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Introduction
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Goals of the Talk

See lesser known ‘fun’ properties of Fibonacci numbers.
Misleading proofs – search for the ‘right’ perspective.
Importance of asking any question, not just the right one.
Techniques: generating fns, differentiating identities.
Help in related questions: SMALL 2011.

Thanks to colleagues from the Williams College 2010 SMALL
REU program (especially Ed Burger, David Clyde, Cory
Colbert, Carlos Dominguez, Gea Shin and Nancy Wang).

3



Intro “Erdos-Kac” Generalizations Method Open Questions Appendix

Pre-requisites: Probability Review
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Let X be random variable with density p(x):
⋄ p(x) ≥ 0;

∫∞
−∞ p(x)dx = 1;

⋄ Prob (a ≤ X ≤ b) =
∫ b

a p(x)dx .
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Pre-requisites: Probability Review
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Let X be random variable with density p(x):
⋄ p(x) ≥ 0;

∫∞
−∞ p(x)dx = 1;

⋄ Prob (a ≤ X ≤ b) =
∫ b

a p(x)dx .
Mean: � =

∫∞
−∞ xp(x)dx .

Variance: �2 =
∫∞
−∞(x − �)2p(x)dx .

Gaussian: Density (2��2)−1/2 exp(−(x − �)2/2�2).
Combinatorics:

(n
k

)

= n!
k !(n−k)! , n! ≈ nne−n

√
2�n.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
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Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 2010 = 1597 + 377 + 34 + 2 = F16 + F13 + F8 + F2.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 2010 = 1597 + 377 + 34 + 2 = F16 + F13 + F8 + F2.

Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

'2+1 ≈ .276n,

where ' = 1+
√

5
2 is the golden mean.
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New Results

Central Limit Type Theorem

As n → ∞, the distribution of the number of summands in the
Zeckendorf decomposition for integers in [Fn,Fn+1) is Gaussian
(normal).
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Figure: Number of summands in [F2010,F2011); F2010 ≈ 10420.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.
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Preliminaries: The Cookie Problem
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + ⋅ ⋅ ⋅ + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + ⋅ ⋅ ⋅ + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + ⋅ ⋅ ⋅ + Fik−1
+ Fn,

1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ik−1 < ik = n, ij − ij−1 ≥ 2.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + ⋅ ⋅ ⋅ + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + ⋅ ⋅ ⋅ + Fik−1
+ Fn,

1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + ⋅ ⋅ ⋅+ dk = n − 2k + 1, dj ≥ 0.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + ⋅ ⋅ ⋅ + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + ⋅ ⋅ ⋅ + Fik−1
+ Fn,

1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + ⋅ ⋅ ⋅+ dk = n − 2k + 1, dj ≥ 0.

Cookie counting ⇒ pn,k =
(n−2k+1−k−1

k−1

)

=
(n−k

k−1

)

.
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An Erdos-Kac Type Theorem
(note slightly different notation)
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Generalizing Lekkerkerker

Theorem (KKMW 2010)

As n → ∞, the distribution of the number of summands in
Zeckendorf’s Theorem is a Gaussian.
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Figure: Number of summands in [F2010,F2011)
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Generalizing Lekkerkerker: Erdos-Kac type result

Theorem (KKMW 2010)

As n → ∞, the distribution of the number of summands in
Zeckendorf’s Theorem is a Gaussian.

Numerics: At F100,000: Ratio of 2mth moment �2m to
(2m − 1)!!�m

2 is between .999955 and 1 for 2m ≤ 10.

Sketch of proof: Use Stirling’s formula,

n! ≈ nne−n
√

2�n

to approximates binomial coefficients, after a few pages of
algebra find the probabilities are approximately Gaussian.
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(Sketch of the) Proof of Gaussianity

The probability density for the number of Fibonacci numbers that add up to an integer in [Fn , Fn+1) is

fn(k) =
(

n−1−k
k

)

/Fn−1. Consider the density for the n + 1 case. Then we have, by Stirling

fn+1(k) =

(

n − k

k

)

1

Fn

=
(n − k)!

