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Introduction
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Goals of the Talk

R esearch: What questions to ask? How? With whom?
E xplore: Look for the right perspective.
U tilize: What are your tools and how can they be used?
s ucceed: Control what you can: reports, talks, ....

Joint with many students and junior faculty over the years.
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Research: What questions to ask? How? With whom?

Build on what you know and can learn.

What will be interesting?

How will you work?

Where are the questions? Classes, arXiv, conferences, ....
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Explore: Look for the right perspective.

Ask interesting questions.

Look for connections.

Be a bit of a jack-of-all trades.

Leads naturally into....
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Utilize: What are your tools and how can they be used?
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Succeed: Control what you can: reports, talks

Write up your work: post on the arXiv, submit.

Go to conferences: present and mingle (no spam and
P&J).

Turn things around fast: show progress, no more than 24
hours on mundane.

Service: refereeing, MathSciNet, ....
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Pre-requisites
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Pre-requisites: Probability Review

5 10
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Let X be random variable with density p(x):
� p(x) ≥ 0;

∫∞
−∞ p(x)dx = 1;

� Prob (a ≤ X ≤ b) =
∫ b

a p(x)dx .
Mean: µ =

∫∞
−∞ xp(x)dx .

Variance: σ2 =
∫∞
−∞(x − µ)2p(x)dx .

Gaussian: Density (2πσ2)−1/2 exp(−(x − µ)2/2σ2).
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Pre-requisites: Combinatorics Review

n!: number of ways to order n people, order matters.

n!
k!(n−k)! = nCk =

(n
k

)
: number of ways to choose k from n,

order doesn’t matter.

Stirling’s Formula: n! ≈ nne−n
√

2πn.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =?
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 17 = F8 + 17.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 4 = F8 + F6 + 4.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 3 + 1 = F8 + F6 + F3 + 1.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 3 + 1 = F8 + F6 + F3 + F1.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 3 + 1 = F8 + F6 + F3 + F1.
Example: 83 = 55 + 21 + 5 + 2 = F9 + F7 + F4 + F2.
Observe: 51 miles ≈ 82.1 kilometers.
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Old Results

Central Limit Type Theorem
As n→∞ distribution of number of summands in Zeckendorf
decomposition for m ∈ [Fn,Fn+1) is Gaussian (normal).
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Figure: Number of summands in [F2010,F2011); F2010 ≈ 10420.
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New Results: Bulk Gaps: m ∈ [Fn,Fn+1) and φ = 1+
√

5
2

m =

k(m)=n∑
j=1

Fij , νm;n(x) =
1

k(m)− 1

k(m)∑
j=2

δ
(
x − (ij − ij−1)

)
.

Theorem (Zeckendorf Gap Distribution)
Gap measures νm;n converge almost surely to average gap
measure where P(k) = 1/φk for k ≥ 2.
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Figure: Distribution of gaps in [F1000,F1001); F2010 ≈ 10208.
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New Results: Longest Gap

Theorem (Longest Gap)
As n→∞, the probability that m ∈ [Fn,Fn+1) has longest gap
less than or equal to f (n) converges to

Prob (Ln(m) ≤ f (n)) ≈ e−elog n−f (n)/ log φ
.

Immediate Corollary: If f (n) grows slower or faster than
log n/ log φ, then Prob(Ln(m) ≤ f (n)) goes to 0 or 1,
respectively.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)
.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)
ways to do.

Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem
The number of solutions to x1 + · · ·+ xP = C with xi ≥ 0 is(C+P−1

P−1

)
.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · ·+ Fik−1 + Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.

Cookie counting⇒ pn,k =
(n−2k+1 + k−1

k−1

)
=
(n−k

k−1

)
.

27



Intro Pre-reqs Gaussianity Completeness Gaps (Bulk) Kentucky and Quilts

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem
The number of solutions to x1 + · · ·+ xP = C with xi ≥ 0 is(C+P−1

P−1

)
.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · ·+ Fik−1 + Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.

Cookie counting⇒ pn,k =
(n−2k+1 + k−1

k−1

)
=
(n−k

k−1

)
.

28



Intro Pre-reqs Gaussianity Completeness Gaps (Bulk) Kentucky and Quilts

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem
The number of solutions to x1 + · · ·+ xP = C with xi ≥ 0 is(C+P−1

P−1

)
.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · ·+ Fik−1 + Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.

Cookie counting⇒ pn,k =
(n−2k+1 + k−1

k−1

)
=
(n−k

k−1

)
.

29



Intro Pre-reqs Gaussianity Completeness Gaps (Bulk) Kentucky and Quilts

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem
The number of solutions to x1 + · · ·+ xP = C with xi ≥ 0 is(C+P−1

P−1

)
.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · ·+ Fik−1 + Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.

Cookie counting⇒ pn,k =
(n−2k+1 + k−1

k−1

)
=
(n−k

k−1

)
.

