Cookie Monster Meets the Fibonacci Numbers. Mmmmmm – Theorems!

Louis Gaudet (advisor Steven J Miller) http://www.williams.edu/Mathematics/sjmiller/public_html

SUMS, Providence, RI, March 10, 2012

Introduction

- Some linear recursions and decompositions.
- Uncover some of the secrets of gaps.
- Methods: Combinatorial vantage, Binet-like formulas.
- Specific open problems.

Thanks to my advisor and his colleagues from the Williams College 2010 and 2011 SMALL REU programs.

Previous Results

Intro

00000

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, ...$

1

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5,...$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; $F_1 = 1$, $F_2 = 2$, $F_3 = 3$, $F_4 = 5$,...

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:

$$2012 = 1597 + 377 + 34 + 3 + 1 = F_{16} + F_{13} + F_8 + F_3 + F_1.$$

6

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, ...$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:

$$2012 = 1597 + 377 + 34 + 3 + 1 = F_{16} + F_{13} + F_{8} + F_{3} + F_{1}$$
.

Lekkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $[F_n,F_{n+1})$ tends to $\frac{n}{\varphi^2+1}\approx .276n$, where $\varphi=\frac{1+\sqrt{5}}{2}$ is the golden mean.

Central Limit Type Theorem

As $n \to \infty$, the distribution of the number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1}]$ is Gaussian (normal).

Figure: Number of summands in $[F_{2010}, F_{2011}); F_{2010} \approx 10^{420}.$

New Results

Theorem (Zeckendorf Gap Distribution (BM))

For Zeckendorf decompositions, $P(k) = \frac{\varphi(\varphi-1)}{\varphi^k}$ for $k \ge 2$, with $\varphi = \frac{1+\sqrt{5}}{2}$ the golden mean.

Figure: Distribution of gaps in $[F_{1000}, F_{1001})$; $F_{2010} \approx 10^{208}$.

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into P sets.

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into *P* sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into *P* sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into *P* sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf decomposition of } \}$ *N* has exactly *k* summands}.

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{N \in [F_n, F_{n+1}): \text{ the Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \}.$

For $N \in [F_n, F_{n+1})$, the largest summand is F_n .

$$N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n,$$

$$1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2.$$

$$d_1 := i_1 - 1, d_j := i_j - i_{j-1} - 2 (j > 1).$$

$$d_1 + d_2 + \dots + d_k = n - 2k + 1, d_j \ge 0.$$

Cookie counting $\Rightarrow p_{n,k} = \binom{n-2k+1-k-1}{k-1} = \binom{n-k}{k-1}$.

Generalizations

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L$$

with $H_1 = 1$, $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_n H_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_l > 0$ if L > 2; $c_1 > 1$ if L = 1.

- Zeckendorf: Every positive integer can be written uniquely as $\sum a_i H_i$ with natural constraints on the a_i 's (e.g. cannot use the recurrence relation to remove any summand).
- Lekkerkerker
- Central Limit Type Theorem

Generalized Lekkerkerker's Theorem

The average number of summands in the generalized Zeckendorf decomposition for integers in $[H_n, H_{n+1})$ tends to Cn + d as $n \to \infty$, where C > 0 and d are computable constants determined by the c_i 's.

$$C = -\frac{y'(1)}{y(1)} = \frac{\sum_{m=0}^{L-1} (s_m + s_{m+1} - 1)(s_{m+1} - s_m)y^m(1)}{2\sum_{m=0}^{L-1} (m+1)(s_{m+1} - s_m)y^m(1)}.$$

$$s_0 = 0, s_m = c_1 + c_2 + \dots + c_m.$$

$$y(x) \text{ is the root of } 1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1}.$$

$$y(1) \text{ is the root of } 1 - c_1 y - c_2 y^2 - \dots - c_L y^L.$$

Central Limit Type Theorem

Central Limit Type Theorem

As $n \to \infty$, the distribution of the number of summands, i.e., $a_1 + a_2 + \cdots + a_m$ in the generalized Zeckendorf decomposition $\sum_{i=1}^m a_i H_i$ for integers in $[H_n, H_{n+1})$ is Gaussian.

Gaps Between Summands

For
$$F_{i_1} + F_{i_2} + \cdots + F_{i_n}$$
, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Gaps

000000

Gaps

00000

For $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1.$

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

For $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1.$

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length k.

For
$$F_{i_1} + F_{i_2} + \cdots + F_{i_n}$$
, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length k.

Gaps

What is
$$P(k) = \lim_{n \to \infty} P_n(k)$$
?

For $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1.$

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length k.

What is
$$P(k) = \lim_{n \to \infty} P_n(k)$$
?

Can ask similar questions about binary or other expansions: $2011 = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 2^3 + 2^1 + 2^0$

Theorem (Base B Gap Distribution)

For base B decompositions, $P(0) = \frac{(B-1)(B-2)}{B^2}$, and for $k \ge 1$, $P(k) = c_B B^{-k}$, with $c_B = \frac{(B-1)(3B-2)}{B^2}$.

