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Goals of the Talk

@ Research: What questions to ask? How? With whom?
@ Explore: Look for the right perspective.

@ Utilize: What are your tools and how can they be used?
@ succeed: Control what you can: reports, talks, ....

Joint with many students and junior faculty over the years.
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Utilize: What are your tools and how can they be used?

Law of the Hammer:

@ Abraham Kaplan: | call it the law of the instrument, and it
may be formulated as follows: Give a small boy a hammer,
and he will find that everything he encounters needs
pounding.

@ Abraham Maslow: | suppose it is tempting, if the only tool
you have is a hammer, to treat everything as if it were a
nail.

@ Bernard Baruch: If all you have is a hammer, everything
looks like a nail.
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| Love Rectangles J
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Tiling the Plane with Squares

Have n x n square for each n, place one at a time so that shape
formed is always connected and a rectangle.
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Tiling the Plane with Squares

Have n x n square for each n, extra 1 x 1 square, place one at a
time so that shape formed is always connected and a rectangle.
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Tiling the Plane with Squares: 1 x 1,1 x1,2x2,3x3,....
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Tiling the Plane with Squares: 1 x 1,1 x1,2x2,3x3,....
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Tiling the Plane with Squares: 1 x 1,1 x1,2x2,3x3,....
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Tiling the Plane with Squares: 1 x 1,1 x1,2x2,3x3,....
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Tiling the Plane with Squares: 1 x 1,1 x1,2x2,3x3,....

1,1,2,3,5,....
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Fibonacci Spiral:



https://www.youtube.com/watch?v=kkGeOWYOFoA

| Love Rectangles
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Fibonacci Spiral: (33,552)



https://www.youtube.com/watch?v=kkGeOWYOFoA

Fibonacci Spiral:

55

21

&



https://www.youtube.com/watch?v=kkGeOWYOFoA

[ ]

Pre-requisites J




Pre-regs
L]

Pre-requisites: Probability Review

@ Let X be random variable with density p(x):
op(x) > 0; [Z2 p(x)dx = 1;
o Prob(a < X < b) = [? p(x)dx.

@ Mean: = [ xp(x)dx.

@ Variance: 02 = [*_(x — pu)2p(x)dx.
@ Gaussian: Density (2702)~"/2 exp(—(x — p)?/2052).
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Pre-requisites: Combinatorics Review

@ n!: number of ways to order n people, order matters.

® try = NCk = (i): number of ways to choose k from n,
order doesn’t matter.

@ Stirling’s Formula: n! =~ n"e~"v/2rn.
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Previous Results

Fibonacci Numbers: Fni 1 = Fn+ Fn_1;
First few: 1,2,3,5,8,13,21,34,55,89, .. ..
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Previous Results

Fibonacci Numbers: F,.1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89, .. ..

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Previous Results

Fibonacci Numbers: Fp. 1 = Fp+ Fp_1;
First few: 1,2,3,5,8,13,21,34,55,89, . ...

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =7
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Previous Results

Fibonacci Numbers: Fp. 1 = Fp+ Fp_1;
First few: 1,2,3,5,8,13,21,34,55,89, . ...

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +17 = Fg + 17.
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Previous Results

Fibonacci Numbers: Fp. 1 = Fp+ Fp_1;
First few: 1,2,3,5,8,13,21,34,55,89, ....

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13+4 = Fg + Fs + 4.
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Previous Results

Fibonacci Numbers: Fp. 1 = Fp+ Fp_1;
First few: 1,2,3,5,8,13,21,34,55,89, . ...

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13 +3+1=Fg + Fg + F3 + 1.
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Previous Results

Fibonacci Numbers: Fp. 1 = Fp+ Fp_1;
First few: 1,2,3,5,8,13,21,34,55,89, ....

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13 +3+1=Fg + Fg + F3 + F4.
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Previous Results

Fibonacci Numbers: Fpi1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89, .. ..

