Cookie Monster Meets the Fibonacci Numbers. Mmmmmm – Theorems!

Murat Koloğlu, Gene Kopp, Steven J. Miller and Yinghui Wang http://www.williams.edu/Mathematics/sjmiller/public html

Smith College, January 28, 2011

Introduction

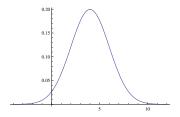
Goals of the Talk

Intro

- See lesser known 'fun' properties of Fibonacci numbers.
- Misleading proofs search for the 'right' perspective.
- Importance of asking any question, not just the right one.
- Techniques: generating fns, differentiating identities.
- Help in related questions: SMALL 2011.

Thanks to colleagues from the Williams College 2010 SMALL REU program (especially Ed Burger, David Clyde, Cory Colbert, Carlos Dominguez, Gea Shin and Nancy Wang).

Pre-requisites: Probability Review



- Let X be random variable with density p(x):
 - $\diamond p(x) \geq 0$; $\int_{-\infty}^{\infty} p(x) dx = 1$;
 - \diamond Prob $(a \le X \le b) = \int_a^b p(x) dx$.

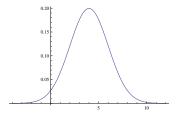
Intro

000000

Intro

000000

Pre-requisites: Probability Review



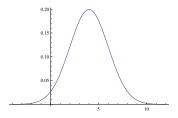
• Let X be random variable with density p(x):

$$\diamond p(x) \geq 0$$
; $\int_{-\infty}^{\infty} p(x) dx = 1$;

$$\diamond \operatorname{Prob}\left(a \leq X \leq b\right) = \int_a^b p(x) dx.$$

- Mean: $\mu = \int_{-\infty}^{\infty} x p(x) dx$.
- Variance: $\sigma^2 = \int_{-\infty}^{\infty} (x \mu)^2 p(x) dx$.

Pre-requisites: Probability Review



• Let X be random variable with density p(x):

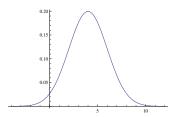
$$\diamond p(x) \geq 0$$
; $\int_{-\infty}^{\infty} p(x) dx = 1$;

$$\diamond \operatorname{Prob}\left(a \leq X \leq b\right) = \int_a^b p(x) dx.$$

- Mean: $\mu = \int_{-\infty}^{\infty} x p(x) dx$.
- Variance: $\sigma^2 = \int_{-\infty}^{\infty} (x \mu)^2 p(x) dx$.
- Gaussian: Density $(2\pi\sigma^2)^{-1/2} \exp(-(x-\mu)^2/2\sigma^2)$.

Intro

000000



- Let X be random variable with density p(x):
 - $\diamond p(x) \geq 0$; $\int_{-\infty}^{\infty} p(x) dx = 1$;
 - $\diamond \operatorname{Prob}(a \leq X \leq b) = \int_a^b p(x) dx.$
- Mean: $\mu = \int_{-\infty}^{\infty} x p(x) dx$.
- Variance: $\sigma^2 = \int_{-\infty}^{\infty} (x \mu)^2 p(x) dx$.
- Gaussian: Density $(2\pi\sigma^2)^{-1/2} \exp(-(x-\mu)^2/2\sigma^2)$.
- Combinatorics: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$, $n! \approx n^n e^{-n} \sqrt{2\pi n}$.

Previous Results

Intro 000000

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$;

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$;

$$F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, \dots$$

Intro

000000

Intro

000000

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5,...$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Previous Results

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5,...$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:
$$2010 = 1597 + 377 + 34 + 2 = F_{16} + F_{13} + F_8 + F_2$$
.

Previous Results

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5,...$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:
$$2010 = 1597 + 377 + 34 + 2 = F_{16} + F_{13} + F_8 + F_2$$
.

Lekkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ tends to $\frac{n}{\varphi^2+1} \approx .276n$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

New Results

Intro

Central Limit Type Theorem

As $n \to \infty$, the distribution of the number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ is Gaussian (normal).

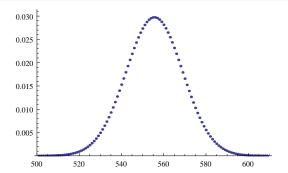


Figure: Number of summands in $[F_{2010}, F_{2011})$; $F_{2010} \approx 10^{420}$.

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies:

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets.

18

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into *P* sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into *P* sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into *P* sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into *P* sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

Intro

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf decomposition of } \}$ *N* has exactly *k* summands}.

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \}.$

For $N \in [F_n, F_{n+1})$, the largest summand is F_n .

$$\begin{split} N &= F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n, \\ 1 &\leq i_1 < i_2 < \dots < i_{k-1} < i_k = n, \, i_j - i_{j-1} \geq 2. \end{split}$$

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_p = C$ with $x_i > 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf decomposition of } \}$ N has exactly k summands.

