→∞ Pn(k)?
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length k .

What is P(k) = limn→∞ Pn(k)?

Can ask similar questions about binary or other expansions:
2011 = 210 + 29 + 28 + 27 + 26 + 24 + 23 + 21 + 20.
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Main Results (Beckwith-Miller 2011)

Theorem (Base B Gap Distribution)

For base B decompositions, P(0) = (B−1)(B−2)
B2 , and for k ≥ 1,

P(k) = cBB−k , with cB = (B−1)(3B−2)
B2 .

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, P(k) = ϕ(ϕ−1)
ϕk for k ≥ 2, with

ϕ = 1+
√

5
2 the golden mean.
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Proof of Fibonacci Result
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Proof of Fibonacci Result

Let Xi ,j(n) = #{m ∈ [Fn,Fn+1): decomposition of m includes Fi ,
Fj , but not Fq for i < q < j}.
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Proof of Fibonacci Result

Let Xi ,j(n) = #{m ∈ [Fn,Fn+1): decomposition of m includes Fi ,
Fj , but not Fq for i < q < j}.

Let Y (n) = total number of gaps in decompositions for integers
in [Fn,Fn+1)
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Proof of Fibonacci Result

Let Xi ,j(n) = #{m ∈ [Fn,Fn+1): decomposition of m includes Fi ,
Fj , but not Fq for i < q < j}.

Let Y (n) = total number of gaps in decompositions for integers
in [Fn,Fn+1)

P(k) = lim
n→∞

1
Y (n)

n−k
∑

i=1

Xi ,i+k(n).
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Proof of Fibonacci Result

Let Xi ,j(n) = #{m ∈ [Fn,Fn+1): decomposition of m includes Fi ,
Fj , but not Fq for i < q < j}.

Let Y (n) = total number of gaps in decompositions for integers
in [Fn,Fn+1)

P(k) = lim
n→∞

1
Y (n)

n−k
∑

i=1

Xi ,i+k(n).

Lekkerkerker ⇒ Y (n) ∼ Fn−1
n

ϕ2+1 .
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Calculating Xi ,i+k
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Calculating Xi ,i+k

In the interval [Fn,Fn+1):
How many decompositions contain a gap from Fi to Fi+k?
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Calculating Xi ,i+k

In the interval [Fn,Fn+1):
How many decompositions contain a gap from Fi to Fi+k?

For the indices less than i : Fi−1 choices.
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Calculating Xi ,i+k

In the interval [Fn,Fn+1):
How many decompositions contain a gap from Fi to Fi+k?

For the indices less than i : Fi−1 choices.

For the indices greater than i + k : Fn−k−i−2 choices.
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Calculating Xi ,i+k

In the interval [Fn,Fn+1):
How many decompositions contain a gap from Fi to Fi+k?

For the indices less than i : Fi−1 choices.

For the indices greater than i + k : Fn−k−i−2 choices.

So total choices number of choices is Fi−1Fn−k−i−2.
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Calculating Xi ,i+k

In the interval [Fn,Fn+1):
How many decompositions contain a gap from Fi to Fi+k?

For the indices less than i : Fi−1 choices.

For the indices greater than i + k : Fn−k−i−2 choices.

So total choices number of choices is Fi−1Fn−k−i−2.

Xi ,i+k(n) = Fi−1Fn−k−i−2
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Finding P(k)
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Finding P(k)

Binet-like Formula : Fn = c1rn
1 + c2rn

2
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Finding P(k)

Binet-like Formula : Fn = c1rn
1 + c2rn

2

c1 =
5 +

√
5

10
, c2 = c̄1 and r1 = ϕ =

1 +
√

5
2

, r2 = r̄1
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Finding P(k)

Binet-like Formula : Fn = c1rn
1 + c2rn

2

c1 =
5 +

√
5

10
, c2 = c̄1 and r1 = ϕ =

1 +
√

5
2

, r2 = r̄1

Xi ,i+k(n) = Fi−1Fn−k−i−2 = c2
1rn−k−3

1 + smaller
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Finding P(k)

Binet-like Formula : Fn = c1rn
1 + c2rn

2

c1 =
5 +

√
5

10
, c2 = c̄1 and r1 = ϕ =

1 +
√

5
2

, r2 = r̄1

Xi ,i+k(n) = Fi−1Fn−k−i−2 = c2
1rn−k−3

1 + smaller

Y (n) = Fn−1
n

ϕ2 + 1
+ smaller =

n
ϕ2 + 1

c1rn−1
1 + smaller
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Finding P(k)