30



Intro Pre-reqs Gaussianity Completeness Gaps (Bulk) Kentucky and Quilts
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Gaussian Behavior
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Generalizing Lekkerkerker: Erdos-Kac type result

Theorem (KKMW 2010)
As n→∞, the distribution of the number of summands in
Zeckendorf’s Theorem is a Gaussian.

Sketch of proof: Use Stirling’s formula,

n! ≈ nne−n
√

2πn

to approximates binomial coefficients, after a few pages of
algebra find the probabilities are approximately Gaussian.
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(Sketch of the) Proof of Gaussianity
The probability density for the number of Fibonacci numbers that add up to an integer in [Fn, Fn+1) is

fn(k) =
(

n−1−k
k

)
/Fn−1. Consider the density for the n + 1 case. Then we have, by Stirling

fn+1(k) =

(n − k

k

) 1

Fn

=
(n − k)!

(n − 2k)!k!

1

Fn
=

1
√

2π

(n − k)n−k+ 1
2

k(k+ 1
2 )

(n − 2k)n−2k+ 1
2

1

Fn

plus a lower order correction term.
Also we can write Fn = 1√

5
φn+1 = φ√

5
φn for large n, where φ is the golden ratio (we are using relabeled

Fibonacci numbers where 1 = F1 occurs once to help dealing with uniqueness and F2 = 2). We can now split the
terms that exponentially depend on n.

fn+1(k) =

(
1
√

2π

√
(n − k)

k(n − 2k)

√
5

φ

)(
φ
−n (n − k)n−k

kk (n − 2k)n−2k

)
.

Define

Nn =
1
√

2π

√
(n − k)

k(n − 2k)

√
5

φ
, Sn = φ

−n (n − k)n−k

kk (n − 2k)n−2k
.

Thus, write the density function as
fn+1(k) = NnSn

where Nn is the first term that is of order n−1/2 and Sn is the second term with exponential dependence on n.
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(Sketch of the) Proof of Gaussianity
Model the distribution as centered around the mean by the change of variable k = µ + xσ where µ and σ are the
mean and the standard deviation, and depend on n. The discrete weights of fn(k) will become continuous. This
requires us to use the change of variable formula to compensate for the change of scales:

fn(k)dk = fn(µ + σx)σdx.

Using the change of variable, we can write Nn as

Nn =
1
√

2π

√
n − k

k(n − 2k)

φ
√

5

=
1
√

2πn

√
1− k/n

(k/n)(1− 2k/n)

√
5

φ

=
1
√

2πn

√
1− (µ + σx)/n

((µ + σx)/n)(1− 2(µ + σx)/n)

√
5

φ

=
1
√

2πn

√
1− C − y

(C + y)(1− 2C − 2y)

√
5

φ

where C = µ/n ≈ 1/(φ + 2) (note that φ2 = φ + 1) and y = σx/n. But for large n, the y term vanishes since
σ ∼
√

n and thus y ∼ n−1/2. Thus

Nn ≈
1
√

2πn

√
1− C

C(1− 2C)

√
5

φ
=

1
√

2πn

√
(φ + 1)(φ + 2)

φ

√
5

φ
=

1
√

2πn

√
5(φ + 2)

φ
=

1
√

2πσ2

since σ2 = n φ
5(φ+2) .
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(Sketch of the) Proof of Gaussianity
For the second term Sn , take the logarithm and once again change variables by k = µ + xσ,

log(Sn) = log

(
φ
−n (n − k)(n−k)

kk (n − 2k)(n−2k)

)
= −n log(φ) + (n − k) log(n − k)− (k) log(k)

− (n − 2k) log(n − 2k)

= −n log(φ) + (n − (µ + xσ)) log(n − (µ + xσ))

− (µ + xσ) log(µ + xσ)

− (n − 2(µ + xσ)) log(n − 2(µ + xσ))

= −n log(φ)

+ (n − (µ + xσ))
(
log(n − µ) + log

(
1−

xσ

n − µ

))
− (µ + xσ)

(
log(µ) + log

(
1 +

xσ

µ

))
− (n − 2(µ + xσ))

(
log(n − 2µ) + log

(
1−

xσ

n − 2µ

))
= −n log(φ)

+ (n − (µ + xσ))
(
log

( n

µ
− 1
)

+ log

(
1−

xσ

n − µ

))
− (µ + xσ) log

(
1 +

xσ

µ

)
− (n − 2(µ + xσ))

(
log

( n

µ
− 2
)

+ log

(
1−

xσ

n − 2µ

))
.
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(Sketch of the) Proof of Gaussianity

Note that, since n/µ = φ + 2 for large n, the constant terms vanish. We have log(Sn)

= −n log(φ) + (n − k) log
( n

µ
− 1
)
− (n − 2k) log

( n

µ
− 2
)