(n − 2k)!k !

1

Fn
=

1
√

2�

(n − k)n−k+ 1
2

k(k+ 1
2 )

(n − 2k)n−2k+ 1
2

1

Fn

plus a lower order correction term.

Also we can write Fn = 1√
5
�n+1 = �√

5
�n for large n, where � is the golden ratio (we are using relabeled

Fibonacci numbers where 1 = F1 occurs once to help dealing with uniqueness and F2 = 2). We can now split the
terms that exponentially depend on n.

fn+1(k) =

(

1
√

2�

√

(n − k)

k(n − 2k)

√
5

�

)(

�
−n (n − k)n−k

kk (n − 2k)n−2k

)

.

Define

Nn =
1

√
2�

√

(n − k)

k(n − 2k)

√
5

�
, Sn = �

−n (n − k)n−k

kk (n − 2k)n−2k
.

Thus, write the density function as
fn+1(k) = NnSn

where Nn is the first term that is of order n−1/2 and Sn is the second term with exponential dependence on n.
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(Sketch of the) Proof of Gaussianity (cont)

Model the distribution as centered around the mean by the change of variable k = � + x� where � and � are the
mean and the standard deviation, and depend on n. The discrete weights of fn(k) will become continuous. This
requires us to use the change of variable formula to compensate for the change of scales:

fn(k)dk = fn(� + �x)�dx.

Using the change of variable, we can write Nn as

Nn =
1

√
2�

√

n − k

k(n − 2k)

�
√

5

=
1

√
2�n

√

1 − k/n

(k/n)(1 − 2k/n)

√
5

�

=
1

√
2�n

√

1 − (� + �x)/n

((� + �x)/n)(1 − 2(� + �x)/n)

√
5

�

=
1

√
2�n

√

1 − C − y

(C + y)(1 − 2C − 2y)

√
5

�

where C = �/n ≈ 1/(� + 2) (note that �2 = � + 1) and y = �x/n. But for large n, the y term vanishes since

� ∼
√

n and thus y ∼ n−1/2. Thus

Nn ≈
1

√
2�n

√

1 − C

C(1 − 2C)

√
5

�
=

1
√

2�n

√

(� + 1)(� + 2)

�

√
5

�
=

1
√

2�n

√

5(� + 2)

�
=

1
√

2��2

since �2 = n �
5(�+2) .
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(Sketch of the) Proof of Gaussianity (cont)

For the second term Sn , take the logarithm and once again change variables by k = � + x�,

log(Sn) = log

(

�
−n (n − k)(n−k)

kk (n − 2k)(n−2k)

)

= −n log(�) + (n − k) log(n − k) − (k) log(k)

− (n − 2k) log(n − 2k)

= −n log(�) + (n − (� + x�)) log(n − (� + x�))

− (� + x�) log(� + x�)

− (n − 2(� + x�)) log(n − 2(� + x�))

= −n log(�)

+ (n − (� + x�))

(

log(n − �) + log
(

1 −
x�

n − �

))

− (� + x�)

(

log(�) + log
(

1 +
x�

�

))

− (n − 2(� + x�))

(

log(n − 2�) + log
(

1 −
x�

n − 2�

))

= −n log(�)

+ (n − (� + x�))

(

log
(

n

�
− 1
)

+ log
(

1 −
x�

n − �

))

− (� + x�) log
(

1 +
x�

�

)

− (n − 2(� + x�))

(

log
(

n

�
− 2
)

+ log
(

1 −
x�

n − 2�

))

.
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(Sketch of the) Proof of Gaussianity (cont)

Note that, since n/� = � + 2 for large n, the constant terms vanish. We have log(Sn)

= −n log(�) + (n − k) log
(

n

�
− 1

)

− (n − 2k) log
(

n

�
− 2
)

+ (n − (� + x�)) log
(

1 −
x�

n − �

)

− (� + x�) log
(

1 +
x�

�

)