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34+ 13 +3+1=Fg+ Fs + F3 + F4.
Example: 83=55+21+5+2=Fy+ F7 + F4 + F>.
Observe: 51 miles ~ 82.1 kilometers.
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Old Results

Central Limit Type Theorem

As n — oo distribution of number of summands in Zeckendorf
decomposition for m € [Fp, F1) is Gaussian (normal).
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Figure: Number of summands in [Fao10, F2011); Fao10 =~ 10%%°.
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New Results: Bulk Gaps: m € [F,, F,.1) and ¢

Theorem (Zeckendorf Gap Distribution)

Gap measures v, converge almost surely to average gap
measure where P(k) = 1/¢* for k > 2.

15 E) 3 E) B 10 15 2

Figure: Distribution of gaps in [Fio00, F1001); F2010 =~ 10298,
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New Results: Longest Gap

Theorem (Longest Gap)

As n — oo, the probability that m € [Fp, Fn1) has longest gap
less than or equal to f(n) converges to

Prob (Ln(m) < f(n)) ~ g—eosn=1()/ s o

Immediate Corollary: If f(n) grows slower or faster than
log n/ log ¢, then Prob(L,(m) < f(n)) goes to 0 or 1,
respectively.
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Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P

distinct people is (°5°7).
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P

distinct people is (°5°7).

1

Proof: Consider C + P — 1 cookies in a line.
Cookie Monster eats P — 1 cookies: (°57") ways to do.
Divides the cookies into P sets.
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Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P

distinct people is (°5°7).

Proof: Consider C + P — 1 cookies in a line.

Cookie Monster eats P — 1 cookies: (°57") ways to do.
Divides the cookies into P sets.

Example: 8 cookies and 5 people (C = 8, P = 5):
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Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P

distinct people is (°5°7).

Proof: Consider C + P — 1 cookies in a line.

Cookie Monster eats P — 1 cookies: (°57") ways to do.
Divides the cookies into P sets.

Example: 8 cookies and 5 people (C = 8, P = 5):
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Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P

distinct people is (°5°7).

Proof: Consider C + P — 1 cookies in a line.
Cookie Monster eats P — 1 cookies: (°57") ways to do.
Divides the cookies into P sets.

Example 8 cookles and 5 people (C 8 P= 5)
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x; + - -- + xp = C with x; > 0 is
C+P—1
(“p21 )

eSS
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x; + - -- + xp = C with x; > 0 is
C+P—1
(“p21 )

Let pnx = # {N € [Fp, Fnt1): the Zeckendorf decomposition of
N has exactly k summands}.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x; + - -- + xp = C with x; > 0 is
C+P—1
(“p21 )

Let pnx = # {N € [Fp, Fnt1): the Zeckendorf decomposition of
N has exactly k summands}.

For N € [Fp, Fni1), the largest summand is F,.
N:Fi1 +FI'2+'..+FI';(71 +Fn;
1< << - <lkqg <lk=n,lj—l_4 >2.

YT
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x; + - -- + xp = C with x; > 0 is
C+P—1
(“p21 )

Let pnx = # {N € [Fp, Fnt1): the Zeckendorf decomposition of
N has exactly k summands}.

For N € [Fp, Fni1), the largest summand is F,.
N:FI'1+FI'2+'..+FI';(71+FHJ
1< << - <lkqg <lk=n,lj—l_4 >2.
fo Z:I'1—1,d/'::l'j—l'j_1—2(j>1).
di+0o+--+d¢=n—2k+1,d >0.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x; + - -- + xp = C with x; > 0 is
C+P—1
(“p21 )

Let pnx = # {N € [Fp, Fnt1): the Zeckendorf decomposition of
N has exactly k summands}.
For N € [Fp, Fni1), the largest summand is F,.
N:Fi1 +FI'2+'..+FI';(71 +Fn;
1< << - <lkqg <lk=n,lj—l_4 >2.
dy =i —1,C//'Z:I'j—l'j_1 —2(j>1)
di+0o+--+d¢=n—2k+1,d >0.

Cookie counting = p, x = (7211 P = (17K,

AQ
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Generalizing Lekkerkerker: Erdos-Kac type result

Theorem (KKMW 2010)

As n — oo, the distribution of the number of summands in
Zeckendorf’s Theorem is a Gaussian.