For
$$N \in [F_n, F_{n+1})$$
, the largest summand is F_n .

$$N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n,$$

$$1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2.$$

$$d_1 := i_1 - 1, d_j := i_j - i_{j-1} - 2 (j > 1).$$

$$d_1 + d_2 + \dots + d_k = n - 2k + 1, d_i \ge 0.$$

Intro

"Erdos-Kac"

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i > 0$ is

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf decomposition of } \}$ N has exactly k summands.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n . $N = F_{i_1} + F_{i_2} + \cdots + F_{i_{k-1}} + F_{n}$

$$1 \leq i_1 < i_2 < \cdots < i_{k-1} < i_k = n, i_j - i_{j-1} \geq 2.$$

$$d_1 := i_1 - 1, d_j := i_j - i_{j-1} - 2 (j > 1).$$

$$d_1 + d_2 + \cdots + d_k = n - 2k + 1, d_j \ge 0.$$

Cookie counting $\Rightarrow p_{n,k} = \binom{n-2k+1-k-1}{k-1} = \binom{n-k}{k-1}$.

Appendix

An Erdos-Kac Type Theorem (note slightly different notation)

Generalizing Lekkerkerker

Theorem (KKMW 2010)

As $n \to \infty$, the distribution of the number of summands in Zeckendorf's Theorem is a Gaussian.

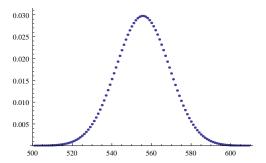


Figure: Number of summands in $[F_{2010}, F_{2011})$

"Erdos-Kac"

Generalizing Lekkerkerker: Erdos-Kac type result

Theorem (KKMW 2010)

As $n \to \infty$, the distribution of the number of summands in Zeckendorf's Theorem is a Gaussian.

Numerics: At $F_{100,000}$: Ratio of $2m^{th}$ moment σ_{2m} to $(2m-1)!!\sigma_2^m$ is between .999955 and 1 for $2m \le 10$.

Sketch of proof: Use Stirling's formula,

$$n! \approx n^n e^{-n} \sqrt{2\pi n}$$

to approximates binomial coefficients, after a few pages of algebra find the probabilities are approximately Gaussian.

The probability density for the number of Fibonacci numbers that add up to an integer in $[F_n, F_{n+1})$ is $f_n(k) = \binom{n-1-k}{r}/F_{n-1}$. Consider the density for the n+1 case. Then we have, by Stirling

$$f_{n+1}(k) = {n-k \choose k} \frac{1}{F_n}$$

$$= \frac{(n-k)!}{(n-2k)!k!} \frac{1}{F_n} = \frac{1}{\sqrt{2\pi}} \frac{(n-k)^{n-k+\frac{1}{2}}}{k^{(k+\frac{1}{2})}(n-2k)^{n-2k+\frac{1}{2}}} \frac{1}{F_n}$$

plus a lower order correction term.

"Erdos-Kac"

Also we can write $F_n=\frac{1}{\sqrt{5}}\phi^{n+1}=\frac{\phi}{\sqrt{5}}\phi^n$ for large n, where ϕ is the golden ratio (we are using relabeled Fibonacci numbers where $1=F_1$ occurs once to help dealing with uniqueness and $F_2=2$). We can now split the terms that exponentially depend on n.

$$f_{n+1}(k) = \left(\frac{1}{\sqrt{2\pi}} \sqrt{\frac{(n-k)}{k(n-2k)}} \frac{\sqrt{5}}{\phi}\right) \left(\phi^{-n} \frac{(n-k)^{n-k}}{k^k(n-2k)^{n-2k}}\right).$$

Define

$$N_n = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{(n-k)}{k(n-2k)}} \frac{\sqrt{5}}{\phi}, \quad S_n = \phi^{-n} \frac{(n-k)^{n-k}}{k^k(n-2k)^{n-2k}}$$

Thus, write the density function as

$$f_{n+1}(k) = N_n S_n$$

where N_n is the first term that is of order $n^{-1/2}$ and S_n is the second term with exponential dependence on n.

Model the distribution as centered around the mean by the change of variable $k = \mu + x\sigma$ where μ and σ are the mean and the standard deviation, and depend on n. The discrete weights of $f_n(k)$ will become continuous. This requires us to use the change of variable formula to compensate for the change of scales:

$$f_n(k)dk = f_n(\mu + \sigma x)\sigma dx.$$

Using the change of variable, we can write N_n as

"Erdos-Kac"

00000000

$$N_{n} = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{n-k}{k(n-2k)}} \frac{\phi}{\sqrt{5}}$$

$$= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-k/n}{(k/n)(1-2k/n)}} \frac{\sqrt{5}}{\phi}$$

$$= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-(\mu+\sigma x)/n}{((\mu+\sigma x)/n)(1-2(\mu+\sigma x)/n)}} \frac{\sqrt{5}}{\phi}$$

$$= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-C-y}{(C+y)(1-2C-2y)}} \frac{\sqrt{5}}{\phi}$$

where $C = \mu/n \approx 1/(\phi + 2)$ (note that $\phi^2 = \phi + 1$) and $y = \sigma x/n$. But for large n, the y term vanishes since $\sigma \sim \sqrt{n}$ and thus $v \sim n^{-1/2}$. Thus

$$N_n \quad \approx \quad \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-C}{C(1-2C)}} \frac{\sqrt{5}}{\phi} = \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{(\phi+1)(\phi+2)}{\phi}} \frac{\sqrt{5}}{\phi} = \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{5(\phi+2)}{\phi}} = \frac{1}{\sqrt{2\pi\sigma^2}} \sqrt{\frac{5(\phi+2)}{\phi$$

since $\sigma^2 = n \frac{\phi}{5(\phi+2)}$

"Erdos-Kac"