− (n − 2(� + x�)) log
(

1 −
x�

n − 2�

)

= −n log(�) + (n − k) log (� + 1) − (n − 2k) log (�) + (n − (� + x�)) log
(

1 −
x�

n − �

)

− (� + x�) log
(

1 +
x�

�

)

− (n − 2(� + x�)) log
(

1 −
x�

n − 2�

)

= n(− log(�) + log
(

�
2
)

− log (�)) + k(log(�2
) + 2 log(�)) + (n − (� + x�)) log

(

1 −
x�

n − �

)

− (� + x�) log
(

1 +
x�

�

)

− (n − 2(� + x�)) log
(

1 − 2
x�

n − 2�

)

= (n − (� + x�)) log
(

1 −
x�

n − �

)

− (� + x�) log
(

1 +
x�

�

)

− (n − 2(� + x�)) log
(

1 − 2
x�

n − 2�

)

.
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(Sketch of the) Proof of Gaussianity (cont)

Finally, we expand the logarithms and collect powers of x�/n.

log(Sn) = (n − (� + x�))

(

−
x�

n − �
−

1

2

(

x�

n − �

)2
+ . . .

)

− (� + x�)

(

x�

�
−

1

2

(

x�

�

)2
+ . . .

)

− (n − 2(� + x�))

(

−2
x�

n − 2�
−

1

2

(

2
x�

n − 2�

)2
+ . . .

)

= (n − (� + x�))

⎛

⎝−
x�

n (�+1)
(�+2)

−
1

2

⎛

⎝

x�

n (�+1)
(�+2)

⎞

⎠

2

+ . . .

⎞

⎠

− (� + x�)

⎛

⎝

x�
n

�+2

−
1

2

⎛

⎝

x�
n

�+2

⎞

⎠

2

+ . . .

⎞

⎠

− (n − 2(� + x�))

⎛

⎝−
2x�

n �
�+2

−
1

2

⎛

⎝

2x�

n �
�+2

⎞

⎠

2

+ . . .

⎞

⎠

=
x�

n
n

(

−
(

1 −
1

� + 2

)

(� + 2)

(� + 1)
− 1 + 2

(

1 −
2

� + 2

)

� + 2

�

)

−
1

2

(

x�

n

)2
n
(

−2
� + 2

� + 1
+

� + 2

� + 1
+ 2(� + 2) − (� + 2) + 4

� + 2

�

)

+O
(

n (x�/n)3
)
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(Sketch of the) Proof of Gaussianity (cont)

log(Sn) =
x�

n
n
(

−
� + 1

� + 2

� + 2

� + 1
− 1 + 2

�

� + 2

� + 2

�

)

−
1

2

(

x�

n

)2
n(� + 2)

(

−
1

� + 1
+ 1 +

4

�

)

+O

(

n
(

x�

n

)3
)

= −
1

2

(x�)2

n
(� + 2)

(

3� + 4

�(� + 1)
+ 1

)

+ O

(

n
(

x�

n

)3
)

= −
1

2

(x�)2

n
(� + 2)

(

3� + 4 + 2� + 1

�(� + 1)

)

+ O

(

n
(

x�

n

)3
)

= −
1

2
x2

�
2
(

5(� + 2)

�n

)

+ O
(

n (x�/n)3
)

.
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(Sketch of the) Proof of Gaussianity (cont)

But recall that

�
2
=

�n

5(� + 2)
.

Also, since � ∼ n−1/2, n
(

x�
n

)3 ∼ n−1/2. So for large n, the O
(

n
(

x�
n

)3
)

term vanishes. Thus we are left

with

log Sn = −
1

2
x2

Sn = e−
1
2 x2

.

Hence, as n gets large, the density converges to the normal distribution:

fn(k)dk = NnSndk

=
1

√
2��2

e−
1
2 x2

�dx

=
1

√
2�

e−
1
2 x2

dx.