+ (n − (µ + xσ)) log
(

1−
xσ

n − µ

)
− (µ + xσ) log

(
1 +

xσ

µ

)
− (n − 2(µ + xσ)) log

(
1−

xσ

n − 2µ

)
= −n log(φ) + (n − k) log (φ + 1)− (n − 2k) log (φ) + (n − (µ + xσ)) log

(
1−

xσ

n − µ

)
− (µ + xσ) log

(
1 +

xσ

µ

)
− (n − 2(µ + xσ)) log

(
1−

xσ

n − 2µ

)
= n(− log(φ) + log

(
φ

2
)
− log (φ)) + k(log(φ2) + 2 log(φ)) + (n − (µ + xσ)) log

(
1−

xσ

n − µ

)
− (µ + xσ) log

(
1 +

xσ

µ

)
− (n − 2(µ + xσ)) log

(
1− 2

xσ

n − 2µ

)
= (n − (µ + xσ)) log

(
1−

xσ

n − µ

)
− (µ + xσ) log

(
1 +

xσ

µ

)
− (n − 2(µ + xσ)) log

(
1− 2

xσ

n − 2µ

)
.
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(Sketch of the) Proof of Gaussianity
Finally, we expand the logarithms and collect powers of xσ/n.

log(Sn) = (n − (µ + xσ))

(
−

xσ

n − µ
−

1

2

( xσ

n − µ

)2
+ . . .

)

− (µ + xσ)

(
xσ

µ
−

1

2

( xσ

µ

)2
+ . . .

)

− (n − 2(µ + xσ))

(
−2

xσ

n − 2µ
−

1

2

(
2

xσ

n − 2µ

)2
+ . . .

)

= (n − (µ + xσ))

− xσ

n (φ+1)
(φ+2)

−
1

2

 xσ

n (φ+1)
(φ+2)

2

+ . . .



− (µ + xσ)

 xσ
n
φ+2

−
1

2

 xσ
n
φ+2

2

+ . . .


− (n − 2(µ + xσ))

− 2xσ

n φ
φ+2

−
1

2

 2xσ

n φ
φ+2

2

+ . . .


=

xσ

n
n

(
−
(

1−
1

φ + 2

)
(φ + 2)

(φ + 1)
− 1 + 2

(
1−

2

φ + 2

)
φ + 2

φ

)

−
1

2

( xσ

n

)2
n
(
−2

φ + 2

φ + 1
+
φ + 2

φ + 1
+ 2(φ + 2)− (φ + 2) + 4

φ + 2

φ

)
+O

(
n (xσ/n)3

)
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(Sketch of the) Proof of Gaussianity

log(Sn) =
xσ

n
n
(
−
φ + 1

φ + 2

φ + 2

φ + 1
− 1 + 2

φ

φ + 2

φ + 2

φ

)

−
1

2

( xσ

n

)2
n(φ + 2)

(
−

1

φ + 1
+ 1 +

4

φ

)

+O

(
n
( xσ

n

)3
)

= −
1

2

(xσ)2

n
(φ + 2)

(
3φ + 4

φ(φ + 1)
+ 1

)
+ O

(
n
( xσ

n

)3
)

= −
1

2

(xσ)2

n
(φ + 2)

(
3φ + 4 + 2φ + 1

φ(φ + 1)

)
+ O

(
n
( xσ

n

)3
)

= −
1

2
x2
σ

2
( 5(φ + 2)

φn

)
+ O

(
n (xσ/n)3

)
.
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(Sketch of the) Proof of Gaussianity

But recall that

σ
2 =

φn

5(φ + 2)
.

Also, since σ ∼ n−1/2, n
(

xσ
n

)3
∼ n−1/2. So for large n, the O

(
n
(

xσ
n

)3
)

term vanishes. Thus we are left

with

log Sn = −
1

2
x2

Sn = e−
1
2 x2

.

Hence, as n gets large, the density converges to the normal distribution:

fn(k)dk = NnSndk

=
1

√
2πσ2

e−
1
2 x2

σdx

=
1
√

2π
e−

1
2 x2

dx.

�
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Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn−L+1, n ≥ L

with H1 = 1, Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1, n < L,
coefficients ci ≥ 0; c1, cL > 0 if L ≥ 2; c1 > 1 if L = 1.

Zeckendorf: Every positive integer can be written
uniquely as

∑
aiHi with natural constraints on the ai ’s

(e.g. cannot use the recurrence relation to remove
any summand).
Lekkerkerker
Central Limit Type Theorem
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Generalizing Lekkerkerker

Generalized Lekkerkerker’s Theorem
The average number of summands in the generalized
Zeckendorf decomposition for integers in [Hn,Hn+1) tends
to Cn + d as n→∞, where C > 0 and d are computable
constants determined by the ci ’s.

