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Introduction




Goals of the Talk

@ Research: What questions to ask? How? With whom?
@ Explore: Look for the right perspective.

@ Utilize: What are your tools and how can they be used?
@ succeed: Control what you can: reports, talks, ....

Joint with many students and junior faculty over the years.




Research: What questions to ask? How? With whom?

@ Build on what you know and can learn.
@ What will be interesting?
@ How will you work?

@ Where are the questions? Classes, arXiv, conferences, ....




Explore: Look for the right perspective.

@ Ask interesting questions.
@ Look for connections.

@ Be a bit of a jack-of-all trades.

Leads naturally into....

TS s




Utilize: What are your tools and how can they be used?

Law of the Hammer:

@ Abraham Kaplan: | call it the law of the instrument, and it
may be formulated as follows: Give a smaill boy a hammer,
and he will find that everything he encounters needs
pounding.

@ Abraham Maslow: | suppose it is tempting, if the only tool
you have is a hammer, to treat everything as if it were a
nail.

@ Bernard Baruch: If all you have is a hammer, everything
looks like a nail.




Succeed: Control what you can: reports, talks

@ Write up your work: post on the arXiv, submit.

@ Go to conferences: present and mingle (no spam and
P&J).

@ Turn things around fast: show progress, no more than 24
hours on mundane.

@ Service: refereeing, MathSciNet, ....
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Pre-requisites
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Pre-requisites: Probability Review

@ Let X be random variable with density p(x):
op(x) > 0; [Z p(x)dx = 1;
o Prob(a < X < b) = [? p(x)dx.
@ Mean: = [ xp(x)dx.
@ Variance: 02 = [*_(x — p)2p(x)dx.
@ Gaussian: Density (2m02)~"/2 exp(—(x — p)?/20?).
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Pre-requisites: Combinatorics Review

@ n!: number of ways to order n people, order matters.

® sy = NCk = (i): number of ways to choose k from n,
order doesn’t matter.

@ Stirling’s Formula: n! =~ n"e~"v/2xrn.
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Previous Results

Fibonacci Numbers: Fp.1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89, .. ..
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Previous Results

Fibonacci Numbers: F,.1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89,....

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Previous Results

Fibonacci Numbers: F,.1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89, ....

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =7
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Previous Results

Fibonacci Numbers: F,.1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89, ....

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +17 = Fg + 17.
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Previous Results

Fibonacci Numbers: F,.1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89, ....

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13+4 = Fg + Fs + 4.
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Previous Results

Fibonacci Numbers: F,.1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89, ....

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13 +3+1=Fg+ Fg + F3 + 1.
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Previous Results

Fibonacci Numbers: F,.1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89, ....

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13+3+1=Fg+ Fg + F3 + F4.
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Previous Results

Fibonacci Numbers: F,.1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89, ....

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13+3+1 = F8+F6+F3—|-F1.
Example: 83=55+21+5+2=Fy+ F7 + F4 + F>.
Observe: 51 miles ~ 82.1 kilometers.
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Old Results

Central Limit Type Theorem

As n — oo distribution of number of summands in Zeckendorf
decomposition for m € [Fp, F1) is Gaussian (normal).

0.030 [ o~
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0.010 |
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Figure: Number of summands in [Fao10, Feo11); Feot1o =~ 10420,
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New Results: Bulk Gaps: m < [Fj,, F,1) and ¢ =

k(m)=n 1 k(m)
Z jr vmin(X :k(,n)_1j§5(x—(i/—i/—1))-

Theorem (Zeckendorf Gap Distribution)

Gap measures v, converge almost surely to average gap
measure where P(k) = 1/¢* for k > 2.

15 E) E E) B 10 i 2

Figure: Distribution of gaps in [Fig00, F1001); Foo10 ~ 102%.
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New Results: Longest Gap

Theorem (Longest Gap)

As n — oo, the probability that m € [Fp, F,.1) has longest gap
less than or equal to f(n) converges to

__plogn—f(n)/ log ¢
e ¢ :

Prob (L,(m) < f(n)) =~

Immediate Corollary: If f(n) grows slower or faster than
log n/ log ¢, then Prob(L,(m) < f(n)) goes to 0 or 1,
respectively.
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Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P

distinct people is (“5°7).
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Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P

distinct people is (“5°7).

Proof: Consider C + P — 1 cookies in a line.
Cookie Monster eats P — 1 cookies: (°577") ways to do.
Divides the cookies into P sets.




Pre-regs
[ ]

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P

distinct people is (“5°7).

Proof: Consider C + P — 1 cookies in a line.

Cookie Monster eats P — 1 cookies: (°577") ways to do.
Divides the cookies into P sets.

Example: 8 cookies and 5 people (C = 8, P = 5):
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Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P

distinct people is (“5°7).

Proof: Consider C + P — 1 cookies in a line.

Cookie Monster eats P — 1 cookies: (°577") ways to do.
Divides the cookies into P sets.

Example: 8 cookies and 5 people (C = 8, P = 5):
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Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P

distinct people is (“5°7).

Proof: Consider C + P — 1 cookies in a line.