For the second term S_n , take the logarithm and once again change variables by $k = \mu + x\sigma$,

$$\begin{split} \log(S_n) &= \log \left(\phi^{-n} \frac{(n-k)^{(n-k)}}{k^k (n-2k)^{(n-2k)}} \right) \\ &= -n \log(\phi) + (n-k) \log(n-k) - (k) \log(k) \\ &- (n-2k) \log(n-2k) \\ &= -n \log(\phi) + (n-(\mu+x\sigma)) \log(n-(\mu+x\sigma)) \\ &- (\mu+x\sigma) \log(\mu+x\sigma) \\ &- (n-2(\mu+x\sigma)) \log(n-2(\mu+x\sigma)) \\ &= -n \log(\phi) \\ &+ (n-(\mu+x\sigma)) \left(\log(n-\mu) + \log\left(1-\frac{x\sigma}{n-\mu}\right) \right) \\ &- (\mu+x\sigma) \left(\log(\mu) + \log\left(1+\frac{x\sigma}{\mu}\right) \right) \\ &- (n-2(\mu+x\sigma)) \left(\log(n-2\mu) + \log\left(1-\frac{x\sigma}{n-2\mu}\right) \right) \\ &= -n \log(\phi) \\ &+ (n-(\mu+x\sigma)) \left(\log\left(\frac{n}{\mu}-1\right) + \log\left(1-\frac{x\sigma}{n-\mu}\right) \right) \\ &- (\mu+x\sigma) \log\left(1+\frac{x\sigma}{\mu}\right) \\ &- (\mu+x\sigma) \log\left(1+\frac{x\sigma}{\mu}\right) \\ &- (n-2(\mu+x\sigma)) \left(\log\left(\frac{n}{\mu}-2\right) + \log\left(1-\frac{x\sigma}{n-2\mu}\right) \right) . \end{split}$$

Note that, since $n/\mu = \phi + 2$ for large n, the constant terms vanish. We have $\log(S_n)$

$$= -n\log(\phi) + (n-k)\log\left(\frac{n}{\mu} - 1\right) - (n-2k)\log\left(\frac{n}{\mu} - 2\right) + (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right)$$

$$- (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-2\mu}\right)$$

$$= -n\log(\phi) + (n-k)\log(\phi+1) - (n-2k)\log(\phi) + (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right)$$

$$- (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-2\mu}\right)$$

$$= n(-\log(\phi) + \log\left(\phi^2\right) - \log(\phi)) + k(\log(\phi^2) + 2\log(\phi)) + (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right)$$

$$- (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1 - 2\frac{x\sigma}{n-2\mu}\right)$$

$$= (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right) - (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right)$$

$$- (n-2(\mu+x\sigma))\log\left(1 - 2\frac{x\sigma}{n-2\mu}\right).$$

"Erdos-Kac"

(Sketch of the) Proof of Gaussianity (cont)

Finally, we expand the logarithms and collect powers of $x\sigma/n$.

$$\log(S_{n}) = (n - (\mu + x\sigma)) \left(-\frac{x\sigma}{n - \mu} - \frac{1}{2} \left(\frac{x\sigma}{n - \mu} \right)^{2} + \dots \right)$$

$$- (\mu + x\sigma) \left(\frac{x\sigma}{\mu} - \frac{1}{2} \left(\frac{x\sigma}{\mu} \right)^{2} + \dots \right)$$

$$- (n - 2(\mu + x\sigma)) \left(-2 \frac{x\sigma}{n - 2\mu} - \frac{1}{2} \left(2 \frac{x\sigma}{n - 2\mu} \right)^{2} + \dots \right)$$

$$= (n - (\mu + x\sigma)) \left(-\frac{x\sigma}{n \frac{(\phi+1)}{(\phi+2)}} - \frac{1}{2} \left(\frac{x\sigma}{n \frac{(\phi+1)}{(\phi+2)}} \right)^{2} + \dots \right)$$

$$- (\mu + x\sigma) \left(\frac{x\sigma}{\frac{n}{\phi+2}} - \frac{1}{2} \left(\frac{x\sigma}{\frac{n}{\phi+2}} \right)^{2} + \dots \right)$$

$$- (n - 2(\mu + x\sigma)) \left(-\frac{2x\sigma}{n \frac{\phi}{\phi+2}} - \frac{1}{2} \left(\frac{2x\sigma}{n \frac{\phi}{\phi+2}} \right)^{2} + \dots \right)$$

$$= \frac{x\sigma}{n} n \left(- \left(1 - \frac{1}{\phi+2} \right) \frac{(\phi+2)}{(\phi+1)} - 1 + 2 \left(1 - \frac{2}{\phi+2} \right) \frac{\phi+2}{\phi} \right)$$