□
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Generalizations
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Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hn+1 = c1Hn + c2Hn−1 + ⋅ ⋅ ⋅+ cLHn−L+1, n ≥ L.

with H1 = 1, Hn+1 = c1Hn + c2Hn−1 + ⋅ ⋅ ⋅+ cnH1 + 1, n < L,
coefficients ci ≥ 0; c1, cL > 0 if L ≥ 2; c1 > 1 if L = 1.

Zeckendorf: Every positive integer can be written uniquely
as
∑

aiHi with natural constraints on the ai ’s
(e.g. cannot use the recurrence relation to remove any
summand).

Lekkerkerker

Central Limit Type Theorem
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Generalizing Lekkerkerker

Generalized Lekkerkerker’s Theorem
The average number of summands in the generalized
Zeckendorf decomposition for integers in [Hn,Hn+1) tends to
Cn + d as n → ∞, where C > 0 and d are computable
constants determined by the ci ’s.

C = −y ′(1)
y(1)

=

∑L−1
m=0(sm + sm+1 − 1)(sm+1 − sm)ym(1)

2
∑L−1

m=0(m + 1)(sm+1 − sm)ym(1)
.

s0 = 0, sm = c1 + c2 + ⋅ ⋅ ⋅+ cm.

y(x) is the root of 1 −
∑L−1

m=0

∑sm+1−1
j=sm

x jym+1.

y(1) is the root of 1 − c1y − c2y2 − ⋅ ⋅ ⋅ − cLyL.
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Central Limit Type Theorem

Central Limit Type Theorem

As n → ∞, the distribution of the number of summands, i.e.,
a1 + a2 + ⋅ ⋅ ⋅+ am in the generalized Zeckendorf decomposition
∑m

i=1 aiHi for integers in [Hn,Hn+1) is Gaussian.

1000 1050 1100 1150 1200

0.005

0.010

0.015

0.020
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Example: the Special Case of L = 1

Hn+1 = c1Hn, H1 = 1. Hn = cn−1
1 .

Legal decomposition
∑m

i=1 aiHi :

ai ∈ {0,1, . . . , c1 − 1} (1 ≤ i < m), am ∈ {1, . . . , c1 − 1},
equivalent to the c1-base expansion.

For N ∈ [Hn,Hn+1), m = n, i.e., the first term is anHn.

Ai : the corresponding random variable of ai .
The Ai ’s are independent.

For large n, the contribution of An is immaterial.
Ai (1 ≤ i < n) are identically distributed random variables
with mean (c1 − 1)/2 and variance (c2

1 − 1)/12.

Central Limit Theorem: A2 + A3 + ⋅ ⋅ ⋅ + An → Gaussian
with mean n(c1 − 1)/2 + O(1)
and variance n(c2

1 − 1)/12 + O(1).
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Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the ±Fn’s,
such that every two terms of the same (opposite) sign differ in
index by at least 4 (3).

Example: 1900 = F17 − F14 − F10 + F6 + F2.

K : # of positive terms, L: # of negative terms.

Generalized Lekkerkerker’s Theorem
As n → ∞, E [K ] and E [L] → n/10. E [K ]− E [L] = '/2 ≈ .809.

Central Limit Type Theorem

As n → ∞, K and L converges to a bivariate Gaussian.

corr(K ,L) = −(21 − 2')/(29 + 2') ≈ −.551, ' =
√

5+1
2 .

K + L and K − L are independent.
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Method of General Proof
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[

(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n
]

.
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[

(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n
]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[

(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n
]

.

Recurrence relation: F n+1 = F n + F n−1 (1)

Generating function: g(x) =
∑

n>0 F nxn.
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[

(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n
]

.

Recurrence relation: F n+1 = F n + F n−1 (1)

Generating function: g(x) =
∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[

(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n
]

.

Recurrence relation: F n+1 = F n + F n−1 (1)

Generating function: g(x) =
∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1

⇒
∑

n≥3

F nxn =
∑

n≥2

F nxn+1 +
∑

n≥1

F nxn+2
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[

(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n
]

.