Sketch of proof: Use Stirling’s formula,
n! ~ n"e "v2rn

to approximates binomial coefficients, after a few pages of
algebra find the probabilities are approximately Gaussian.
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(Sketch of the) Proof of Gaussianity

The probability density for the number of Fibonacci numbers that add up to an integer in [Fp, Fpy1) is
fn(k) = (”’L*k) /Fn_1. Consider the density for the n + 1 case. Then we have, by Stirling

it = (") Fi

1
(n—K! 1 1 (n— k)" Kz 1

(n— 2K Fn — V2m (k) _ pyn—2k+h Fo

plus a lower order correction term.
Also we can write Fp = % ¢”+1 = %d)" for large n, where ¢ is the golden ratio (we are using relabeled

Fibonacci numbers where 1 = F4 occurs once to help dealing with uniqueness and F, = 2). We can now split the
terms that exponentially depend on n.

_ 1 [(n—K) VB[ ., (n—k)"k
(k) = ( Var \ k(n—2k) ¢ ) (d’ KK(n — 2k)"*2k> :
Define
1 (n—k V& _n =Rk
N = Ver \ k(n—2k) ¢’ Sn=¢ Kkk(n — 2k)n—2k

Thus, write the density function as
fn+1 (k) = NnSn
—1/2

where N, is the first term that is of order n and Sy, is the second term with exponential dependence on n.
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(Sketch of the) Proof of Gaussianity

Model the distribution as centered around the mean by the change of variable k = p + xo where 1 and o are the
mean and the standard deviation, and depend on n. The discrete weights of f,(k) will become continuous. This
requires us to use the change of variable formula to compensate for the change of scales:

fa(k)dk = fo(p + ox)odx.

Using the change of variable, we can write N, as

N B 1 n—k @
T T Var \ k(n—2k) V5
1 i—k/n__ 5

Vamn \ (k/n)(1 — 2k/n) &

B 1—(n+ox)/n V5
- ﬁ\/ (1 +ox)/m(1 = 2(u +ox)/n) &
1—C—y V5

\/7 (C+y)1—2c—2y) ¢

where C = p/n = 1/(¢ + 2) (note that % = ¢ + 1) and y = ox/n. But for large n, the y term vanishes since
o ~ v/nandthus y ~ n~ /2. Thus

N~ 1 1-C £7 1 5(+2) 1
"7 Vemn (1—2cw> ﬁ\/ ¢ e\ ¢ Vzmo?

i 2 _ ¢
since o = Ngra 5y -
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(Sketch of the) Proof of Gaussianity

For the second term S, take the logarithm and once again change variables by k = p + xo,

_ k)(n—=k)

log(Sn) = log (q&,n%)

= —nlog(¢) + (n — k) log(n — k) — (k) log(k)
— (n — 2k) log(n — 2k)
—nlog(¢) + (1 — (1 + x0)) log(n — (1 + xo))
— (1 + xo) log(p + xo)
—(n— 2( + x0)) log(n — 2(u + x0))
—nlog(e)

+(n— (1 + xo)) (log(” — k) +log (1 - nx—ou>)

— (1 + x0) (log(u) + log (1 + %))

—(n—2(p + x0)) ('02(" —2u) +log (1 T n i02#))

= —nlog(¢)

o (o (2 1) (- 22)

— (1 + xo) log (1 + Xf)

—(n—2(n + xa)) (Iog(;,2)+|og(1 B niaz ))
e
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A

(Sketch of the) Proof of Gaussianity

Note that, since n/pu = ¢ + 2 for large n, the constant terms vanish. We have log(Sp)

= —nlog(e) + (n — k) log (£ - 1) — (n— 2K)log (E —2) +(n— (1 + xo)) log (1 — nxju)

= (u+xo)log (1 + Xf) — (n—2(u + x0)) log (1 - ni:u)

= —nlog(é) + (0 — K)log (¢ + 1) — (n — 2K)log () + (1 — (u + xo)) log (1 - nxfu)

— (1 + x0o) log (1 + Xl) — (1= 2(u +x0)) log (1 - niGZH)

— n(—tog(s) + Iog (42) — 1o (¢)) + K(0B(9°) + 21og(6)) + (n — (1 + xe) log (1 = )

Xo )
—2u

= (n—(n+x0))log (1 - nx_—o‘) —(u+w)|og<1+x§)