$$- \frac{1}{2} \left(\frac{x\sigma}{n} \right)^{2} n \left(-2 \frac{\phi+2}{\phi+1} + \frac{\phi+2}{\phi+1} + 2(\phi+2) - (\phi+2) + 4 \frac{\phi+2}{\phi} \right)$$

$$+ O\left(n (x\sigma/n)^{3} \right)$$

$$\log(S_n) = \frac{x\sigma}{n} n \left(-\frac{\phi + 1}{\phi + 2} \frac{\phi + 2}{\phi + 1} - 1 + 2 \frac{\phi}{\phi + 2} \frac{\phi + 2}{\phi} \right)$$

$$- \frac{1}{2} \left(\frac{x\sigma}{n} \right)^2 n (\phi + 2) \left(-\frac{1}{\phi + 1} + 1 + \frac{4}{\phi} \right)$$

$$+ O\left(n \left(\frac{x\sigma}{n} \right)^3 \right)$$

$$= -\frac{1}{2} \frac{(x\sigma)^2}{n} (\phi + 2) \left(\frac{3\phi + 4}{\phi(\phi + 1)} + 1 \right) + O\left(n \left(\frac{x\sigma}{n} \right)^3 \right)$$

$$= -\frac{1}{2} \frac{(x\sigma)^2}{n} (\phi + 2) \left(\frac{3\phi + 4 + 2\phi + 1}{\phi(\phi + 1)} \right) + O\left(n \left(\frac{x\sigma}{n} \right)^3 \right)$$

$$= -\frac{1}{2} x^2 \sigma^2 \left(\frac{5(\phi + 2)}{\phi n} \right) + O\left(n (x\sigma/n)^3 \right) .$$

(Sketch of the) Proof of Gaussianity (cont)

But recall that

$$\sigma^2 = \frac{\phi n}{5(\phi + 2)}.$$

Also, since $\sigma \sim n^{-1/2}$, $n\left(\frac{x\sigma}{n}\right)^3 \sim n^{-1/2}$. So for large n, the $O\left(n\left(\frac{x\sigma}{n}\right)^3\right)$ term vanishes. Thus we are left with

$$\log S_n = -\frac{1}{2}x^2$$

$$S_n = e^{-\frac{1}{2}x^2}.$$

Hence, as *n* gets large, the density converges to the normal distribution:

$$f_n(k)dk = N_n S_n dk$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}x^2} \sigma dx$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx.$$

Generalizations

Generalizations

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L.$$

with $H_1 = 1$, $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_n H_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

- Zeckendorf: Every positive integer can be written uniquely as ∑ a_iH_i with natural constraints on the a_i's (e.g. cannot use the recurrence relation to remove any summand).
- Lekkerkerker
- Central Limit Type Theorem

Generalizing Lekkerkerker

Generalized Lekkerkerker's Theorem

The average number of summands in the generalized Zeckendorf decomposition for integers in $[H_n, H_{n+1})$ tends to Cn + d as $n \to \infty$, where C > 0 and d are computable constants determined by the c_i 's.

$$C = -\frac{y'(1)}{y(1)} = \frac{\sum_{m=0}^{L-1} (s_m + s_{m+1} - 1)(s_{m+1} - s_m)y^m(1)}{2\sum_{m=0}^{L-1} (m+1)(s_{m+1} - s_m)y^m(1)}.$$

$$s_0 = 0, s_m = c_1 + c_2 + \dots + c_m.$$

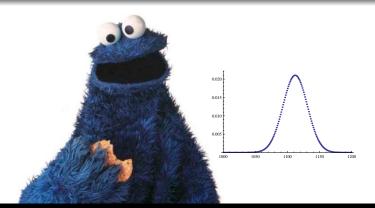
$$y(x) \text{ is the root of } 1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1}.$$

$$y(1) \text{ is the root of } 1 - c_1 y - c_2 y^2 - \dots - c_L y^L.$$

Central Limit Type Theorem

Central Limit Type Theorem

As $n \to \infty$, the distribution of the number of summands, i.e., $a_1 + a_2 + \cdots + a_m$ in the generalized Zeckendorf decomposition $\sum_{i=1}^m a_i H_i$ for integers in $[H_n, H_{n+1})$ is Gaussian.



Example: the Special Case of L=1

$$H_{n+1} = c_1 H_n$$
, $H_1 = 1$. $H_n = c_1^{n-1}$.

- Legal decomposition $\sum_{i=1}^{m} a_i H_i$: $a_i \in \{0, 1, \dots, c_1 - 1\}$ $(1 \le i < m)$, $a_m \in \{1, \dots, c_1 - 1\}$, equivalent to the c_1 -base expansion.
- For $N \in [H_n, H_{n+1})$, m = n, i.e., the first term is $a_n H_n$.
- A_i: the corresponding random variable of a_i.
 The A_i's are independent.
- For large n, the contribution of A_n is immaterial. A_i (1 $\leq i < n$) are identically distributed random variables with mean $(c_1 1)/2$ and variance $(c_1^2 1)/12$.
- Central Limit Theorem: $A_2 + A_3 + \cdots + A_n \rightarrow$ Gaussian with mean $n(c_1 1)/2 + O(1)$ and variance $n(c_1^2 1)/12 + O(1)$.