Cookie Monster eats P — 1 cookies: (°577") ways to do.
Divides the cookies into P sets.

Example 8 cookles and 5 people (C 8 P 5):
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to xq + - - - + xp = C with x; > 0 is
C+P—1
(“p27)-
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to xq + - - - + xp = C with x; > 0 is
C+P—1
(“p27)-

Let pnx = # {N € [Fp, Fni1): the Zeckendorf decomposition of
N has exactly k summands}.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to xq + - - - + xp = C with x; > 0 is
C+P—1
(“p27)-

Let pnx = # {N € [Fp, Fni1): the Zeckendorf decomposition of
N has exactly k summands}.
For N € [Fp, Fni1), the largest summand is F,.
N:l__i1 +Fig+..'+l__ik71 +Fn:
1<l <o <o <1 <ik:n,ijfij,1 > 2.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to xq + - - - + xp = C with x; > 0 is
C+P—1
(“p27)-

Let pnx = # {N € [Fp, Fni1): the Zeckendorf decomposition of
N has exactly k summands}.

For N € [Fp, Fni1), the largest summand is F,.
N=F +Fy,+-+F_, + Fn,
1<h<b<- <k <lk=n,lj—i_14>2.
oy =i —1,d:=j—ij_1—2(>1).
di+db+--+dk=n-2k+1,d >0.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to xq + - - - + xp = C with x; > 0 is
C+P—1
(“p27)-

Let pnx = # {N € [Fp, Fni1): the Zeckendorf decomposition of
N has exactly k summands}.
For N € [Fp, Fni1), the largest summand is F,.
N:l__i1 +Fig+..'+l__ik71 +Fn:
1<l <o <o <1 <ik:n,ijfij,1 > 2.
d1 I:i1 —1,de:ij—ij_1 —2(j>1)
di+do+---+d¢=n-2k+1,d >0.

Cookie counting = p, x = (72K 1 F K1) = (17F).

TS
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Gaussian Behavior
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Generalizing Lekkerkerker: Erdos-Kac type result

Theorem (KKMW 2010)

As n — oo, the distribution of the number of summands in
Zeckendorf’s Theorem is a Gaussian.

Sketch of proof: Use Stirling’s formula,
n' ~ n"e "v2rn

to approximates binomial coefficients, after a few pages of
algebra find the probabilities are approximately Gaussian.
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(Sketch of the) Proof of Gaussianity

24

The probability density for the number of Fibonacci numbers that add up to an integer in [Fp, Fpy1) is
fa(k) = ("’;’k) /Fn_1. Consider the density for the n + 1 case. Then we have, by Stirling

(nfk) 1
k ) Fn

1
(n—K! 1 1 (n—K)"krz 1

fn+1(k)

(n—2K)K Fy V27 (k+D) K23 Fn

(n—2
plus a lower order correction term.
Also we can write Fp = % ¢>”+1 = %4)" for large n, where ¢ is the golden ratio (we are using relabeled

Fibonacci numbers where 1 = F4 occurs once to help dealing with uniqueness and F, = 2). We can now split the
terms that exponentially depend on n.

fom 1 (n—k) _p (n—K)k
i) = | 5= m¢ ® ik (n — akyn—2k |-

_ 1 (n—k) 5 _ .—n
T VEVkew e MY

Define

(n— k)n—k
kk(n — 2k)n—2k
Thus, write the density function as

fn+1 (k) = NnSp

where Nj, is the first term that is of order n—1/2 and S,, is the second term with exponential dependence on .
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(Sketch of the) Proof of Gaussianity

Model the distribution as centered around the mean by the change of variable k = i + xo where p and o are the
mean and the standard deviation, and depend on n. The discrete weights of f,(k) will become continuous. This
requires us to use the change of variable formula to compensate for the change of scales:

fa(k)dk = fo(p + ox)odx.

Using the change of variable, we can write N, as

Ny, = 1 n—k @
N (n—2k) N
B 1 1—k/n \/5
Vern\ (k/n)(1 —2k/n) ¢
_ \/ 1= (p+ox)/n V5
\ﬁ (e + ox)/n)(A = 2(u + ox)/n) &
1—C—y V5

V2 (C+y(t-20-2y) ¢

where C = p/n = 1/(¢ + 2) (note that ¢>2 = ¢ + 1) and y = ox/n. But for large n, the y term vanishes since
o ~ vnandthus y ~ n~1/2 Thus

N o~ [ 1-C V5 / V5 _ 1 [s(e+2) 1
"7 Ve (1fzc)¢> ¢ 6  2mn 6 Vzno?

i 2 _ ()
since o = Ngr 5y -

e
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(Sketch of the) Proof of Gaussianity

For the second term S, take the logarithm and once again change variables by k = p + xo,

log(Sn) = log <¢_”u>

n kk(n — 2k)(n—2k)

_ —nlog(¢) + (n — k) log(n — k) — (k) log(k)

— (n — 2k) log(n — 2k)
—nlog(¢) + (n — (1 + xo)) log(n — (u + x))
— (p + xo) log(p + xo)
= (1= 2(u + x0)) log(n — 2(1 + x0))
—nlog(e)