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, $P(k) = \frac{\varphi(\varphi-1)}{\varphi^k}$ for $k \ge 2$, with $\varphi = \frac{1+\sqrt{5}}{2}$ the golden mean.

Let $X_{i,j}(n) = \#\{m \in [F_n, F_{n+1}): \text{ decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j\}.$

Let $X_{i,j}(n) = \#\{m \in [F_n, F_{n+1}): \text{ decomposition of } m \text{ includes } F_i, \}$ F_i , but not F_a for i < q < j.

Let Y(n) = total number of gaps in decompositions for integersin $[F_n, F_{n+1})$

Let $X_{i,j}(n) = \#\{m \in [F_n, F_{n+1}): \text{ decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j\}.$

Gaps

Let Y(n) = total number of gaps in decompositions for integers in $[F_n, F_{n+1})$

$$P(k) = \lim_{n \to \infty} \frac{1}{Y(n)} \sum_{i=1}^{n-k} X_{i,i+k}(n).$$

Let $X_{i,j}(n) = \#\{m \in [F_n, F_{n+1}): \text{ decomposition of } m \text{ includes } F_i, \}$ F_i , but not F_a for i < q < j.

Let Y(n) = total number of gaps in decompositions for integersin $[F_n, F_{n+1}]$

$$P(k) = \lim_{n \to \infty} \frac{1}{Y(n)} \sum_{i=1}^{n-k} X_{i,i+k}(n).$$

Lekkerkerker $\Rightarrow Y(n) \sim F_{n-1} \frac{n}{n^2+1}$.

Calculating $X_{i,j+k}$

In the interval $[F_n, F_{n+1})$: How many decompositions contain a gap from F_i to F_{i+k} ?

Calculating $X_{i,i+k}$

In the interval $[F_n, F_{n+1})$:

How many decompositions contain a gap from F_i to F_{i+k} ?

For the indices less than i: F_{i-1} choices.

Calculating $X_{i,j+k}$

In the interval $[F_n, F_{n+1})$:

How many decompositions contain a gap from F_i to F_{i+k} ?

For the indices less than i: F_{i-1} choices.

For the indices greater than i + k: $F_{n-k-i-2}$ choices.

Calculating $X_{i,i+k}$

In the interval $[F_n, F_{n+1})$:

How many decompositions contain a gap from F_i to F_{i+k} ?

For the indices less than i: F_{i-1} choices.

For the indices greater than i + k: $F_{n-k-i-2}$ choices.

So total choices number of choices is $F_{i-1}F_{n-k-i-2}$.

Calculating $X_{i,j+k}$

In the interval $[F_n, F_{n+1})$:

How many decompositions contain a gap from F_i to F_{i+k} ?

For the indices less than i: F_{i-1} choices.

For the indices greater than i + k: $F_{n-k-i-2}$ choices.

So total choices number of choices is $F_{i-1}F_{n-k-i-2}$.

$$X_{i,i+k}(n) = F_{i-1}F_{n-k-i-2}$$

Binet-like Formula: $F_n = c_1 r_1^n + c_2 r_2^n$

Binet-like Formula: $F_n = c_1 r_1^n + c_2 r_2^n$

$$c_1 = \frac{5 + \sqrt{5}}{10}, c_2 = \bar{c_1} \text{ and } r_1 = \varphi = \frac{1 + \sqrt{5}}{2}, r_2 = \bar{r_1}$$

Binet-like Formula: $F_n = c_1 r_1^n + c_2 r_2^n$

$$c_1 = \frac{5 + \sqrt{5}}{10}, c_2 = \bar{c_1} \text{ and } r_1 = \varphi = \frac{1 + \sqrt{5}}{2}, r_2 = \bar{r_1}$$

Gaps

000000

$$X_{i,i+k}(n) = F_{i-1}F_{n-k-i-2} = c_1^2 r_1^{n-k-3} + \text{smaller}$$

Gaps

Finding P(k)

Binet-like Formula: $F_n = c_1 r_1^n + c_2 r_2^n$

$$c_1 = \frac{5 + \sqrt{5}}{10}, c_2 = \bar{c_1} \text{ and } r_1 = \varphi = \frac{1 + \sqrt{5}}{2}, r_2 = \bar{r_1}$$

$$X_{i,i+k}(n) = F_{i-1}F_{n-k-i-2} = c_1^2 r_1^{n-k-3} + \text{smaller}$$

$$Y(n) = F_{n-1} \frac{n}{\varphi^2 + 1} + \text{smaller} = \frac{n}{\varphi^2 + 1} c_1 r_1^{n-1} + \text{smaller}$$

$$P(k) = \lim_{n \to \infty} \frac{1}{Y(n)} \sum_{i=1}^{n-k} X_{i,i+k}(n)$$

$$= \lim_{n \to \infty} \frac{\sum_{i=1}^{n-k} c_1^2 r_1^{n-k-3}}{\frac{n}{\varphi^2+1} c_1 r_1^{n-1}}$$

$$= \frac{\varphi(\varphi - 1)}{\varphi^k} \text{ for } k \ge 2$$

Gaps for other Linear Recurrences

Tribonacci Numbers:
$$T_{n+1} = T_n + T_{n-1} + T_{n-2}$$
; $F_1 = 1, F_2 = 2, F_3 = 4, F_4 = 7, ...$