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the $\pm F_n$'s, such that every two terms of the same (opposite) sign differ in index by at least 4 (3).

Example: $1900 = F_{17} - F_{14} - F_{10} + F_6 + F_2$.

K: # of positive terms, L: # of negative terms.

Generalized Lekkerkerker's Theorem

As $n \to \infty$, E[K] and $E[L] \to n/10$. $E[K] - E[L] = \varphi/2 \approx .809$.

Central Limit Type Theorem

As $n \to \infty$, K and L converges to a bivariate Gaussian.

- $\operatorname{corr}(K, L) = -(21 2\varphi)/(29 + 2\varphi) \approx -.551, \varphi = \frac{\sqrt{5}+1}{2}.$
- K + L and K L are independent.

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

• Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$ (1)

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$ (1)
- Generating function: $g(x) = \sum_{n>0} F_n x^n$.

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$ (1)
- Generating function: $g(x) = \sum_{n>0} \mathbf{F}_n x^n$.

$$(1) \Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} x^{n+1} = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} x^{n+1}$$

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$ (1)
- Generating function: $g(x) = \sum_{n>0} \mathbf{F}_n x^n$.

(1)
$$\Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} x^{n+1} = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} x^{n+1}$$

 $\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 1} \mathbf{F}_n x^{n+2}$

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$ (1)
- Generating function: $g(x) = \sum_{n>0} \mathbf{F}_n x^n$.

$$(1) \Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} x^{n+1} = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} x^{n+1}$$

$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 1} \mathbf{F}_n x^{n+2}$$

$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = x \sum_{n\geq 2} \mathbf{F}_n x^n + x^2 \sum_{n\geq 1} \mathbf{F}_n x^n$$

Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

• Recurrence relation:
$$\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$$
 (1)

• Generating function: $g(x) = \sum_{n>0} \mathbf{F}_n x^n$.

(1)
$$\Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} x^{n+1} = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} x^{n+1}$$

 $\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 1} \mathbf{F}_n x^{n+2}$
 $\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = x \sum_{n\geq 2} \mathbf{F}_n x^n + x^2 \sum_{n\geq 1} \mathbf{F}_n x^n$
 $\Rightarrow q(x) - \mathbf{F}_1 x - \mathbf{F}_2 x^2 = x(q(x) - \mathbf{F}_1 x) + x^2 q(x)$

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$ (1)
- Generating function: $g(x) = \sum_{n>0} F_n x^n$.

(1)
$$\Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} x^{n+1} = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} x^{n+1}$$

 $\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 1} \mathbf{F}_n x^{n+2}$
 $\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = x \sum_{n\geq 2} \mathbf{F}_n x^n + x^2 \sum_{n\geq 1} \mathbf{F}_n x^n$
 $\Rightarrow g(x) - \mathbf{F}_1 x - \mathbf{F}_2 x^2 = x(g(x) - \mathbf{F}_1 x) + x^2 g(x)$
 $\Rightarrow g(x) = x/(1 - x - x^2).$

Partial Fraction Expansion (Example: Binet's Formula)

• Generating function: $g(x) = \sum_{n>0} \mathbf{F}_n x^n = \frac{x}{1-x-x^2}$.

Partial Fraction Expansion (Example: Binet's Formula)

- Generating function: $g(x) = \sum_{n>0} \mathbf{F}_n x^n = \frac{x}{1-x-x^2}$.
- Partial fraction expansion:

- Generating function: $g(x) = \sum_{n>0} \mathbf{F}_n x^n = \frac{x}{1-x-x^2}$.
- Partial fraction expansion:

$$\Rightarrow g(x) = \frac{x}{1 - x - x^2} = \frac{1}{\sqrt{5}} \left(\frac{\frac{1 + \sqrt{5}}{2}x}{1 - \frac{1 + \sqrt{5}}{2}x} - \frac{\frac{-1 + \sqrt{5}}{2}x}{1 - \frac{-1 + \sqrt{5}}{2}x} \right).$$

Partial Fraction Expansion (Example: Binet's Formula)

- Generating function: $g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$.
- Partial fraction expansion:

$$\Rightarrow g(x) = \frac{x}{1-x-x^2} = \frac{1}{\sqrt{5}} \left(\frac{\frac{1+\sqrt{5}}{2}x}{1-\frac{1+\sqrt{5}}{2}x} - \frac{\frac{-1+\sqrt{5}}{2}x}{1-\frac{-1+\sqrt{5}}{2}x} \right).$$

Coefficient of x^n (power series expansion):

$$\boldsymbol{F}_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right]$$
 - Binet's Formula!

Differentiating Identities and Method of Moments

Differentiating identities

Example: Given a random variable *X* such that

$$Prob(X = 1) = \frac{1}{2}, Prob(X = 2) = \frac{1}{4}, Prob(X = 3) = \frac{1}{8}, \dots,$$

then what's the mean of X (i.e., E[X])?