P(k) = lim
n→∞

1
Y (n)

n−k
∑

i=1

Xi ,i+k(n)

= lim
n→∞

∑n−k
i=1 c2

1rn−k−3
1

n
ϕ2+1c1rn−1

1

=
ϕ(ϕ − 1)

ϕk for k ≥ 2
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Gaps for other Linear Recurrences
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Tribonacci Gaps

Tribonacci Numbers: Tn+1 = Tn + Tn−1 + Tn−2;
F1 = 1, F2 = 2, F3 = 4, F4 = 7, . . . .
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Tribonacci Gaps

Tribonacci Numbers: Tn+1 = Tn + Tn−1 + Tn−2;
F1 = 1, F2 = 2, F3 = 4, F4 = 7, . . . .

Consider the interval [Tn,Tn+1):
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Tribonacci Gaps

Tribonacci Numbers: Tn+1 = Tn + Tn−1 + Tn−2;
F1 = 1, F2 = 2, F3 = 4, F4 = 7, . . . .

Consider the interval [Tn,Tn+1):

Generalized Lekkerkerker:

Y (n) = Cn(Tn−1 + Tn−2) + smaller
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Tribonacci Gaps

Tribonacci Numbers: Tn+1 = Tn + Tn−1 + Tn−2;
F1 = 1, F2 = 2, F3 = 4, F4 = 7, . . . .

Consider the interval [Tn,Tn+1):

Generalized Lekkerkerker:

Y (n) = Cn(Tn−1 + Tn−2) + smaller

Counting:

Xi ,i+k(n) =
{

Ti−1(Tn−i−3 + Tn−i−4) if k = 1
(Ti−1 + Ti−2)(Tn−k−i−1 + Tn−k−i−3) if k ≥ 2
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Tribonacci Gaps

P(k) = limn→∞
1

Y (n)

∑n−k
i=1 Xi ,i+k(n)
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Tribonacci Gaps

P(k) = limn→∞
1

Y (n)

∑n−k
i=1 Xi ,i+k(n)

Closed form: Tn = c1λ
n
1 + c2λ

n
2 + c3λ

n
3, |λ1| > |λ2| = |λ3|
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Tribonacci Gaps

P(k) = limn→∞
1

Y (n)

∑n−k
i=1 Xi ,i+k(n)

Closed form: Tn = c1λ
n
1 + c2λ

n
2 + c3λ

n
3, |λ1| > |λ2| = |λ3|

P(1) =
c1

Cλ3
1
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Tribonacci Gaps

P(k) = limn→∞
1

Y (n)

∑n−k
i=1 Xi ,i+k(n)

Closed form: Tn = c1λ
n
1 + c2λ

n
2 + c3λ

n
3, |λ1| > |λ2| = |λ3|

P(1) =
c1

Cλ3
1

P(k) =
2c1

C(1 + λ1)
λ−k

1 (for k ≥ 2)
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Tribonacci Gaps

P(k) = limn→∞
1

Y (n)

∑n−k
i=1 Xi ,i+k(n)

Closed form: Tn = c1λ
n
1 + c2λ

n
2 + c3λ

n
3, |λ1| > |λ2| = |λ3|

P(1) =
c1

Cλ3
1

P(k) =
2c1

C(1 + λ1)
λ−k

1 (for k ≥ 2)

∑∞
k=1 P(k) = 1 ⇒ C = c1

(

3λ2
1 − 1

(λ2
1 − 1)λ3

1

)

55



Intro Generalizations Gaps More Gaps

Other gaps?

Gaps longer than recurrence – should be geometric decay
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“Skiponaccis”: Sn+1 = Sn + Sn−2
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Other gaps?
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Interesting behavior with “short” gaps
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“Doublanaccis”: Hn+1 = 2Hn + Hn−1
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Other gaps?

Gaps longer than recurrence – should be geometric decay

Interesting behavior with “short” gaps

“Skiponaccis”: Sn+1 = Sn + Sn−2

“Doublanaccis”: Hn+1 = 2Hn + Hn−1

Generalize to all positive linear recurrences?
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