C = −y ′(1)
y(1)

=

∑L−1
m=0(sm + sm+1 − 1)(sm+1 − sm)ym(1)
2
∑L−1

m=0(m + 1)(sm+1 − sm)ym(1)
.

s0 = 0, sm = c1 + c2 + · · ·+ cm.

y(x) is the root of 1−
∑L−1

m=0

∑sm+1−1
j=sm

x jym+1.

y(1) is the root of 1− c1y − c2y2 − · · · − cLyL.
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Central Limit Type Theorem

Central Limit Type Theorem
As n→∞, the distribution of the number of summands,
i.e., a1 + a2 + · · ·+ am in the generalized Zeckendorf
decomposition

∑m
i=1 aiHi for integers in [Hn,Hn+1) is

Gaussian.

1000 1050 1100 1150 1200

0.005

0.010

0.015

0.020

43



Intro Pre-reqs Gaussianity Completeness Gaps (Bulk) Kentucky and Quilts

Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.
Legal decomposition is decimal expansion:

∑m
i=1 aiHi :

ai ∈ {0,1, . . . ,9} (1 ≤ i < m), am ∈ {1, . . . ,9}.
For N ∈ [Hn,Hn+1), m = n, i.e., first term is
anHn = an10n−1.
Ai : the corresponding random variable of ai .
The Ai ’s are independent.
For large n, the contribution of An is immaterial.
Ai (1 ≤ i < n) are identically distributed random
variables
with mean 4.5 and variance 8.25.
Central Limit Theorem: A2 +A3 + · · ·+An → Gaussian
with mean 4.5n + O(1)
and variance 8.25n + O(1).
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(
1+
√

5
2

)n
−
(
−1+

√
5

2

)n]
.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑
n>0 F nxn.

(1) ⇒
∑
n≥2

F n+1xn+1 =
∑
n≥2

F nxn+1 +
∑
n≥2

F n−1xn+1

⇒
∑
n≥3

F nxn =
∑
n≥2

F nxn+1 +
∑
n≥1

F nxn+2

⇒
∑
n≥3

F nxn = x
∑
n≥2

F nxn + x2
∑
n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)
⇒ g(x) = x/(1− x − x2).
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(
1+
√

5
2

)n
−
(
−1+

√
5

2

)n]
.

Recurrence relation: F n+1 = F n + F n−1 (1)

Generating function: g(x) =
∑

n>0 F nxn.

(1) ⇒
∑
n≥2

F n+1xn+1 =
∑
n≥2

F nxn+1 +
∑
n≥2

F n−1xn+1

⇒
∑
n≥3

F nxn =
∑
n≥2

F nxn+1 +
∑
n≥1

F nxn+2

⇒
∑
n≥3

F nxn = x
∑
n≥2

F nxn + x2
∑
n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)
⇒ g(x) = x/(1− x − x2).

46



Intro Pre-reqs Gaussianity Completeness Gaps (Bulk) Kentucky and Quilts

Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(
1+
√

5
2

)n
−
(
−1+

√
5

2

)n]
.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑
n>0 F nxn.

(1) ⇒
∑
n≥2

F n+1xn+1 =
∑
n≥2

F nxn+1 +
∑
n≥2

F n−1xn+1

⇒
∑
n≥3

F nxn =
∑
n≥2

F nxn+1 +
∑
n≥1

F nxn+2

⇒
∑
n≥3

F nxn = x
∑
n≥2

F nxn + x2
∑
n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)
⇒ g(x) = x/(1− x − x2).
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(
1+
√

5
2

)n
−
(
−1+

√
5

2

)n]
.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑
n>0 F nxn.

(1) ⇒
∑
n≥2

F n+1xn+1 =
∑
n≥2

F nxn+1 +
∑
n≥2

F n−1xn+1

⇒
∑
n≥3

F nxn =
∑
n≥2

F nxn+1 +
∑
n≥1

F nxn+2

⇒
∑
n≥3

F nxn = x
∑
n≥2

F nxn + x2
∑
n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)
⇒ g(x) = x/(1− x − x2).

48



Intro Pre-reqs Gaussianity Completeness Gaps (Bulk) Kentucky and Quilts

Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(
1+
√

5
2

)n
−
(
−1+

√
5

2

)n]
.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑
n>0 F nxn.

(1) ⇒
∑
n≥2

F n+1xn+1 =
∑
n≥2

F nxn+1 +
∑
n≥2

F n−1xn+1

⇒
∑
n≥3

F nxn =
∑
n≥2

F nxn+1 +
∑
n≥1

F nxn+2

⇒
∑
n≥3

F nxn = x
∑
n≥2

F nxn + x2
∑
n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)
⇒ g(x) = x/(1− x − x2).
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(
1+
√

5
2

)n
−
(
−1+

√
5

2

)n]
.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑
n>0 F nxn.

(1) ⇒
∑
n≥2

F n+1xn+1 =
∑
n≥2

F nxn+1 +
∑
n≥2

F n−1xn+1

⇒
∑
n≥3

F nxn =
∑
n≥2

F nxn+1 +
∑
n≥1

F nxn+2

⇒
∑
n≥3

F nxn = x
∑
n≥2

F nxn + x2
∑
n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)
⇒ g(x) = x/(1− x − x2).
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(
1+
√

5
2

)n
−
(
−1+

√
5

2

)n]
.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑
n>0 F nxn.