Tribonacci Numbers:
$$T_{n+1} = T_n + T_{n-1} + T_{n-2}$$
; $F_1 = 1, F_2 = 2, F_3 = 4, F_4 = 7, \dots$

Consider the interval $[T_n, T_{n+1})$:

Tribonacci Numbers:
$$T_{n+1} = T_n + T_{n-1} + T_{n-2}$$
; $F_1 = 1, F_2 = 2, F_3 = 4, F_4 = 7, ...$

Consider the interval $[T_n, T_{n+1}]$:

Generalized Lekkerkerker:

$$Y(n) = Cn(T_{n-1} + T_{n-2}) + \text{smaller}$$

Tribonacci Numbers:
$$T_{n+1} = T_n + T_{n-1} + T_{n-2}$$
; $F_1 = 1, F_2 = 2, F_3 = 4, F_4 = 7, \dots$

Consider the interval $[T_n, T_{n+1})$:

Generalized Lekkerkerker:

$$Y(n) = Cn(T_{n-1} + T_{n-2}) + \text{smaller}$$

Counting:

$$X_{i,i+k}(n) = \begin{cases} T_{i-1}(T_{n-i-3} + T_{n-i-4}) & \text{if } k = 1\\ (T_{i-1} + T_{i-2})(T_{n-k-i-1} + T_{n-k-i-3}) & \text{if } k \ge 2 \end{cases}$$

$$P(k) = \lim_{n \to \infty} \frac{1}{Y(n)} \sum_{i=1}^{n-k} X_{i,i+k}(n)$$

$$P(k) = \lim_{n \to \infty} \frac{1}{Y(n)} \sum_{i=1}^{n-k} X_{i,i+k}(n)$$

Closed form:
$$T_n=c_1\lambda_1^n+c_2\lambda_2^n+c_3\lambda_3^n, \quad |\lambda_1|>|\lambda_2|=|\lambda_3|$$

$$P(k) = \lim_{n \to \infty} \frac{1}{Y(n)} \sum_{i=1}^{n-k} X_{i,i+k}(n)$$

Closed form:
$$T_n = c_1 \lambda_1^n + c_2 \lambda_2^n + c_3 \lambda_3^n$$
, $|\lambda_1| > |\lambda_2| = |\lambda_3|$

$$P(1) = \frac{c_1}{C\lambda_1^3}$$

$$P(k) = \lim_{n \to \infty} \frac{1}{Y(n)} \sum_{i=1}^{n-k} X_{i,i+k}(n)$$

Closed form:
$$T_n = c_1 \lambda_1^n + c_2 \lambda_2^n + c_3 \lambda_3^n$$
, $|\lambda_1| > |\lambda_2| = |\lambda_3|$

$$P(1) = \frac{c_1}{C\lambda_1^3}$$

$$P(k) = \frac{2c_1}{C(1+\lambda_1)}\lambda_1^{-k} \text{ (for } k \ge 2)$$

$$P(k) = \lim_{n \to \infty} \frac{1}{Y(n)} \sum_{i=1}^{n-k} X_{i,i+k}(n)$$

Closed form:
$$T_n = c_1 \lambda_1^n + c_2 \lambda_2^n + c_3 \lambda_3^n$$
, $|\lambda_1| > |\lambda_2| = |\lambda_3|$

$$P(1) = \frac{c_1}{C\lambda_1^3}$$

$$P(k) = \frac{2c_1}{C(1+\lambda_1)}\lambda_1^{-k} \text{ (for } k \ge 2)$$

$$\sum_{k=1}^{\infty} P(k) = 1 \Rightarrow C = c_1 \left(\frac{3\lambda_1^2 - 1}{(\lambda_1^2 - 1)\lambda_1^3} \right)$$

Gaps longer than recurrence – should be geometric decay

Gaps longer than recurrence – should be geometric decay Interesting behavior with "short" gaps

Gaps longer than recurrence – should be geometric decay Interesting behavior with "short" gaps

"Skiponaccis": $S_{n+1} = S_n + S_{n-2}$

Gaps longer than recurrence – should be geometric decay Interesting behavior with "short" gaps

"Skiponaccis":
$$S_{n+1} = S_n + S_{n-2}$$

"Doublanaccis":
$$H_{n+1} = 2H_n + H_{n-1}$$

Gaps longer than recurrence – should be geometric decay Interesting behavior with "short" gaps

"Skiponaccis":
$$S_{n+1} = S_n + S_{n-2}$$

"Doublanaccis":
$$H_{n+1} = 2H_n + H_{n-1}$$

Generalize to all positive linear recurrences?