7(H+XU)|0g(1+TU> 7(n72(u+Xa))Iog(1 r

—(n—2(1u + x0)) log ( -2 02}1.)
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(Sketch of the) Proof of Gaussianity

Finally, we expand the logarithms and collect powers of xo /n.

o (e 2
log(Sn) = (nf(,u+xo—))<7nx 71<X )+>

— 2
Xo 1 /xo\2
_(;L+Xo')(7—§<#> +>
Xo 1 Xo 2
(n72(,u,+xo))< N 2n 7<2n—2,u) +>
() )
¢+2 (+2)
2
Xo 1 Xo
_(“"'XU)(T_’( o ) +>
7z 2\72
2
2xo 2xo
—(n—2(p + x0)) (— - ( 5 ) +>
"2 "g+2

]
= (O e et -5 )

1 2 2 2 2
7§<X—U) (2¢;+¢;+2(¢+2) (¢+2)+4%>

N =

n d+1 p+1
+0 (n(m/n)3)

S
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(Sketch of the) Proof of Gaussianity

s = Ta(~2E1SE2 0 o2y
n o+2¢+1 p+2 ¢

5 (5) e ()

w0 (%))

e (G ) o (1 (5))
() o))

= 7%)(202 (%) + O(n(xa/n)s) -

A7
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(Sketch of the) Proof of Gaussianity

But recall that
2 ¢n
5(¢ +2)

3 3
Also, since o ~ n~ /2 n (XT") ~ n—1/2_ 50 for large n, the O (n (XT") ) term vanishes. Thus we are left
with

log Sp
Sn = e 2%,

Hence, as n gets large, the density converges to the normal distribution:

fa(k)dk = NpSpdk
1 %Xz o
= e odx
V2ro2
1 1,2
= —e 27 dx
Var
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Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hppv=ciHh+cHp1 + -+ CtHpo1v1, N> L

W|th H1 - 1, Hn+1 :C‘]Hn‘I‘CZHn_1"""‘I’C{7H1—|‘17 n< L,
coefficients ¢; > 0; ¢y, >0ifL>2;¢c; >1ifL=1.

e Zeckendorf: Every positive integer can be written
uniquely as > a;H; with natural constraints on the a;’'s
(e.g. cannot use the recurrence relation to remove
any summand).

o Lekkerkerker

@ Central Limit Type Theorem
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Generalizing Lekkerkerker

Generalized Lekkerkerker’s Theorem

The average number of summands in the generalized
Zeckendorf decomposition for integers in [H,, Hy11) tends
to Cn+ d as n — oo, where C > 0 and d are computable
constants determined by the ¢;’s.

o V) _ Xno(Smt Smet = 1)(Smer — Sm)y™(1)
y(1) 22;20(m+1)(5m+1 — Sm)y™(1)
So=0,8s,=¢Cci+C+---+Cn.

y(x) is the root of 1 — 351 S7ome1 =T xiym+t,

j=Sm

y(1)istherootof 1 — ¢y — coy® — -+ — Lyt

;



Gaussianity
[ ]

Central Limit Type Theorem

Central Limit Type Theorem

As n — oo, the distribution of the number of summands,
i.e.,, a + a +---+ an in the generalized Zeckendorf
decomposition Y7, a;H; for integers in [Hp, Hy. 1) is
Gaussian.
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Example: the Special Case of L =1, ¢y =10

Hn+1 = 10Hn, H1 = 1, Hn = 10”71.

@ Legal decomposition is decimal expansion: Y., a;H;:
ae{0,1,....9Y(1 <i<m),anec{l,...,9}.

e For N € [H,, Hpi1), m= n, i.e., first term is
apH, = a,10" 1,

@ A;: the corresponding random variable of a;.
The A/’s are independent.

e For large n, the contribution of A, is immaterial.
A; (1 <i < n) are identically distributed random
variables
with mean 4.5 and variance 8.25.

@ Central Limit Theorem: As + As+-- -+ A, — Gaussian
with mean 4.5n+ O(1)
and variance 8.25n+ O(1).

;
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

eSS -
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Generating Function (Example: Binet’s Formula)

Binet’s Formula
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

n n
Fi=F,=1, F,= % [(_14—2\@) = (—_1;‘@) } :
@ Recurrence relation: Fp,.1 = Fp+ F_4 (1)

e Generating function: g(x) = > .o Fnax".