Recurrence relation: F n+1 = F n + F n−1 (1)

Generating function: g(x) =
∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1

⇒
∑

n≥3

F nxn =
∑

n≥2

F nxn+1 +
∑

n≥1

F nxn+2

⇒
∑

n≥3

F nxn = x
∑

n≥2

F nxn + x2
∑

n≥1

F nxn
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[

(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n
]

.

Recurrence relation: F n+1 = F n + F n−1 (1)

Generating function: g(x) =
∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1

⇒
∑

n≥3

F nxn =
∑

n≥2

F nxn+1 +
∑

n≥1

F nxn+2

⇒
∑

n≥3

F nxn = x
∑

n≥2

F nxn + x2
∑

n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)

51



Intro “Erdos-Kac” Generalizations Method Open Questions Appendix

Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[

(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n
]

.

Recurrence relation: F n+1 = F n + F n−1 (1)

Generating function: g(x) =
∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1

⇒
∑

n≥3

F nxn =
∑

n≥2

F nxn+1 +
∑

n≥1

F nxn+2

⇒
∑

n≥3

F nxn = x
∑

n≥2

F nxn + x2
∑

n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)

⇒ g(x) = x/(1 − x − x2).
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:

⇒ g(x) =
x

1 − x − x2 =
1√
5

(

1+
√

5
2 x

1 − 1+
√

5
2 x

−
−1+

√
5

2 x

1 − −1+
√

5
2 x

)

.
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:

⇒ g(x) =
x

1 − x − x2 =
1√
5

(

1+
√

5
2 x

1 − 1+
√

5
2 x

−
−1+

√
5

2 x

1 − −1+
√

5
2 x

)

.

Coefficient of xn (power series expansion):

F n = 1√
5

[

(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n
]

- Binet’s Formula!
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Differentiating Identities and Method of Moments

Differentiating identities
Example: Given a random variable X such that

Prob(X = 1) = 1
2 , Prob(X = 2) = 1

4 , Prob(X = 3) = 1
8 , ... ,

then what’s the mean of X (i.e., E [X ])?

Solution: Let f (x) = 1
2x + 1

4x2 + 1
8x3 + ⋅ ⋅ ⋅ = 1

1−x/2 − 1.

f ′(x) = 1 ⋅ 1
2 + 2 ⋅ 1

4x + 3 ⋅ 1
8x2 + ⋅ ⋅ ⋅ .

f ′(1) = 1 ⋅ 1
2 + 2 ⋅ 1

4 + 3 ⋅ 1
8 + ⋅ ⋅ ⋅ = E [X ].

Method of moments: Random variables X1, X2, . . . .
If the ℓth moment E [X ℓ

n] converges to that of the standard
normal distribution (∀ℓ), then Xn converges to a Gaussian.

Standard normal distribution :
2mth moment: (2m − 1)!! = (2m − 1)(2m − 3) ⋅ ⋅ ⋅ 1,
(2m − 1)th moment: 0.
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + ⋅ ⋅ ⋅ , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + ⋅ ⋅ ⋅
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + ⋅ ⋅ ⋅ , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + ⋅ ⋅ ⋅
pn,k+1 = pn−2,k + pn−3,k + ⋅ ⋅ ⋅
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + ⋅ ⋅ ⋅ , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + ⋅ ⋅ ⋅
pn,k+1 = pn−2,k + pn−3,k + ⋅ ⋅ ⋅

⇒ pn+1,k+1 = pn,k+1 + pn−1,k .
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + ⋅ ⋅ ⋅ , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + ⋅ ⋅ ⋅
pn,k+1 = pn−2,k + pn−3,k + ⋅ ⋅ ⋅

⇒ pn+1,k+1 = pn,k+1 + pn−1,k .

Generating function:
∑

n,k>0
pn,kxkyn =

y
1 − y − xy2 .

Partial fraction expansion:
y

1 − y − xy2 = − y
y1(x)− y2(x)

(

1
y − y1(x)

− 1
y − y2(x)

)

,where y1(x) and y2(x) are the roots of 1 − y − xy2 = 0.

