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Introduction

2



Intro Previous Results Gaps Gap Proofs Future Work

Goals of the Talk

Review previous work on Zeckendorf-type decompositions.

Describe new results on gaps between summands.

Discuss open problems being studied by SMALL 2012.

Thanks to colleagues from the Williams College 2010 and 2011
SMALL REU programs (especially Murat Kologlu, Gene Kopp
and Yinghui Wang).
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Previous Results
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Fibonacci Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
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Fibonacci Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .
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Fibonacci Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Fibonacci Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 + 1 = F16 + F13 + F8 + F3 + F1.
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Fibonacci Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 + 1 = F16 + F13 + F8 + F3 + F1.

Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.
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Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hn+1 = c1Hn + c2Hn−1 + · · · + cLHn−L+1, n ≥ L

with H1 = 1, Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1, n < L,
coefficients ci ≥ 0; c1, cL > 0 if L ≥ 2; c1 > 1 if L = 1.

Zeckendorf: Every positive integer can be written uniquely
as

∑

aiHi with natural constraints on the ai ’s
(e.g. cannot use the recurrence relation to remove any
summand).
Lekkerkerker: The average number of summands in the
generalized Zeckendorf decomposition for integers in
[Hn,Hn+1) tends to Cn + d as n → ∞, where C > 0 and d
are computable constants determined by the ci ’s.
Central Limit Type Theorem
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Central Limit Type Theorem

Central Limit Type Theorem

As n → ∞, the distribution of the number of summands, i.e.,
a1 + a2 + · · ·+ am in the generalized Zeckendorf decomposition
∑m

i=1 aiHi for integers in [Hn,Hn+1), is Gaussian.
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Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.

Legal decomposition is decimal expansion:
∑m

i=1 aiHi :

ai ∈ {0,1, . . . ,9} (1 ≤ i < m), am ∈ {1, . . . ,9}.

For N ∈ [Hn,Hn+1), m = n, i.e., first term is
anHn = an10n−1.

Ai : the corresponding random variable of ai .
The Ai ’s are independent.

For large n, the contribution of An is immaterial.
Ai (1 ≤ i < n) are identically distributed random variables
with mean 4.5 and variance 8.25.

Central Limit Theorem: A2 + A3 + · · · + An → Gaussian
with mean 4.5n + O(1)
and variance 8.25n + O(1).
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Gaps Between Summands
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length k .
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length k .

What is P(k) = limn→∞ Pn(k)?
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length k .

What is P(k) = limn→∞ Pn(k)?

Can ask similar questions about binary or other expansions:
2012 = 210 + 29 + 28 + 27 + 26 + 24 + 23 + 22.
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Main Results (Beckwith-Miller 2011)

Theorem (Base B Gap Distribution)

For base B decompositions, P(0) = (B−1)(B−2)
B2 , and for k ≥ 1,

P(k) = cBB−k , with cB = (B−1)(3B−2)
B2 .

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, P(k) = φ(φ−1)
φk for k ≥ 2, with

φ = 1+
√

5
2 the golden mean.
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Fibonacci Results

Theorem (Zeckendorf Gap Distribution (BM))

For Zeckendorf decompositions, P(k) = φ(φ−1)
φk for k ≥ 2, with

φ = 1+
√

5
2 the golden mean.

5 10 15 20 25 30

0.1

0.2

0.3

0.4

5 10 15 20 25

0.5

1.0

1.5

2.0

Figure: Distribution of gaps in [F1000,F1001); F2010 ≈ 10208.
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Main Results (Gaudet-Miller 2012)

Generalized Fibonacci Numbers: Gn = Gn−1 + · · ·+ Gn−L.

Theorem (Gaps for Generalized Fibonacci Numbers)

The limiting probability of finding a gap of length k ≥ 1 between
summands of numbers in [Gn,Gn+1] decays geometrically in k:

P(k) =



















p1(λ
2
1;L − λ1;L − 1)2

CL
λ−1

1;L if k = 1

p1(λ
L−1
1;L − 1)

CLλ
L−1
1;L

λ−k
1;L if k ≥ 2,

where λ1;L is the largest eigenvalue of the characteristic
equation and CL is a constant.
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Gap Proofs
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Proof of Fibonacci Result

Lekkerkerker ⇒ total number of gaps ∼ Fn−1
n

φ2+1 .
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Proof of Fibonacci Result

Lekkerkerker ⇒ total number of gaps ∼ Fn−1
n

φ2+1 .