SN EOOSTSTSTSSSSSS
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

n n
Fi=F,=1; F,= % [(_14—2\@) = (—_1;‘@) } :
@ Recurrence relation: Fp,.1 = Fp+ F_4 (1)
e Generating function: g(x) = > .o Fnax".

(1) = Z Foox™ = Z F.x" + Z F,_x"1

n>2 n>2 n>2

R
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

n n
Fi=F,=1; F,= % [(_14—2\@) = (—_1;‘@) } :
@ Recurrence relation: Fp,.1 = Fp+ F_4 (1)
e Generating function: g(x) = > .o Fnax".

(1) = Z Foox™ = Z F.x" + Z F,_x"1

n>2 n>2 n>2

= D> FuX"=) Fx"™'4+) Fx"?

n>3 n>2 n>1

L
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

n n
Fi=F,=1, F,= % [(_14—2\@) = (—_1;‘@) } :
@ Recurrence relation: Fp,.1 = Fp+ F_4 (1)

e Generating function: g(x) = > .o Fnax".

(1) = Z Foox™ = Z F.x" + Z F,_x"1

n>2 n>2 n>2
= Y FoxX"=) Fox™' 4+ Fox"t?
n>3 n>2 n>1

= Z F.x" = XZF,,X” —|—X22ann

n>3 n>2 n>1

;
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

n n
Fi=F,=1, F,= % [(_14—2\@) = (—_1;‘@) } :
@ Recurrence relation: Fp,.1 = Fp+ F_4 (1)

e Generating function: g(x) = > .o Fnax".

(1) = Z Foox™ = Z F.x" + Z F,_x"1

n>2 n>2 n>2

= Y FoxX"=) Fox™' 4+ Fox"t?
n>3 n>2 n>1

= Z F.x" = XZ F.x" + x? Z F.x"
n>3 n>2 n>1

= g(x) — Fix — Fox® = x(g(x) — F1x) + x?g(x)

;
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

Fie e - (19 (25%)')

@ Recurrence relation: Fp,.1 = Fp+ F_4 (1)
e Generating function: g(x) = > .o Fnax".

(1) = Z Foox™ = Z F.x" + Z F,_x"1

n>2 n>2 n>2

= Y FoxX"=) Fox™' 4+ Fox"t?
n>3 n>2 n>1

= Z F.x" = XZ F.x" + x? Z F.x"
n>3 n>2 n>1

9(x) — Fix — Fax? = x(g(x) — F1x) + x?g(x)
g(x) = x/(1 —x — x?).

vl
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Partial Fraction Expansion (Example: Binet’'s Formula)

e Generating function: g(x) = >_,.o FaX" = 7=

1—x—x2"
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Partial Fraction Expansion (Example: Binet’'s Formula)

e Generating function: g(x) = >_,.o FaX" = 7=

1—x—x2-

e Partial fraction expansion:
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Partial Fraction Expansion (Example: Binet’'s Formula)

e Generating function: g(x) = >, o FoX" = 5.

e Partial fraction expansion:

a1 mB usy
= g(x) = 1T-x—x2 /5 11v5o :
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Partial Fraction Expansion (Example: Binet’'s Formula)

e Generating function: g(x) = >, o FoX" = 5.

e Partial fraction expansion:

N (X)_ X B L z\f B —1—5\[)(
o= T—x-x2 /5 e

Coefficient of x” (power series expansion):

Fr= [(%)n - (%)n] - Binet's Formula!

(using geometric series: - =1+r+r2+r¥+...).
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Differentiating Identities and Method of Moments

e Differentiating identities
Example: Given a random variable X such that

PriX=1)=1,Pr(X=2)=1,Pr(X=3)=14, ...
then what’s the mean of X (i.e., E[X])?
Solution: Let f(x) = X + 3x* + gx® + - = 35 — 1.
fix)=1-1+2-Ix+3-1x2+....
f(1y=1-3+2-2+3-3+---=E[X].
e Method of moments: Random variables Xj, X5, .. ..

If " moments E[X!] converges those of standard
normal then X, converges to a Gaussian.