Coefficient of yn: g(x) =
∑

n,k>0 pn,kxk .
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New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k .
g(x) =

∑

n,k>0 pn,kxk .

Differentiating identities:
g(1) =

∑

n,k>0 pn,k = Fn+1 − Fn,

g′(x) =
∑

n,k>0 kpn,kxk−1, g′(1) = g(1)E [Kn],

(xg′(x))′ =
∑

n,k>0 k2pn,kxk−1,

(xg′(x))′ ∣x=1 = g(1)E [K 2
n ],
(

x (xg′(x))′
)′ ∣x=1 = g(1)E [K 3

n ], ...

Similar results hold for the centralized Kn: K ′
n = Kn − E [Kn].

Method of moments (for normalized K ′
n):

E [(K ′
n)

2m]/(SD(K ′
n))

2m → (2m − 1)!!,

E [(K ′
n)

2m−1]/(SD(K ′
n))

2m−1 → 0. ⇒ Kn → Gaussian.
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New Approach: General Case

Let pn,k = # {N ∈ [Hn,Hn+1): the generalized Zeckendorf
decomposition of N has exactly k summands}.

Recurrence relation:
Fibonacci: pn+1,k+1 = pn,k+1 + pn,k .

General: pn+1,k =
∑L−1

m=0
∑sm+1−1

j=sm
pn−m,k−j .

where s0 = 0, sm = c1 + c2 + ⋅ ⋅ ⋅ + cm.

Generating function:
Fibonacci: y

1−y−xy2 .

General:
∑

n≤L pn,kxkyn −∑L−1
m=0

∑sm+1−1
j=sm

x jym+1∑
n<L−m pn,kxk yn

1 −∑L−1
m=0

∑sm+1−1
j=sm

x jym+1
.
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New Approach: General Case (Continued)

Partial fraction expansion:

Fibonacci: − y
y1(x)−y2(x)

(

1
y−y1(x)

− 1
y−y2(x)

)

.

General:

− 1
∑sL−1

j=sL−1
x j

L
∑

i=1

B(x , y)
(y − yi(x))

∏

j ∕=i

(

yj(x)− yi(x)
) .

B(x , y) =
∑

n≤L

pn,kxkyn −
L−1
∑

m=0

sm+1−1
∑

j=sm

x jym+1
∑

n<L−m

pn,kxkyn,

yi(x): root of 1 −∑L−1
m=0

∑sm+1−1
j=sm

x jym+1 = 0.

Coefficient of yn: g(x) =
∑

n,k>0 pn,kxk .

Differentiating identities

Method of moments ⇒ Kn → Gaussian
.
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Future Research
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Further Research

1 Are there similar results for linearly recursive sequences
with arbitrary integer coefficients (i.e. negative coefficients
are allowed in the defining relation)?

2 Lekkerkerker’s theorem, and the Gaussian extension, are
for the behavior in intervals [Fn,Fn+1). Do the limits exist if
we consider other intervals, say [Fn + g1(Fn),Fn + g2(Fn))
for some functions g1 and g2?

3 For the generalized recurrence relations, what happens if
instead of looking at

∑n
i=1 ai we study

∑n
i=1 min(1,ai)? In

other words, we only care about how many distinct Hi ’s
occur in the decomposition.

4 What can we say about the distribution of the gaps /
largest gap between summands in the Zeckendorf
decomposition? Appropriately normalized, how do
they behave?

66



Intro “Erdos-Kac” Generalizations Method Open Questions Appendix

Appendix:
Combinatorial Identities and Lekkerkerker’s Theorem
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Needed Binomial Identity

Binomial identity involving Fibonacci Numbers

Let Fm denote the mth Fibonacci number, with F1 = 1, F2 = 2, F3 = 3, F4 = 5 and so on. Then

⌊ n−1
2 ⌋
∑

k=0

(

n − 1 − k

k

)

= Fn−1.

Proof by induction: The base case is trivially verified. Assume our claim holds for n and show that it holds for n + 1.