+(n = (1 + x0)) <|°€(" — 1) +log <1 N n)f#>)

— (u + xo) (Iog(u) + log <1 * %))

—(n—2(u + x0)) ('°€(” — 2u) + log (1 ) jUzu>)

—nlog(¢)

I SVRUD)

— (p + x0) log (1 + %)

—(n—2(u + xo)) (Iog (5 —2) +log (1 B nigzu» i

sl L))
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(Sketch of the) Proof of Gaussianity

Note that, since n/u = ¢ + 2 for large n, the constant terms vanish. We have log(Sp)

- —nlog(¢)+(n—k)|og<£—1>—(n—2k)|og(£—2>+(n—(u+XU))|og(1— xo >

n—p

— (1 + x0) log (1 + Xf) = (1= 2(n + x0)) log (1 - nigzu)

= —nlog($) + (n — k) log (¢ + 1) — (n — 2k) log (¢) + (n — (1 + xo)) log (17 xo )

n—p
Xo )
n—2up

= (= tog(6) + log (9) — log (9)) + K(log(6%) + 2Iog()) + (n — (u + xe) g (1= ")
n—p

— (1 + xo) log (1 + Xf) — (n—2(p + x0)) log (1 -

—(ptxo)log (‘ + Xf) — (0= 2(p + x0)) log (1 72,:‘72#)

= (n—(n+x0))log (1 - nx_—au) —(u+xa)|og(1+%7)

—(n = 2(p + x0)) log (1 72,:"2“) .

YT
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(Sketch of the) Proof of Gaussianity

Finally, we expand the logarithms and collect powers of xo /n.

Xo 1 Xo 2
log(Sn) = (nf(MJrXo))(fn_MfE(n_u) +>
Xo 1 /xo\2
,(u+xo)<775<7) +>

5 5 Xo 1 5 Xo 2
— (=2t x| — n72u_§( n72u) e

B Xo 1 Xo 2
= (0= (n+x0)) *W*E W + ...
(¢+2) (¢+2)

2
Xo 1 Xo
— (p + x0) e +...
P+2 b+2

2+ xo)) [ - 2xo 71 2xo 2+
n o - p n&

2
- X, _<1_L)(¢+2)—1+2<1—L)L+2
n ¢+2/) (p+1) ¢+2) ¢

1 /xo\2 p+2 P+2 ¢+2

-3 (7) n(72ﬁ+ﬁ+2(¢+2)*(¢+2)+47>

+0 (n(xcr/n)s)
e OGS -
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(Sketch of the) Proof of Gaussianity

Xon( d+1p+2 142 ¢ ¢+2)

n

log(S, = i
o&(Sn) +2¢+1 6+2 o

1 3¢+ 4 xo\ 3
E n o )<¢(¢+1)+1>+0<"<7>>
B 1 (x0)? 3¢ +4+2¢p+1 xo\3
- _ET("’”)(W)“j("(T))

_ —%Xzo'z (%) +O(n(xcr/n)3)<
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(Sketch of the) Proof of Gaussianity

But recall that
2 ¢n
5(¢ +2)

3 3
Also, since o ~ n~ /2, n (XTU) ~n=1/2 0 for large n, the O (n (XT") ) term vanishes. Thus we are left
with

log Sp

Il
|

|

>

Sn X

Il
)

Hence, as n gets large, the density converges to the normal distribution:

f(k)dk = NnSpdk
1
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Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hpoi1 =ctHp+ Hpy + -+ CHp41, N> L
with H1 =1, Hn+1 = C1Hn—|-Can_1 —|—---—|—CnH1 —|—1, n<l.l,
coefficients ¢; > 0; ¢y,c, >0ifL>2;¢y >1if L=1.

e Zeckendorf: Every positive integer can be written
uniquely as > a;H; with natural constraints on the a;’s
(e.g. cannot use the recurrence relation to remove
any summand).

o Lekkerkerker

e Central Limit Type Theorem
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Generalizing Lekkerkerker

Generalized Lekkerkerker’s Theorem

The average number of summands in the generalized
Zeckendorf decomposition for integers in [H,, H,.1) tends
to Cn+ d as n — oo, where C > 0 and d are computable
constants determined by the ¢;’s.

o V() _ Sro(Sm+ Smet = 1)(Smet = Smy™(1)
y(1) 25 o(m+1)(Smet — Sm)y™(1)
So=0,8sp,=¢Cci+C+- -+ Cn.

y(x) is the root of 1 — S 51 Some1 =T xijym+t,

J=Sm

y(1)istherootof 1 — ¢y — coy® — - - — ¢yt
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Central Limit Type Theorem

Central Limit Type Theorem

As n — oo, the distribution of the number of summands,
i.e., a + a + -+ anmin the generalized Zeckendorf
decomposition Y7, a;H; for integers in [Hp, Hy. 1) is
Gaussian.
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Example: the Special Case of L =1, ¢; =10

H,H_1 = 10Hn, H1 =1, Hn =101,

e Legal decomposition is decimal expansion: Y 1, a;H;:
ae{0,1,....9Y(1 <i<m),anc{l,...,9}.

e For N € [H,, Hpy1), m= n, i.e., first term is
a,H, = a,10"".

e A;: the corresponding random variable of a;.
The A/’s are independent.

e For large n, the contribution of A, is immaterial.
A; (1 <i < n) are identically distributed random
variables
with mean 4.5 and variance 8.25.