(1) ⇒
∑
n≥2

F n+1xn+1 =
∑
n≥2

F nxn+1 +
∑
n≥2

F n−1xn+1

⇒
∑
n≥3

F nxn =
∑
n≥2

F nxn+1 +
∑
n≥1

F nxn+2

⇒
∑
n≥3

F nxn = x
∑
n≥2

F nxn + x2
∑
n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)

⇒ g(x) = x/(1− x − x2).
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(
1+
√

5
2

)n
−
(
−1+

√
5

2

)n]
.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑
n>0 F nxn.

(1) ⇒
∑
n≥2

F n+1xn+1 =
∑
n≥2

F nxn+1 +
∑
n≥2

F n−1xn+1

⇒
∑
n≥3

F nxn =
∑
n≥2

F nxn+1 +
∑
n≥1

F nxn+2

⇒
∑
n≥3

F nxn = x
∑
n≥2

F nxn + x2
∑
n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)
⇒ g(x) = x/(1− x − x2).
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:

⇒ g(x) =
x

1− x − x2 =
1√
5

(
1+
√

5
2 x

1− 1+
√

5
2 x

−
−1+

√
5

2 x

1− −1+
√

5
2 x

)
.

Coefficient of xn (power series expansion):

F n = 1√
5

[(
1+
√

5
2

)n
−
(
−1+

√
5

2

)n]
- Binet’s Formula!

(using geometric series: 1
1−r = 1 + r + r 2 + r 3 + · · · ).
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:

⇒ g(x) =
x

1− x − x2 =
1√
5

(
1+
√

5
2 x

1− 1+
√

5
2 x

−
−1+

√
5

2 x

1− −1+
√

5
2 x

)
.

Coefficient of xn (power series expansion):

F n = 1√
5

[(
1+
√

5
2

)n
−
(
−1+

√
5

2

)n]
- Binet’s Formula!

(using geometric series: 1
1−r = 1 + r + r 2 + r 3 + · · · ).
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:

⇒ g(x) =
x

1− x − x2 =
1√
5

(
1+
√

5
2 x

1− 1+
√

5
2 x

−
−1+

√
5

2 x

1− −1+
√

5
2 x

)
.

Coefficient of xn (power series expansion):

F n = 1√
5

[(
1+
√

5
2

)n
−
(
−1+

√
5

2

)n]
- Binet’s Formula!

(using geometric series: 1
1−r = 1 + r + r 2 + r 3 + · · · ).
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:

⇒ g(x) =
x

1− x − x2 =
1√
5

(
1+
√

5
2 x

1− 1+
√

5
2 x

−
−1+

√
5

2 x

1− −1+
√

5
2 x

)
.

Coefficient of xn (power series expansion):

F n = 1√
5

[(
1+
√

5
2

)n
−
(
−1+

√
5

2

)n]
- Binet’s Formula!

(using geometric series: 1
1−r = 1 + r + r 2 + r 3 + · · · ).
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Differentiating Identities and Method of Moments

Differentiating identities
Example: Given a random variable X such that
Pr(X = 1) = 1

2 , Pr(X = 2) = 1
4 , Pr(X = 3) = 1

8 , ....
then what’s the mean of X (i.e., E [X ])?
Solution: Let f (x) = 1

2x + 1
4x2 + 1

8x3 + · · · = 1
1−x/2 − 1.

f ′(x) = 1 · 1
2 + 2 · 1

4x + 3 · 1
8x2 + · · · .

f ′(1) = 1 · 1
2 + 2 · 1

4 + 3 · 1
8 + · · · = E [X ].

Method of moments: Random variables X1, X2, . . . .
If `th moments E [X `

n] converges those of standard
normal then Xn converges to a Gaussian.
Standard normal distribution:
2mth moment: (2m − 1)!! = (2m − 1)(2m − 3) · · · 1,
(2m − 1)th moment: 0.
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + · · · , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + · · ·

pn,k+1 = pn−2,k + pn−3,k + · · ·
⇒ pn+1,k+1 = pn,k+1 + pn−1,k .

Generating function:
∑

n,k>0 pn,kxkyn = y
1−y−xy2 .

Partial fraction expansion:
y

1− y − xy2 = − y
y1(x)− y2(x)

(
1

y − y1(x)
− 1

y − y2(x)

)
where y1(x) and y2(x) are the roots of 1− y − xy2 = 0.

Coefficient of yn: g(x) =
∑

k>0 pn,kxk .
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + · · · , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + · · ·
pn,k+1 = pn−2,k + pn−3,k + · · ·

⇒ pn+1,k+1 = pn,k+1 + pn−1,k .

Generating function:
∑

n,k>0 pn,kxkyn = y
1−y−xy2 .