Let Xi ,j = #{m ∈ [Fn,Fn+1): decomposition of m includes Fi ,
Fj , but not Fq for i < q < j}.
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Proof of Fibonacci Result

Lekkerkerker ⇒ total number of gaps ∼ Fn−1
n

φ2+1 .

Let Xi ,j = #{m ∈ [Fn,Fn+1): decomposition of m includes Fi ,
Fj , but not Fq for i < q < j}.

P(k) = lim
n→∞

∑n−k
i=1 Xi ,i+k

Fn−1
n

φ2+1

.
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

1 ≤ i ≤ n − k − 2:
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

1 ≤ i ≤ n − k − 2:

For the indices less than i : Fi−1 choices. Why? Have F1, don’t
have Fi−1, follows by inverted Zeckendorf.

For the indices greater than i + k : Fn−k−2−i choices. Why?
Easier: have Fn, don’t have Fi+k+1.
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

1 ≤ i ≤ n − k − 2:

For the indices less than i : Fi−1 choices. Why? Have F1, don’t
have Fi−1, follows by inverted Zeckendorf.

For the indices greater than i + k : Fn−k−2−i choices. Why?
Easier: have Fn, don’t have Fi+k+1.

So total choices number of choices is Fn−k−2−iFi−1.
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Determining P(k)

n−k
∑

i=1

Xi ,i+k = Fn−k−1 +

n−k−2
∑

i=1

Fi−1Fn−k−i−2

∑n−k−3
i=0 FiFn−k−i−3 is the xn−k−3 coefficient of (g(x))2,

where g(x) is the generating function of the Fibonaccis.

Alternatively, use Binet’s formula and get sums of
geometric series.
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Determining P(k)

n−k
∑

i=1

Xi ,i+k = Fn−k−1 +

n−k−2
∑

i=1

Fi−1Fn−k−i−2

∑n−k−3
i=0 FiFn−k−i−3 is the xn−k−3 coefficient of (g(x))2,

where g(x) is the generating function of the Fibonaccis.

Alternatively, use Binet’s formula and get sums of
geometric series.

P(k) = C/φk for some constant C, so P(k) = φ(φ− 1)/φk .
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Tribonacci Gaps

Tribonacci Numbers: Tn+1 = Tn + Tn−1 + Tn−2;
F1 = 1, F2 = 2, F3 = 4, F4 = 7, . . . .
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Tribonacci Gaps

Tribonacci Numbers: Tn+1 = Tn + Tn−1 + Tn−2;
F1 = 1, F2 = 2, F3 = 4, F4 = 7, . . . .

Interval: [Tn,Tn+1), size Cn(Tn−1 + Tn−2) + smaller.
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Tribonacci Gaps

Tribonacci Numbers: Tn+1 = Tn + Tn−1 + Tn−2;
F1 = 1, F2 = 2, F3 = 4, F4 = 7, . . . .

Interval: [Tn,Tn+1), size Cn(Tn−1 + Tn−2) + smaller.

Counting:

Xi ,i+k(n) =
{

Ti−1(Tn−i−3 + Tn−i−4) if k = 1
(Ti−1 + Ti−2)(Tn−k−i−1 + Tn−k−i−3) if k ≥ 2.
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Tribonacci Gaps

Tribonacci Numbers: Tn+1 = Tn + Tn−1 + Tn−2;
F1 = 1, F2 = 2, F3 = 4, F4 = 7, . . . .

Interval: [Tn,Tn+1), size Cn(Tn−1 + Tn−2) + smaller.

Counting:

Xi ,i+k(n) =
{

Ti−1(Tn−i−3 + Tn−i−4) if k = 1
(Ti−1 + Ti−2)(Tn−k−i−1 + Tn−k−i−3) if k ≥ 2.

Constants st P(1) =
c1

Cλ3
1

, P(k) =
2c1

C(1 + λ1)
λ−k

1 (for k ≥ 2).
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Future Work
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Other gaps?

⋄ Gaps longer than recurrence – proved geometric decay.

⋄ Interesting behavior with “short” gaps.

⋄ “Skiponaccis”: Sn+1 = Sn + Sn−2.

⋄ “Doublanaccis”: Hn+1 = 2Hn + Hn−1.

⋄ Hope: Generalize to all positive linear recurrences.

Thank you!
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