@ Central Limit Theorem: As + As +-- -+ A, — Gaussian
with mean 4.5n+ O(1)
and variance 8.25n+ O(1).
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

AR
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Generating Function (Example: Binet’s Formula)

Binet’s Formula




Gaussianity
L ]

Generating Function (Example: Binet’s Formula)

Binet’s Formula
Fi=rast P g (55 (24

e Recurrence relation: F,.1 = F,+ F,_4 (1)
e Generating function: g(x) = >_,.o Fnx".

A7
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Generating Function (Example: Binet’s Formula)

Binet’s Formula
Fi=rast P g (55 (24

e Recurrence relation: F,.1 = F,+ F,_4 (1)
e Generating function: g(x) = >_,.o Fnx".

(1) = Y Faax™ =) Fox™ £y " Fp qx™

n>2 n>2 n>2
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Generating Function (Example: Binet’s Formula)

Binet’s Formula
Fi=rast P g (55 (24

e Recurrence relation: F,.1 = F,+ F,_4 (1)
e Generating function: g(x) = >_,.o Fnx".

(1) = Y Faax™ =) Fox™ £y " Fp qx™

n>2 n>2 n>2

= D FuX"=) Fx™' 4+ ) Fox"?

n>3 n>2 n>1
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Generating Function (Example: Binet’s Formula)

Binet’s Formula
Fi=rast P g (55 (24

e Recurrence relation: F,.1 = F,+ F,_4 (1)
e Generating function: g(x) = >_,.o Fnx".

(1) = Y Faax™ =) Fox™ £y " Fp qx™

n>2 n>2 n>2
= Y Fox" =) Fx™'+ Y Fx"?
n>3 n>2 n>1

= ZF,,X" = XZFan —I—XQZF,,XH

n>3 n>2 n>1

;
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Generating Function (Example: Binet’s Formula)

Binet’s Formula
Fi=rast P g (55 (24

e Recurrence relation: F,.1 = F,+ F,_4 (1)
e Generating function: g(x) = >_,.o Fnx".

(1) = Y Faax™ =) Fox™ £y " Fp qx™

n>2 n>2 n>2

= Y Fox" =) Fx™'+ Y Fx"?
n>3 n>2 n>1

= Z F.x" = XZ F.x" + x? Z F.x"
n>3 n>2 n>1

= 9g(x) — Fix — Fax? = x(9(x) — F1x) + x*g(x)

;
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Generating Function (Example: Binet’s Formula)

Binet’s Formula
Fi=rast P g (55 (24

e Recurrence relation: F,.1 = F,+ F,_4 (1)
e Generating function: g(x) = >_,.o Fnx".

(1) = Y Faax™ =) Fox™ £y " Fp qx™

n>2 n>2 n>2

= Y Fox" =) Fx™'+ Y Fx"?
n>3 n>2 n>1

= Z F.x" = XZ F.x" + x? Z F.x"
n>3 n>2 n>1

g(x) — Fix — Fax? = x(g(x) — F1x) + x?g(x)
g(x) =x/(1 — x — x?).

44

[
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Partial Fraction Expansion (Example: Binet’s Formula)

e Generating function: g(x) = >, o FaX" = 7=

1—x—x2"

eSS -
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Partial Fraction Expansion (Example: Binet’s Formula)

e Generating function: g(x) = >, o FaX" = 7=

1—x—x2"

e Partial fraction expansion:

BA
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Partial Fraction Expansion (Example: Binet’s Formula)

e Generating function: g(x) = >, o FaX" = 7=

1—x—x2"

e Partial fraction expansion:

X 1 o x 145y
N )

1—x—x? V5

SN EOGSTSTSSSSSSSSSES
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Partial Fraction Expansion (Example: Binet’s Formula)

X

e Generating function: g(x) = >, o FnX" = .

e Partial fraction expansion:

B X 1 ESTEPY 145y
DAy v Ry~ T el

1—x—x?

Coefficient of x” (power series expansion):
n \/» n .
Fn= [(%) — (#) ] - Binet's Formula!
(using geometric series: ﬁ =14r+rP+r3+...).

;
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Differentiating Identities and Method of Moments

e Differentiating identities
Example: Given a random variable X such that

PriX=1)=1Pr(X=2)=1 Pr(X=3)=1, ...
then what’s the mean of X (i.e., E[X])?

Solution: Let f(x) = 3x + 3x* + gx® + - = 5 — 1.
fix)=1-3+2-Ix+3- x>+,
f(1)y=1-3+2-7+3-3+---=E[X].

e Method of moments: Random variables Xi, X, . ...

If " moments E[X!] converges those of standard
normal then X, converges to a Gaussian.

Standard normal distribution:
2m™ moment: (2m — 1)l = (2m —1)(2m —3)---1,
(2m — 1) moment: 0.