Partial fraction expansion:
y

1− y − xy2 = − y
y1(x)− y2(x)

(
1

y − y1(x)
− 1

y − y2(x)

)
where y1(x) and y2(x) are the roots of 1− y − xy2 = 0.

Coefficient of yn: g(x) =
∑

k>0 pn,kxk .
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + · · · , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + · · ·
pn,k+1 = pn−2,k + pn−3,k + · · ·

⇒ pn+1,k+1 = pn,k+1 + pn−1,k .

Generating function:
∑

n,k>0 pn,kxkyn = y
1−y−xy2 .

Partial fraction expansion:
y

1− y − xy2 = − y
y1(x)− y2(x)

(
1

y − y1(x)
− 1

y − y2(x)

)
where y1(x) and y2(x) are the roots of 1− y − xy2 = 0.

Coefficient of yn: g(x) =
∑

k>0 pn,kxk .
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + · · · , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + · · ·
pn,k+1 = pn−2,k + pn−3,k + · · ·

⇒ pn+1,k+1 = pn,k+1 + pn−1,k .

Generating function:
∑

n,k>0 pn,kxkyn = y
1−y−xy2 .

Partial fraction expansion:
y

1− y − xy2 = − y
y1(x)− y2(x)

(
1

y − y1(x)
− 1

y − y2(x)

)
where y1(x) and y2(x) are the roots of 1− y − xy2 = 0.

Coefficient of yn: g(x) =
∑

k>0 pn,kxk .
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New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k .
g(x) =

∑
k>0 pn,kxk .

Differentiating identities:
g(1) =

∑
k>0 pn,k = Fn+1 − Fn,

g′(x) =
∑

k>0 kpn,kxk−1, g′(1) = g(1)E [Kn],

(xg′(x))′ =
∑

k>0 k2pn,kxk−1,

(xg′(x))′ |x=1 = g(1)E [K 2
n ],
(
x (xg′(x))′

)′ |x=1 = g(1)E [K 3
n ], ...

Similar results hold for the centralized Kn: K ′n = Kn − E [Kn].
Method of moments (for normalized K ′n):

E [(K ′n)2m]/(SD(K ′n))2m → (2m − 1)!!,

E [(K ′n)2m−1]/(SD(K ′n))2m−1 → 0. ⇒ Kn → Gaussian.
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New Approach: General Case

Let pn,k = # {N ∈ [Hn,Hn+1): the generalized Zeckendorf
decomposition of N has exactly k summands}.

Recurrence relation:
Fibonacci: pn+1,k+1 = pn,k+1 + pn,k .

General: pn+1,k =
∑L−1

m=0
∑sm+1−1

j=sm
pn−m,k−j .

where s0 = 0, sm = c1 + c2 + · · ·+ cm.

Generating function:
Fibonacci: y

1−y−xy2 .

General:∑
n≤L pn,kxkyn −

∑L−1
m=0

∑sm+1−1
j=sm

x jym+1∑
n<L−m pn,kxkyn

1−
∑L−1

m=0
∑sm+1−1

j=sm
x jym+1

.
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New Approach: General Case (Continued)

Partial fraction expansion:

Fibonacci: − y
y1(x)−y2(x)

(
1

y−y1(x)
− 1

y−y2(x)

)
.

General:

− 1∑sL−1
j=sL−1

x j

L∑
i=1

B(x , y)
(y − yi(x))

∏
j 6=i
(
yj(x)− yi(x)

) .
B(x , y) =

∑
n≤L

pn,kxkyn −
L−1∑
m=0

sm+1−1∑
j=sm

x jym+1
∑

n<L−m

pn,kxkyn,

yi(x): root of 1−
∑L−1

m=0
∑sm+1−1

j=sm
x jym+1 = 0.

Coefficient of yn: g(x) =
∑

n,k>0 pn,kxk .

Differentiating identities

Method of moments: implies Kn → Gaussian.

64



Intro Pre-reqs Gaussianity Completeness Gaps (Bulk) Kentucky and Quilts

Completeness: SMALL 2020:
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Introduction to Completeness

Definition
A sequence {Hi}i≥1 is complete if every positive integer is
a sum of its terms, using each term at most once.

Example: Hn+1 = 2Hn; terms are an = 2n−1. Complete
because every integer has a binary representation.

Theorem
The complete sequence with maximal terms is an = 2n−1.

66



Intro Pre-reqs Gaussianity Completeness Gaps (Bulk) Kentucky and Quilts

Introduction to Completeness

Definition
A sequence {Hi}i≥1 is complete if every positive integer is
a sum of its terms, using each term at most once.

Example: Hn+1 = 2Hn; terms are an = 2n−1. Complete
because every integer has a binary representation.

Theorem
The complete sequence with maximal terms is an = 2n−1.

67



Intro Pre-reqs Gaussianity Completeness Gaps (Bulk) Kentucky and Quilts

Introduction to Completeness

Definition
A sequence {Hi}i≥1 is complete if every positive integer is
a sum of its terms, using each term at most once.