We may extend the sum to n − 1, as
(

n−1−k
k

)

= 0 whenever k > ⌊ n−1
2 ⌋. Using the standard identity that

(

m

ℓ

)

+

(

m

ℓ + 1

)

=

(

m + 1

ℓ + 1

)

,

and the convention that
(

m
ℓ

)

= 0 if ℓ is a negative integer, we find

n
∑

k=0

(

n − k

k

)

=
n
∑

k=0

[(

n − 1 − k

k − 1

)

+

(

n − 1 − k

k

)]

=
n
∑

k=1

(

n − 1 − k

k − 1

)

+
n
∑

k=0

(

n − 1 − k

k

)

=
n
∑

k=1

(

n − 2 − (k − 1)

k − 1

)

+
n
∑

k=0

(

n − 1 − k

k

)

= Fn−2 + Fn−1

by the inductive assumption; noting Fn−2 + Fn−1 = Fn completes the proof. □
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Preliminaries for Lekkerkerker’s Theorem

ℰ(n) :=

⌊ n−1
2 ⌋
∑

k=0

k
(

n − 1 − k
k

)

.

Average number of summands in [Fn,Fn+1) is

ℰ(n)
Fn−1

+ 1.

Recurrence Relation for ℰ(n)

ℰ(n) + ℰ(n − 2) = (n − 2)Fn−3.
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Recurrence Relation

Recurrence Relation for ℰ(n)

ℰ(n) + ℰ(n − 2) = (n − 2)Fn−3.

Proof by algebra (details later):

ℰ(n) =

⌊ n−1
2 ⌋
∑

k=0

k
(

n − 1 − k
k

)

= (n − 2)
⌊ n−3

2 ⌋
∑

ℓ=0

(

n − 3 − ℓ

ℓ

)

−
⌊ n−3

2 ⌋
∑

ℓ=0

ℓ

(

n − 3 − ℓ

ℓ

)

= (n − 2)Fn−3 − ℰ(n − 2).
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Solving Recurrence Relation

Formula for ℰ(n) (i.e., Lekkerkerker’s Theorem)

ℰ(n) =
nFn−1

'2 + 1
+ O(Fn−2).

⌊ n−3
2 ⌋
∑

ℓ=0

(−1)ℓ (ℰ(n − 2ℓ) + ℰ(n − 2(ℓ+ 1)))

=

⌊ n−3
2 ⌋
∑

ℓ=0

(−1)ℓ(n − 2 − 2ℓ)Fn−3−2ℓ.

Result follows from Binet’s formula, the geometric series
formula, and differentiating identities:

∑m
j=0 jx j =

x (m+1)xm(x−1)−(xm+1−1)
(x−1)2 . Details later in the appendix.
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Derivation of Recurrence Relation for ℰ(n)

ℰ(n) =

⌊ n−1
2 ⌋
∑

k=0

k
(

n − 1 − k

k

)

=

⌊ n−1
2 ⌋
∑

k=1

k
(n − 1 − k)!

k !(n − 1 − 2k)!

=

⌊ n−1
2 ⌋
∑

k=1

(n − 1 − k)
(n − 2 − k)!

(k − 1)!(n − 1 − 2k)!

=

⌊ n−1
2 ⌋
∑

k=1

(n − 2 − (k − 1))
(n − 3 − (k − 1)!

(k − 1)!(n − 3 − 2(k − 1))!

=

⌊ n−3
2 ⌋
∑

ℓ=0

(n − 2 − ℓ)

(

n − 3 − ℓ

ℓ

)

= (n − 2)

⌊ n−3
2 ⌋
∑

ℓ=0

(

n − 3 − ℓ

ℓ

)

−
⌊ n−3

2 ⌋
∑

ℓ=0

ℓ

(

n − 3 − ℓ

ℓ

)

= (n − 2)Fn−3 − ℰ(n − 2),

which proves the claim (note we used the binomial identity to replace the sum of binomial coefficients with a
Fibonacci number).
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Formula for ℰ(n)

Formula for ℰ(n)

ℰ(n) =
nFn−1

'2 + 1
+ O(Fn−2).