L
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New Approach: Case of Fibonacci Numbers

pnk = # {N € [Fn, Fry1): the Zeckendorf decomposition of N
has exactly k summands}.
@ Recurrence relation:

N e [Fn+1,Fn+2)Z N = Fn+1 +Fi+--,t<n-—1.

Pnitk+t = Pn-1k+Pn2k+ "

~- TS
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New Approach: Case of Fibonacci Numbers

pnk = # {N € [Fn, Fry1): the Zeckendorf decomposition of N
has exactly k summands}.
@ Recurrence relation:
NG [Fn+1,Fn+2): N:Fn_l’_‘] +Ft+"', tgn_1.
Pnitk+t = Pn-1k+Pn2k+ "
Pnk+1 = Pn-2k +Pn-3k+- "

BQ
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New Approach: Case of Fibonacci Numbers

pnk = # {N € [Fn, Fry1): the Zeckendorf decomposition of N
has exactly k summands}.
@ Recurrence relation:

N e [Fn+1,Fn+2)Z N = Fn+1 +Fi+--,t<n-—1.

Pnitk+t = Pn-1k+Pn2k+ "
Pnk+1 = Pn-2k +Pn-3k+- "
= Pnt1,k+1 = Pnk+1 + Pn—1k-
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New Approach: Case of Fibonacci Numbers

pnk = # {N € [Fn, Fry1): the Zeckendorf decomposition of N
has exactly k summands}.
@ Recurrence relation:

N e [Fn+1,Fn+2)Z N = Fn+1 +Fi+--,t<n-—1.

Pnt1k+1 = Pn-1k+ Ppn-2k =+
Pnk+1 = Pn-—2k+ Pn-3k+ -
= Pnt1,k+1 = Pnk+1 + Pn—1k-
. L kyn _ Yy
@ Generating function: Zn,k>0 PnkX"Y" = 3= =52

@ Partial fraction expansion:

y _ y ( 1 1 >
T—y—xy? yi(x) = yo(x) \y —y1(x) y—ya(x)
where y;(x) and y»(x) are the roots of 1 — y — xy? = 0.

Coefficient of y™: g(x) = 3. o PniX".
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New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k.
9(x) = > k=0 pn,ka-
@ Differentiating identities:
9(1) = > k=0Pnk = Fny1 — Fn,
g (X) = g0 kPnsx 1, g'(1) = g(1) E[Ky),
(xg'(x)) = > k>0 kzpn,kxkq,
(xg' (%)) lx=1 = 9(EIKE], (x (xg'(x))') |x=1 = g(1)EIKZ], ...
Similar results hold for the centralized Kj,: K}, = K, — E[Kj].
@ Method of moments (for normalized K},):
E[(KA)2™/(SD(KA))?™ — (2m — 1)1,
E[(K})2™=11/(SD(K}))?™1 — 0. = K, — Gaussian.
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New Approach: General Case

Let prx = # {N € [Hn, Hr11): the generalized Zeckendorf
decomposition of N has exactly k summands}.
@ Recurrence relation:
Fibonacci: pri1 k+1 = Pnk+1 + Pnk-

. L1 Smyq—1
General: Ppitk =D meo 2 jey  Pr-mk—j-

where s =0,y =¢Cy+Co+ -+ Cm.
@ Generating function:
Fibonacci: ﬁ
General:
Zn<L Pn, ka Z fm;;_1 ijm+1 Zn<L m Pn, kX y

1 . Z Sm+1 X]ym+1
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New Approach: General Case (Continued)

@ Partial fraction expansion:

, Ly 1 1
Fibonacci: -0 (y—y1(x) ,V—Y2(X))'

General: L
B 1 Z B(x,y) ‘
Sl X = = yi0O) T (1(6) = yi(x))
—1 Smy1—1
ankxy —Z Z xym Z PrkX y",
n<L m=0 j=sm n<lL—m

yi(x): root of 1 — S sosm =1 yjymet _ g

J=8m
Coefficient of y": g(x) = >, k=0 PnkX*.
@ Differentiating identities
@ Method of moments: implies K, — Gaussian.
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Introduction to Completeness

Definition
A sequence {H;};>1 is complete if every positive integer is
a sum of its terms, using each term at most once.
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Introduction to Completeness

Definition
A sequence {H;};>1 is complete if every positive integer is
a sum of its terms, using each term at most once.

Example: H,.1 = 2H,; terms are a, = 2"~'. Complete
because every integer has a binary representation.
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Introduction to Completeness

Definition
A sequence {H;};>1 is complete if every positive integer is
a sum of its terms, using each term at most once.

Example: H,.1 = 2H,; terms are a, = 2"~'. Complete
because every integer has a binary representation.

The complete sequence with maximal terms is a, = 2" 1.
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Additional Examples

@ Hy.1 = H,+ 3H,_4 is not complete. Terms are
{1,2,5,11,...}, cannot get 4 or 9 (grows too quickly).
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Additional Examples

@ Hy.1 = H,+ 3H,_4 is not complete. Terms are
{1,2,5,11,...}, cannot get 4 or 9 (grows too quickly).

e The Fibonacci sequence F,.1 = F, + F,_1, with initial
conditions F; = 1, F, = 2, is complete (follows from
Zeckendorf’s Theorem).