Example: Hn+1 = 2Hn; terms are an = 2n−1. Complete
because every integer has a binary representation.

Theorem
The complete sequence with maximal terms is an = 2n−1.

68



Intro Pre-reqs Gaussianity Completeness Gaps (Bulk) Kentucky and Quilts

Additional Examples

Hn+1 = Hn + 3Hn−1 is not complete. Terms are
{1,2,5,11, . . . }, cannot get 4 or 9 (grows too quickly).

The Fibonacci sequence Fn+1 = Fn + Fn−1, with initial
conditions F1 = 1, F2 = 2, is complete (follows from
Zeckendorf’s Theorem).

Study PLRS: Positive Linear Recurrence Sequences:
finite depth recurrence with non-negative integer
coefficients.

69



Intro Pre-reqs Gaussianity Completeness Gaps (Bulk) Kentucky and Quilts

Additional Examples

Hn+1 = Hn + 3Hn−1 is not complete. Terms are
{1,2,5,11, . . . }, cannot get 4 or 9 (grows too quickly).

The Fibonacci sequence Fn+1 = Fn + Fn−1, with initial
conditions F1 = 1, F2 = 2, is complete (follows from
Zeckendorf’s Theorem).

Study PLRS: Positive Linear Recurrence Sequences:
finite depth recurrence with non-negative integer
coefficients.

70



Intro Pre-reqs Gaussianity Completeness Gaps (Bulk) Kentucky and Quilts

Brown’s Criterion

Theorem (Brown)
A nondecreasing sequence {Hi}i≥1 is complete if and
only if H1 = 1 and for every n ≥ 1

Hn+1 ≤ 1 +
n∑

i=1

Hi .

Can we bound where an incomplete sequence first fails
Brown’s criterion? Yes!

Theorem (SMALL 2020)
An incomplete PLRS Hn+1 = c1Hn + · · ·+ cLHn+1−L fails
Brown’s criterion before the 2Lth term.
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Analyzing Families of Sequences

Write [c1, . . . , cL] for Hn+1 = c1Hn + . . .+ cLHn−L+1.

Theorem (SMALL 2020)
[1,0, . . . ,0,N], with k zeros, is complete if and only if

N ≤
⌊
(k + 2)(k + 3)

4
+

1
2

⌋
.

[1,1,0, . . . ,0,N], with k zeros, is complete if and only
if

N ≤
⌊

Fk+4 − (k + 2)
2

⌋
,

where Fk is the k th Fibonacci number.
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Results on Modifying a PLRS

When studying a PLRS, what modifications to the
recurrence coefficients preserve completeness /
incompleteness?

Theorem (SMALL 2020)
If a sequence [c1, . . . , cL−1, cL] is complete, then so is
[c1, . . . , cL−1,u] for any u ≤ cL. (Remark: this is not
true in general for ci in any position.)
If a sequence [c1, . . . , cL] is incomplete, then so is
[c1, . . . , cL, cL+1] for any cL+1 > 0.
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Principal Roots

Theorem (Generalized Binet’s Formula)
If r1, . . . , rk are the distinct roots of the charateristic
polynomial of a PLRS {Hn}, then there exist polynomials
q1, ...,qk such that ∀n, Hn = q1(n)r n

1 + · · ·+ qk(n)r n
k .

The characteristic polynomial has a unique positive root
r1, which is the largest in absolute value; called the
principal root. Furthermore:

Theorem (SMALL 2020)
If {Hn} is a complete PLRS and r1 is its principal root,
then r1 ≤ 2.
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Bounding Principal Roots

Proved there exists a second bound 1 < BL < 2 so
that if r1 < BL, then the sequence is complete. Bound
depends on the length of the generating sequence
[c1, . . . , cL]. We conjecture the following.

Conjecture (SMALL 2020)
For any given L, the incomplete sequence of length L with
the lowest principal root is [1,0, ...,0,

⌈
L(L+1)

4

⌉
+ 1].

If this holds, then for large L, we would have
BL ≈ (L/2)2/L. In particular, limL→∞ BL = 1.
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Gaps in the Bulk
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Distribution of Gaps

For Fr1 + Fr2 + · · ·+ Frn , the gaps are the differences
rn − rn−1, rn−1 − rn−2, . . . , r2 − r1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition
in [Fn,Fn+1) is of length k .

What is P(k) = limn→∞ Pn(k)?

Can ask similar questions about binary or other
expansions: 2012 = 210 + 29 + 28 + 27 + 26 + 24 + 23 + 22.
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Main Result

Theorem (Distribution of Bulk Gaps (SMALL 2012))
Let Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn+1−L be a positive
linear recurrence of length L where ci ≥ 1 for all 1 ≤ i ≤ L.
Then

P(j) =


1− ( a1

CLek
)(2λ−1

1 + a−1
1 − 3) : j = 0

λ−1
1 ( 1

CLek
)(λ1(1− 2a1) + a1) : j = 1

(λ1 − 1)2
(

a1
CLek

)
λ−j

1 : j ≥ 2.
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Special Cases

Theorem (Base B Gap Distribution (SMALL 2011))

For base B decompositions, P(0) = (B−1)(B−2)
B2 , and for

k ≥ 1, P(k) = cBB−k , with cB = (B−1)(3B−2)
B2 .