Proof: The proof follows from using telescoping sums to get an expression for ℰ(n), which is then evaluated by
inputting Binet’s formula and differentiating identities. Explicitly, consider

⌊ n−3
2 ⌋
∑

ℓ=0

(−1)ℓ (ℰ(n − 2ℓ) + ℰ(n − 2(ℓ + 1))) =

⌊ n−3
2 ⌋
∑

ℓ=0

(−1)ℓ(n − 2 − 2ℓ)Fn−3−2ℓ

=

⌊ n−3
2 ⌋
∑

ℓ=0

(−1)ℓ(n − 3 − 2ℓ)Fn−3−2ℓ +

⌊ n−3
2 ⌋
∑

ℓ=0

(−1)ℓ(2ℓ)Fn−3−2ℓ

=

⌊ n−3
2 ⌋
∑

ℓ=0

(−1)ℓ(n − 3 − 2ℓ)Fn−3−2ℓ + O(Fn−2);

while we could evaluate the last sum exactly, trivially estimating it suffices to obtain the main term (as we have a sum
of every other Fibonacci number, the sum is at most the next Fibonacci number after the largest one in our sum).
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Formula for ℰ(n) (continued)

We now use Binet’s formula to convert the sum into a geometric series. Letting ' = 1+
√

5
2 be the golden mean, we

have

Fn =
'
√

5
⋅ 'n −

1 − '
√

5
⋅ (1 − ')

n

(our constants are because our counting has F1 = 1, F2 = 2 and so on). As ∣1 − '∣ < 1, the error from dropping
the (1 − ')n term is O(

∑

ℓ≤n n) = O(n2) = o(Fn−2), and may thus safely be absorbed in our error term. We
thus find

ℰ(n) =
'
√

5

⌊ n−3
2 ⌋
∑

ℓ=0

(n − 3 − 2ℓ)(−1)ℓ'n−3−2ℓ
+ O(Fn−2)

=
'n−2

√
5

⎡

⎢

⎢

⎣

(n − 3)

⌊ n−3
2 ⌋
∑

ℓ=0

(−'
−2

)
ℓ − 2

⌊ n−3
2 ⌋
∑

ℓ=0

ℓ(−'
−2

)
ℓ

⎤

⎥

⎥

⎦

+ O(Fn−2).
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Formula for ℰ(n) (continued)

We use the geometric series formula to evaluate the first term. We drop the upper boundary term of

(−'−1)
⌊ n−3

2 ⌋ , as this term is negligible since ' > 1. We may also move the 3 from the n − 3 into the error
term, and are left with

ℰ(n) =
'n−2

√
5

⎡

⎢

⎢

⎣

n

1 + '−2
− 2

⌊ n−3
2 ⌋
∑

ℓ=0

ℓ(−'
−2

)
ℓ

⎤

⎥

⎥

⎦

+ O(Fn−2)

=
'n−2

√
5

[

n

1 + '−2
− 2S

(

⌊ n − 3

2

⌋

,−'
−2
)]

+ O(Fn−2),

where

S(m, x) =
m
∑

j=0

jx j
.

There is a simple formula for S(m, x). As
m
∑

j=0

x j
=

xm+1 − 1

x − 1
,

applying the operator x d
dx gives

S(m, x) =

m
∑

j=0

jx j
= x

(m + 1)xm(x − 1) − (xm+1 − 1)

(x − 1)2
=

mxm+2 − (m + 1)xm+1 + x

(x − 1)2
.
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Formula for ℰ(n) (continued)

Taking x = −'−2, we see that the contribution from this piece may safely be absorbed into the error term
O(Fn−2), leaving us with

ℰ(n) =
n'n−2

√
5(1 + '−2)

+ O(Fn−2) =
n'n

√
5('2 + 1)

+ O(Fn−2).

Noting that for large n we have Fn−1 = 'n
√

5
+ O(1), we finally obtain

ℰ(n) =
nFn−1

'2 + 1
+ O(Fn−2). □
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