Study PLRS: Positive Linear Recurrence Sequences:
finite depth recurrence with non-negative integer
coefficients.

T0)
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Brown’s Criterion

Theorem (Brown)

A nondecreasing sequence {H;};>1 is complete if and
only if Hy =1 and for every n > 1

n
Hoer < 14> H,.

i=1

2SS
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Brown’s Criterion

Theorem (Brown)

A nondecreasing sequence {H;};>1 is complete if and
only if Hy =1 and for every n > 1

n
Hoer < 14> H,.

i=1

Can we bound where an incomplete sequence first fails
Brown'’s criterion?

D
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Brown’s Criterion

Theorem (Brown)

A nondecreasing sequence {H;};>1 is complete if and
only if Hy =1 and for every n > 1

n
Hn+1 < 1 +ZHI-

i=1

Can we bound where an incomplete sequence first fails
Brown'’s criterion? Yes!

Theorem (SMALL 2020)

An incomplete PLRS H,, 1 = ciH, + - - - + ¢ Hp 1 fails
Brown'’s criterion before the 2L™" term.

y
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Analyzing Families of Sequences

Write [ci,...,c] for Hpoy = ctHp+ ...+ CLHp 141-

Theorem (SMALL 2020)

@ [1,0,...,0,N], with k zeros, is complete if and only if

N < L(k+2{‘fk+3)+%J.

@ [1,1,0,...,0,N], with k zeros, is complete if and only

if
Fk+4 - (k + 2)J
2 ’

where Fj is the k' Fibonacci number.

V< |

y
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Results on Modifying a PLRS

When studying a PLRS, what modifications to the
recurrence coefficients preserve completeness /
incompleteness?

TS




Completeness
L]

Results on Modifying a PLRS

When studying a PLRS, what modifications to the
recurrence coefficients preserve completeness /
incompleteness?

Theorem (SMALL 2020)

e Ifa sequence [cy,...,CL_1,CL] is complete, then so is
[C1,...,c1,U] forany u < c,. (Remark: this is not
true in general for c; in any position.)

e Ifa sequence [cy, ..., c] is incomplete, then so is
[Ci,...,CL,CL1] forany c .4 > 0.
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Principal Roots

Theorem (Generalized Binet’s Formula)

Ifry, ..., re are the distinct roots of the charateristic
polynomial of a PLRS {H,}, then there exist polynomials
g1, ..., Qk such thatvn, H, = qi(n)r{! + - - - + qe(n)ry.

TS
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Principal Roots

Theorem (Generalized Binet’s Formula)

Ifry, ..., re are the distinct roots of the charateristic
polynomial of a PLRS {H,}, then there exist polynomials
g1, ..., Qk such thatvn, H, = qi(n)r{! + - - - + qe(n)ry.

The characteristic polynomial has a unique positive root
ri, which is the largest in absolute value; called the
principal root. Furthermore:

Theorem (SMALL 2020)

If{H,} is a complete PLRS and r is its principal root,
thenr, < 2.

y
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Bounding Principal Roots

@ Proved there exists a second bound 1 < B, < 2 so
that if 1 < By, then the sequence is complete. Bound
depends on the length of the generating sequence
[ci,...,cL]. We conjecture the following.

Conjecture (SMALL 2020)

For any given L, the incomplete sequence of length L with
the lowest principal root is [1,0, ..., 0, P(”ﬂ +1].

Qe
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Bounding Principal Roots

@ Proved there exists a second bound 1 < B, < 2 so
that if 1 < By, then the sequence is complete. Bound
depends on the length of the generating sequence
[ci,...,cL]. We conjecture the following.

Conjecture (SMALL 2020)

For any given L, the incomplete sequence of length L with
the lowest principal root is [1,0, ..., 0, P(LH)W +1].

e If this holds, then for large L, we would have
B, ~ (L/2)%*. In particular, lim;_,., B, = 1.
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Gaps in the Bulk
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Distribution of Gaps

For F,, + F, +--- + F,,, the gaps are the differences
n—"rn,—1 —rh—2,..., 12— 1.

Example: For F; + Fg + Fig, the gaps are 7 and 10.
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Distribution of Gaps

For F,, + F, +--- + F,,, the gaps are the differences
n—"rn,—1 —rh—2,..., 12— 1.

Example: For F; + Fg + Fig, the gaps are 7 and 10.

Let P,(k) be the probability that a gap for a decomposition
in [Fp, Fryt) is of length k.
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Distribution of Gaps

For F,, + F, +--- + F,,, the gaps are the differences
n—"rn,—1 —rh—2,..., 12— 1.

Example: For F; + Fg + Fig, the gaps are 7 and 10.

Let P,(k) be the probability that a gap for a decomposition
in [Fp, Fryt) is of length k.

What is P(k) = limp_e. Pa(k)?
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Distribution of Gaps

For F,, + F, +--- + F,,, the gaps are the differences
n—"rn,—1 —rh—2,..., 12— 1.