Theorem (Zeckendorf Gap Distribution (SMALL 2011))

For Zeckendorf decompositions, P(k) = 1/φk for k ≥ 2,
with φ = 1+

√
5

2 the golden mean.
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker⇒ total number of gaps ∼ Fn−1
n

φ2+1 .

Let Xi,j = #{m ∈ [Fn,Fn+1): decomposition of m includes
Fi , Fj , but not Fq for i < q < j}.

P(k) = lim
n→∞

∑n−k
i=1 Xi,i+k

Fn−1
n

φ2+1

.
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Calculating Xi,i+k

How many decompositions contain a gap from Fi to Fi+k?

For the indices less than i : Fi−1 choices. Why? Have Fi as largest
summand and follows by Zeckendorf: #[Fi ,Fi+1) = Fi+1 − Fi = Fi−1.

For the indices greater than i + k : Fn−k−i−2 choices. Why? Shift.
Choose summands from {F1, . . . ,Fn−k−i+1} with F1,Fn−k−i+1
chosen. Decompositions with largest summand Fn−k−i+1 minus
decompositions with largest summand Fn−k−i .

So total number of choices is Fn−k−2−iFi−1.
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Determining P(k)

Recall

P(k) = lim
n→∞

∑n−k
i=1 Xi,i+k

Fn−1
n

φ2+1

= lim
n→∞

∑n−k
i=1 Fn−k−2−iFi−1

Fn−1
n

φ2+1

.

Use Binet’s formula. Sums of geometric series:
P(k) = 1/φk .
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Kentucky Sequence and Quilts
with Minerva Catral, Pari Ford, Pamela Harris & Dawn

Nelson
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Kentucky Sequence

Rule: (s,b)-Sequence: Bins of length b, and:
cannot take two elements from the same bin, and
if have an element from a bin, cannot take anything
from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).

Kentucky: These are (s,b) = (1,2).

[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128].

a2n = 2n and a2n+1 = 1
3(2

2+n − (−1)n):
an+1 = an−1 + 2an−3,a1 = 1,a2 = 2,a3 = 3,a4 = 4.
an+1 = an−1 + 2an−3: New as leading term 0.
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What’s in a name?
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Gaussian Behavior

620 640 660 680 700 720

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Figure: Plot of the distribution of the number of summands for
100,000 randomly chosen m ∈ [1,a4000) = [1,22000) (so m has on the
order of 602 digits).

Proved Gaussian behavior.

Predicted mean 666.889 (observe 666.838), predicted
standard deviation 12.176 (observe 12.156).
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Gaps

Figure: Plot of the distribution of gaps for 10,000 randomly chosen
m ∈ [1,a400) = [1,2200) (so m has on the order of 60 digits).
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Gaps

Figure: Plot of the distribution of gaps for 10,000 randomly chosen
m ∈ [1,a400) = [1,2200) (so m has on the order of 60 digits). Left
(resp. right): ratio of adjacent even (resp odd) gap probabilities.

Again find geometric decay, but parity issues so break
into even and odd gaps.
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Fibonacci Spiral
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Fibonacci Spiral
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The Fibonacci (or Log Cabin) Quilt: Work in Progress

an+1 = an−1 + an−2, non-uniqueness (average number
of decompositions grows exponentially).
In process of investigating Gaussianity, Gaps,
Kmin,Kave,Kmax,Kgreedy.
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Average Number of Representations

dn: the number of FQ-legal decompositions using only elements of
{a1, a2, . . . , an}.
cn requires an to be used, bn requires an and an−2 to be used.

n dn cn bn an

1 2 1 0 1
2 3 1 0 2
3 4 1 0 3
4 6 2 1 4
5 8 2 1 5
6 11 3 1 7
7 15 4 1 9
8 21 6 2 12
9 30 9 3 16

Table: First few terms. Find dn = dn−1 + dn−2 − dn−3 + dn−5 − dn−9,
implying dFQ;ave(n) ≈ C · 1.05459n.
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Greedy Algorithm

hn: number of integers from 1 to an+1 − 1 where the greedy algorithm
successfully terminates in a legal decomposition.

n an hn ρn

1 1 1 100.0000
2 2 2 100.0000
3 3 3 100.0000
4 4 4 100.0000
5 5 5 83.3333
6 7 7 87.5000

10 21 25 92.5926
11 28 33 91.6667
17 151 184 92.4623

Table: First few terms, yields hn = hn−1 + hn−5 + 1 and percentage
converges to about 0.92627.
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