Solution: Let
$$f(x) = \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \dots = \frac{1}{1-x/2} - 1$$
.

$$f'(x) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4}x + 3 \cdot \frac{1}{8}x^2 + \dots$$

$$f'(1) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + \dots = E[X].$$

• Method of moments: Random variables X_1, X_2, \ldots If the ℓ^{th} moment $E[X_n^{\ell}]$ converges to that of the standard normal distribution $(\forall \ell)$, then X_n converges to a Gaussian.

Standard normal distribution:

$$2m^{\text{th}}$$
 moment: $(2m-1)!! = (2m-1)(2m-3)\cdots 1$, $(2m-1)^{\text{th}}$ moment: 0.

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf decomposition of } N \}$ has exactly *k* summands}.

Recurrence relation:

$$N \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$

 $p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \}.$

Recurrence relation:

$$N \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$

$$p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$$

$$p_{n,k+1} = p_{n-2,k} + p_{n-3,k} + \cdots$$

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \}.$

Recurrence relation:

$$N \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \leq n-1.$$

$$p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$$

$$p_{n,k+1} = p_{n-2,k} + p_{n-3,k} + \cdots$$

$$\Rightarrow p_{n+1,k+1} = p_{n,k+1} + p_{n-1,k}.$$

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf decomposition of } N \}$ has exactly *k* summands}.

Recurrence relation:

$$N \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$

$$p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$$

$$p_{n,k+1} = p_{n-2,k} + p_{n-3,k} + \cdots$$

$$\Rightarrow p_{n+1,k+1} = p_{n,k+1} + p_{n-1,k}.$$

- Generating function: $\sum_{n,k>0} p_{n,k} x^k y^n = \frac{y}{1-y-xy^2}$.
- Partial fraction expansion:

$$\frac{y}{1 - y - xy^2} = -\frac{y}{y_1(x) - y_2(x)} \left(\frac{1}{y - y_1(x)} - \frac{1}{y - y_2(x)} \right)$$

where $y_1(x)$ and $y_2(x)$ are the roots of $1 - y - xy^2 = 0$.

Coefficient of y^n : $g(x) = \sum_{n \neq 0} p_{n,k} x^k$.

New Approach: Case of Fibonacci Numbers (Continued)

 K_n : the corresponding random variable associated with k.

$$g(x) = \sum_{n,k>0} p_{n,k} x^k.$$

Differentiating identities:

$$\begin{split} g(1) &= \sum_{n,k>0} p_{n,k} = F_{n+1} - F_n, \\ g'(x) &= \sum_{n,k>0} k p_{n,k} x^{k-1}, \ g'(1) = g(1) E[K_n], \\ (xg'(x))' &= \sum_{n,k>0} k^2 p_{n,k} x^{k-1}, \\ (xg'(x))' |_{x=1} &= g(1) E[K_n^2], \ \big(x \, (xg'(x))' \big)' |_{x=1} = g(1) E[K_n^3], \ \dots \end{split}$$

Similar results hold for the centralized K_n : $K'_n = K_n - E[K_n]$.

• Method of moments (for normalized K'_n):

$$E[(K'_n)^{2m}]/(SD(K'_n))^{2m} \to (2m-1)!!,$$

 $E[(K'_n)^{2m-1}]/(SD(K'_n))^{2m-1} \to 0.$ $\Rightarrow K_n \to \text{Gaussian}.$

New Approach: General Case

Let $p_{n,k} = \# \{ N \in [H_n, H_{n+1}) : \text{ the generalized Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \}.$

Recurrence relation:

Fibonacci:
$$p_{n+1,k+1} = p_{n,k+1} + p_{n,k}$$
.

General:
$$p_{n+1,k} = \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} p_{n-m,k-j}$$
. where $s_0 = 0$, $s_m = c_1 + c_2 + \cdots + c_m$.

Generating function:

Fibonacci: $\frac{y}{1-y-xy^2}$.

General:

$$\frac{\sum_{n \leq L} p_{n,k} x^k y^n - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} \sum_{n < L-m} p_{n,k} x^k y^n}{1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1}}$$

"Erdos-Kac"

New Approach: General Case (Continued)

Partial fraction expansion:

Fibonacci:
$$-\frac{y}{y_1(x)-y_2(x)}\left(\frac{1}{y-y_1(x)}-\frac{1}{y-y_2(x)}\right)$$
.
General: $-\frac{1}{\sum_{j=S_{L-1}}^{S_L-1} x^j} \sum_{i=1}^{L} \frac{B(x,y)}{(y-y_i(x)) \prod_{j \neq i} (y_j(x)-y_i(x))}$.

$$B(x,y) = \sum_{n \le L} p_{n,k} x^k y^n - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} \sum_{n < L-m} p_{n,k} x^k y^n,$$

$$y_i(x): \text{ root of } 1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} = 0.$$

Method

Coefficient of
$$y^n$$
: $g(x) = \sum_{n k > 0} p_{n,k} x^k$.