Example: For F; + Fg + Fig, the gaps are 7 and 10.

Let P,(k) be the probability that a gap for a decomposition
in [Fp, Fryt) is of length k.

What is P(k) = limp_e. Pa(k)?

Can ask similar questions about binary or other
expansions: 2012 = 210 1 29 4. 28 4 27 1 26 4 24 4 23 4 D2,
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Main Result

Theorem (Distribution of Bulk Gaps (SMALL 2012))

LetH,.1 = ¢tHy+ CoHy 1 + - -+ + cLHnh 1L be a positive
linear recurrence of length L where ¢; > 1 forall1 < i < L.
Then

—(E)eN e —3) -0
P(j) = /\1_1(CLek)(/\1(1 _231)+a1) =1
(/\1 _1) (CLek> )\;] 122
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Special Cases

Theorem (Base B Gap Distribution (SMALL 2011))

(B—1)(B—2)
B2

For base B decompositions, P(0) = , and for

k> 1, P(k) = cgB*, with cg = (B=1038-2),

Theorem (Zeckendorf Gap Distribution (SMALL 2011))

For Zeckendorf decompositions, P(k) = 1/¢* for k > 2,
with ¢ = 12/ the golden mean.
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker = total number of gaps ~ F,_4 #.
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker = total number of gaps ~ F,_4 #.

Let Xi; = #{m € [Fp, Fr+1): decomposition of m includes
Fi, F;, but not F, for i < q < j}.
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker = total number of gaps ~ F,_4 #.
Let Xi; = #{m € [Fp, Fr+1): decomposition of m includes
Fi, F;, but not F, for i < q < j}.

n—k
. . X :

P(k) = lim &=t 2htk

-1
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Calculating X; ;. «

How many decompositions contain a gap from F; to F; «?

OO --0OR0R3RQ—-- RO/ - -ORe
Fy Fi1 F, Firk Fisrn1 Fu1 B
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Calculating X; ;. «

How many decompositions contain a gap from F; to F; «?

OO --0OR0R3RQ—-- RO/ - -ORe
Fy Fi1 F, Firk Fisrn1 Fu1 B

For the indices less than i: F;_; choices. Why? Have F; as largest
summand and follows by Zeckendorf: #[F;, Fii1) = Fiz1 — Fi = Fi_1.
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Calculating X; ;. «

How many decompositions contain a gap from F; to F; «?

OO --0OR0R3RQ—-- RO/ - -ORe
Fy Fi1 F, Firk Fisrn1 Fu1 B

For the indices less than i: F;_; choices. Why? Have F; as largest
summand and follows by Zeckendorf: #[F;, Fii1) = Fiz1 — Fi = Fi_1.

For the indices greater than i + k: F,_x_;_» choices. Why? Shift.
Choose summands from {F, ..., Fo_k—iy1} With Fy, Fpo_k—it1
chosen. Decompositions with largest summand F,_x_;+1 minus
decompositions with largest summand F,_x_;.
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Calculating X; ;. «

How many decompositions contain a gap from F; to F; «?

OO --0OR0R3RQ—-- RO/ - -ORe
Fy Fi1 F, Firk Fisrn1 Fu1 B

For the indices less than i: F;_; choices. Why? Have F; as largest
summand and follows by Zeckendorf: #[F;, Fii1) = Fiz1 — Fi = Fi_1.

For the indices greater than i + k: F,_x_;_» choices. Why? Shift.
Choose summands from {F, ..., Fo_k—iy1} With Fy, Fpo_k—it1
chosen. Decompositions with largest summand F,_x_;+1 minus
decompositions with largest summand F,_x_;.

So total number of choices is F,,_x_o_;F;_1.
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Determining P(k)

Recall
—k —k
P(k) = lim St Xiiek _ iy Mics F”’k]Z*’E*‘.
n—00 Fn,1@ n—o0 an@
Use Binet’s formula. Sums of geometric series:
P(k) =1/¢*.
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Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:
@ cannot take two elements from the same bin, and

e if have an element from a bin, cannot take anything
from the first s bins to the left or the first s to the right.
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Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:
@ cannot take two elements from the same bin, and

e if have an element from a bin, cannot take anything
from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).
Kentucky: These are (s, b) = (1, 2).
[1, 2], [3, 4], [5,




Kentucky and Quilts
(]

Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:
@ cannot take two elements from the same bin, and

e if have an element from a bin, cannot take anything
from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).
Kentucky: These are (s, b) = (1, 2).
[1, 2], [3, 4], [5 8],
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Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:
@ cannot take two elements from the same bin, and

e if have an element from a bin, cannot take anything
from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).
Kentucky: These are (s, b) = (1, 2).
[1, 2], [3, 4], [5, 8], [11,




Kentucky and Quilts
(]

Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:
@ cannot take two elements from the same bin, and

e if have an element from a bin, cannot take anything
from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).
Kentucky: These are (s, b) = (1, 2).
1, 2], [3, 4], [5, 8], [11, 16],
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Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:
@ cannot take two elements from the same bin, and

e if have an element from a bin, cannot take anything
from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).
Kentucky: These are (s, b) = (1, 2).
1, 2], [3, 4], [5, 8], [11, 16], [21,
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Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:
@ cannot take two elements from the same bin, and

e if have an element from a bin, cannot take anything
from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).
Kentucky: These are (s, b) = (1, 2).
1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64|, [85, 128]
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Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:
@ cannot take two elements from the same bin, and

e if have an element from a bin, cannot take anything
from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).
Kentucky: These are (s, b) = (1, 2).
1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128]

@ a,=2"and dont1 = %(22+n — (—1 )n):
ni1 = ap1t2ap3,a=1a=2a=3a =4.
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Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:
@ cannot take two elements from the same bin, and

e if have an element from a bin, cannot take anything
from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).
Kentucky: These are (s, b) = (1, 2).
1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128]

@ Aoy = 2" and dont1 = %(22+n — (—1 )n):
n1 = apq1t2a3.a=1a=2a =3 a =4
@ an.1 = an_1+2a,_3: New as leading term 0.

AOR
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What’s in a name?

€« C A [ www.11points.com/Dating-Sex/11_State_ usins,_|

[ aav [ Peoplesoft & amseradsog [@] Gow [ 317 [ 331 MEQ woniki [ sched BRFR 1Y Healthub < Survey

fall under the "well, we have to invite your Uncle Bernie” umbrella!

1. A ban on marriages between first
cousins and first cousins once
remouved: Indiana, Kentucky, Nevada,
Ohio, Washington and Wisconsin. These
stat wve the strictestla =fe=p=cn
Kentni'kv Nev: ada ‘nd O,nn u

others bETu

start this list with the stat

l'ﬂE\lT.lE!gES or second cou marriages..
because there aren't any. It is legal in all 50
states to marry your second cousin, Seriously.

2. A ban on marriages between first
cousins, but first cousins once
removed are good to go: Arkansas,
Delaware, Iowa, Idaho, Kansas, Louisiana,
New Hampshire, Michigan, Minnesota,
Missouri, Mississippi, Montana, North Dakota, Oregon, O!
South Dakota, Texas, West Virginia and Wyoming, So these states are pretty strict. But they're
not as worried about cousins from different generations (the whole once removed thing). Many of
them, ull see below, alse have other little loopholes.

w

. Adopted first cousins are good to go, as long as they've got proof:
Louisiana, Mississippi, Oregon, West Virginia, I was actually surprised more of the banned states
from above don't have adopted cousin | oouhaie- Becaﬂ=e ing i L




What’s in a name?
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What's in a name?
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Gaussian Behavior

0.035 [
0.030 —
0.025 —
0.020 —
0.015 —
0.010 —
0.005 —

T e[| [T EEEALLLLE L
620 640 660 680 700 720

Figure: Plot of the distribution of the number of summands for
100,000 randomly chosen m € [1, a4000) = [1,22%%°) (so m has on the
order of 602 digits).
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10 20 30 40

Figure: Plot of the distribution of gaps for 10,000 randomly chosen
m € [1,as00) = [1,22%) (so m has on the order of 60 digits).
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Figure: Plot of the distribution of gaps for 10,000 randomly chosen
m € [1,as400) = [1,2%%°) (so m has on the order of 60 digits). Left
(resp. right): ratio of adjacent even (resp odd) gap probabilities.

Again find geometric decay, but parity issues so break
into even and odd gaps.




Kentucky and Quilts
L]

Fibonacci Spiral
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The Fibonacci (or Log Cabin) Quilt: Work in Progress

12 10
4 3
6 | 5 1 14 | 5
3 9 | 28 — 2 8 | 25
2 1
7 6
1,2,3,4,5,7,9, 12, 16, 21, 28, ... 1,2,8,5,6,8,10, 14,19, 25, 33, ...

@ a1 = an_1 + an_2, NON-uniqueness (average number
of decompositions grows exponentially).

@ In process of investigating Gaussianity, Gaps,
Kmim Kavea KmaXa Kgreedy-
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Average Number of Representations

@ dy: the number of FQ-legal decompositions using only elements of
{81,82, ey an}.
@ c,requires a, to be used, b, requires a, and a,_» to be used.

[0 ] dh]cn]

| an |

O ONOO OIS, WN =S

—

—-
OCOoOPhWMNDN—=—=2 =
ODI\)—L—*—L—LOOOS_
oMNMNONOaOaR~rLON =

—_

Table: First few terms. Find dy, = dh—1 + dh—2 — dh—3 + dh—5 — dh—9,
implying drq.ave() ~ C-1.05459".
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Greedy Algorithm

hn: number of integers from 1 to a,.1 — 1 where the greedy algorithm
successfully terminates in a legal decomposition.

Ll a] hn] pn ]
T 1] 1] 100.0000
2| 2| 2] 100.0000
3| 3| 3| 100.0000
4| 4| 4] 100.0000
5| 5| 5| 833333
6| 7| 7| 87.5000
10| 21| 25| 925926
11| 28| 33| 91.6667
17 || 151 | 184 | 92.4623

Table: First few terms, yields h, = h,_1 + h,—s + 1 and percentage
converges to about 0.92627.
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