- Differentiating identities
- Method of moments $\Rightarrow K_n \rightarrow \text{Gaussian}$

Future Research

Further Research

- Are there similar results for linearly recursive sequences with arbitrary integer coefficients (i.e. negative coefficients are allowed in the defining relation)?
- Lekkerkerker's theorem, and the Gaussian extension, are for the behavior in intervals $[F_n, F_{n+1}]$. Do the limits exist if we consider other intervals, say $[F_n + g_1(F_n), F_n + g_2(F_n)]$ for some functions g_1 and g_2 ?
- For the generalized recurrence relations, what happens if instead of looking at $\sum_{i=1}^{n} a_i$ we study $\sum_{i=1}^{n} \min(1, a_i)$? In other words, we only care about how many distinct H_i 's occur in the decomposition.
- What can we say about the distribution of the gaps / largest gap between summands in the Zeckendorf decomposition? Appropriately normalized, how do they behave?

Appendix:

Combinatorial Identities and Lekkerkerker's Theorem

Needed Binomial Identity

Binomial identity involving Fibonacci Numbers

Let F_m denote the m^{th} Fibonacci number, with $F_1 = 1$, $F_2 = 2$, $F_3 = 3$, $F_4 = 5$ and so on. Then

$$\sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} \binom{n-1-k}{k} = F_{n-1}.$$

Proof by induction: The base case is trivially verified. Assume our claim holds for n and show that it holds for n + 1. We may extend the sum to n-1, as $\binom{n-1-k}{k}=0$ whenever $k>\lfloor\frac{n-1}{2}\rfloor$. Using the standard identity that

$$\binom{m}{\ell} + \binom{m}{\ell+1} = \binom{m+1}{\ell+1},$$

and the convention that $\binom{m}{\ell} = 0$ if ℓ is a negative integer, we find

$$\sum_{k=0}^{n} \binom{n-k}{k} = \sum_{k=0}^{n} \left[\binom{n-1-k}{k-1} + \binom{n-1-k}{k} \right]$$

$$= \sum_{k=1}^{n} \binom{n-1-k}{k-1} + \sum_{k=0}^{n} \binom{n-1-k}{k}$$

$$= \sum_{k=1}^{n} \binom{n-2-(k-1)}{k-1} + \sum_{k=0}^{n} \binom{n-1-k}{k} = F_{n-2} + F_{n-1}$$

by the inductive assumption; noting $F_{n-2} + F_{n-1} = F_n$ completes the proof.

Preliminaries for Lekkerkerker's Theorem

$$\mathcal{E}(n) := \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} k \binom{n-1-k}{k}.$$

Average number of summands in $[F_n, F_{n+1}]$ is

$$\frac{\mathcal{E}(n)}{F_{n-1}}+1.$$

Recurrence Relation for $\mathcal{E}(n)$

$$\mathcal{E}(n) + \mathcal{E}(n-2) = (n-2)F_{n-3}.$$

Recurrence Relation

Recurrence Relation for $\mathcal{E}(n)$

$$\mathcal{E}(n) + \mathcal{E}(n-2) = (n-2)F_{n-3}.$$

Proof by algebra (details later):

$$\mathcal{E}(n) = \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} k \binom{n-1-k}{k}$$

$$= (n-2) \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} \binom{n-3-\ell}{\ell} - \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} \ell \binom{n-3-\ell}{\ell}$$

$$= (n-2)F_{n-3} - \mathcal{E}(n-2).$$

Solving Recurrence Relation

Formula for $\mathcal{E}(n)$ (i.e., Lekkerkerker's Theorem)

$$\mathcal{E}(n) = \frac{nF_{n-1}}{\omega^2 + 1} + O(F_{n-2}).$$

$$egin{aligned} &\sum_{\ell=0}^{\lfloor rac{n-3}{2}
floor} (-1)^\ell \left(\mathcal{E}(n-2\ell) + \mathcal{E}(n-2(\ell+1))
ight) \ &= &\sum_{\ell=0}^{\lfloor rac{n-3}{2}
floor} (-1)^\ell (n-2-2\ell) F_{n-3-2\ell}. \end{aligned}$$

Result follows from Binet's formula, the geometric series formula, and differentiating identities: $\sum_{i=0}^{m} jx^{i} =$ $x^{\frac{(m+1)x^m(x-1)-(x^{m+1}-1)}{(x-1)^2}}$. Details later in the appendix.

Derivation of Recurrence Relation for $\mathcal{E}(n)$

$$\mathcal{E}(n) = \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} k \binom{n-1-k}{k}$$

$$= \sum_{k=1}^{\lfloor \frac{n-1}{2} \rfloor} k \frac{(n-1-k)!}{k!(n-1-2k)!}$$

$$= \sum_{k=1}^{\lfloor \frac{n-1}{2} \rfloor} (n-1-k) \frac{(n-2-k)!}{(k-1)!(n-1-2k)!}$$

$$= \sum_{k=1}^{\lfloor \frac{n-1}{2} \rfloor} (n-2-(k-1)) \frac{(n-3-(k-1)!)}{(k-1)!(n-3-2(k-1))!}$$

$$= \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} (n-2-\ell) \binom{n-3-\ell}{\ell}$$

$$= (n-2) \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} \binom{n-3-\ell}{\ell} - \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} \ell \binom{n-3-\ell}{\ell}$$

$$= (n-2) E_{n-2} - \mathcal{E}(n-2).$$

which proves the claim (note we used the binomial identity to replace the sum of binomial coefficients with a Fibonacci number).

Formula for $\mathcal{E}(n)$

Formula for $\mathcal{E}(n)$

$$\mathcal{E}(n) = \frac{nF_{n-1}}{\varphi^2 + 1} + O(F_{n-2}).$$

Proof: The proof follows from using telescoping sums to get an expression for $\mathcal{E}(n)$, which is then evaluated by inputting Binet's formula and differentiating identities. Explicitly, consider

$$\begin{split} & \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} (-1)^{\ell} \left(\mathcal{E}(n-2\ell) + \mathcal{E}(n-2(\ell+1)) \right) = \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} (-1)^{\ell} (n-2-2\ell) F_{n-3-2\ell} \\ & = \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} (-1)^{\ell} (n-3-2\ell) F_{n-3-2\ell} + \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} (-1)^{\ell} (2\ell) F_{n-3-2\ell} \\ & = \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} (-1)^{\ell} (n-3-2\ell) F_{n-3-2\ell} + O(F_{n-2}); \end{split}$$

while we could evaluate the last sum exactly, trivially estimating it suffices to obtain the main term (as we have a sum of every other Fibonacci number, the sum is at most the next Fibonacci number after the largest one in our sum).

Formula for $\mathcal{E}(n)$ (continued)

We now use Binet's formula to convert the sum into a geometric series. Letting $\varphi=\frac{1+\sqrt{5}}{2}$ be the golden mean, we have

$$F_n = \frac{\varphi}{\sqrt{5}} \cdot \varphi^n - \frac{1 - \varphi}{\sqrt{5}} \cdot (1 - \varphi)^n$$

(our constants are because our counting has $F_1=1$, $F_2=2$ and so on). As $|1-\varphi|<1$, the error from dropping the $(1-\varphi)^n$ term is $O(\sum_{\ell \le n} n) = O(n^2) = o(F_{n-2})$, and may thus safely be absorbed in our error term. We thus find

$$\mathcal{E}(n) = \frac{\varphi}{\sqrt{5}} \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} (n-3-2\ell)(-1)^{\ell} \varphi^{n-3-2\ell} + O(F_{n-2})$$

$$= \frac{\varphi^{n-2}}{\sqrt{5}} \left[(n-3) \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} (-\varphi^{-2})^{\ell} - 2 \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} \ell (-\varphi^{-2})^{\ell} \right] + O(F_{n-2}).$$

Formula for $\mathcal{E}(n)$ (continued)

We use the geometric series formula to evaluate the first term. We drop the upper boundary term of $(-\varphi^{-1})^{\lfloor \frac{n-3}{2} \rfloor}$, as this term is negligible since $\varphi>1$. We may also move the 3 from the n-3 into the error term, and are left with

$$\mathcal{E}(n) = \frac{\varphi^{n-2}}{\sqrt{5}} \left[\frac{n}{1+\varphi^{-2}} - 2 \sum_{\ell=0}^{\lfloor \frac{n-3}{2} \rfloor} \ell(-\varphi^{-2})^{\ell} \right] + O(F_{n-2})$$
$$= \frac{\varphi^{n-2}}{\sqrt{5}} \left[\frac{n}{1+\varphi^{-2}} - 2S\left(\left\lfloor \frac{n-3}{2} \right\rfloor, -\varphi^{-2} \right) \right] + O(F_{n-2}),$$

where

$$S(m,x) = \sum_{i=0}^{m} jx^{j}.$$

There is a simple formula for S(m, x). As

$$\sum_{i=0}^{m} x^{i} = \frac{x^{m+1} - 1}{x - 1},$$

applying the operator $x \frac{d}{dx}$ gives

$$S(m,x) = \sum_{i=0}^{m} j x^{j} = x \frac{(m+1)x^{m}(x-1) - (x^{m+1}-1)}{(x-1)^{2}} = \frac{mx^{m+2} - (m+1)x^{m+1} + x}{(x-1)^{2}}$$

Formula for $\mathcal{E}(n)$ (continued)

Taking $x = -\varphi^{-2}$, we see that the contribution from this piece may safely be absorbed into the error term $O(F_{n-2})$, leaving us with

$$\mathcal{E}(n) \; = \; \frac{n\varphi^{n-2}}{\sqrt{5}(1+\varphi^{-2})} \, + \, O(F_{n-2}) \; = \; \frac{n\varphi^n}{\sqrt{5}(\varphi^2+1)} \, + \, O(F_{n-2}).$$

Noting that for large n we have $F_{n-1} = \frac{\varphi^n}{\sqrt{5}} + O(1)$, we finally obtain

$$\mathcal{E}(n) = \frac{nF_{n-1}}{\varphi^2 + 1} + O(F_{n-2}).$$