Standard normal distribution:
2m™ moment: (2m — 1)l = (2m —1)(2m —3)---1,
(2m — 1) moment: 0.




Gaussianity

New Approach: Case of Fibonacci Numbers

Pnk = # {N € [Fp, Fyo11): the Zeckendorf decomposition of N
has exactly kK summands}.
@ Recurrence relation:

N e [Fn+1,Fn+2): N:Fn+1 +Fi+--,t<n-1.

Pnitk+t = Pn-1k+Pn2k+ -
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@ Recurrence relation:
Pnitk+t = Pn-1k+Pn2k+ -
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New Approach: Case of Fibonacci Numbers

Pnk = # {N € [Fp, Fyo11): the Zeckendorf decomposition of N
has exactly kK summands}.
@ Recurrence relation:

N e [Fn+1,Fn+2): N:Fn+1 +Fi+--,t<n-1.
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Pnk+1 = Ppn-2k+Pn-3k+--:
= Pnt1,k+1 = Pnk+1 + Pn-1k-




Gaussianity

New Approach: Case of Fibonacci Numbers

Pnk = # {N € [Fp, Fyo11): the Zeckendorf decomposition of N
has exactly kK summands}.
@ Recurrence relation:

N e [Fn+1,Fn+2): N:Fn+1 +Fi+--,t<n-1.

Pntik+1 = Pn-1k +Pn-2k+ -
Pnk+1 = Pn-2k+Pn-3k+--
= Pnt1,k+1 = Pnk+1 + Pn-1k-
. L kyn _ y
@ Generating function: Zn7k>0 PnkX"Y" = 3= =52

@ Partial fraction expansion:

y L y ( 1 B 1 >
T—y=xy2  y(x)=y2(x) \y =y1(x) ¥y —ya(X)
where y;(x) and y»(x) are the roots of 1 — y — xy? = 0.

Coefficient of y™: g(x) = "4~ PniX”.




Gaussianity

New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k.
9(x) = > k=0 Pn,ka-
@ Differentiating identities:
9(1) = > k=0Pnk = Fnr1 — Fn,
9'(X) = Ykso kpnix*1, g'(1) = 9(1)E[Kn),
(xg' (X)) = Zkso K2Pnsx T,
(xg'(0) |x=1 = G(1)EIKZ], (x (xg'(x))")' [x=1 = 9(DEIKF], ...
Similar results hold for the centralized Kj,: K}, = K, — E[Kj].
@ Method of moments (for normalized K},):
E[(K})2™/(SD(K})2™ — (2m — 1)1,
E[(K,)?™1]/(SD(K}))?™1 — 0. = K, — Gaussian.

y




Gaussianity

New Approach: General Case

Let ppx = # {N € [Hn, Hy11): the generalized Zeckendorf
decomposition of N has exactly kK summands}.

@ Recurrence relation:
Fibonacci: ppi1.k+1 = Pnk+1 + Pnk-

. L—1 Smy1—1
General: Ppi1k = Dm0 2jmen  Pr—mk—j-

where s =0,S,=¢Cy+Co+ -+ Cm.
@ Generating function:
Fibonacci: ﬁ
General:
Zn<L Pn, kxk Z }'Sm;,;_1 ijm+1 Zn<L m Pn, kX y

1_ Z sm+1—1 xjym+1

y



Gaussianity

New Approach: General Case (Continued)

@ Partial fraction expansion:

, Ly 11
Fibonacci: — "0 (y7y1(x) yﬂ’z(ﬂ)'

General: L
B 1 Z B(x,y) '
> T 6 S 7 = y00) T (1) = %)
—1 Smy1—1
ankxy —Z Z xlym Z PaxX y",
n<L m=0 j=sm n<L—m

Yi(x): root of 1 — L1 Sosmi = yiymit _ g

J=Sm
Coefficient of y": g(x) = >, k=0 PnkX".
@ Differentiating identities

@ Method of moments: implies K, — Gaussian.

y
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Gaps in the Bulk J
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Distribution of Gaps

For F,, + F, +--- + F,,, the gaps are the differences
I'n—"In—1,In—1 —In—2,..., 2 — 1.

Example: For F; + Fg + Fig, the gaps are 7 and 10.

TA
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Distribution of Gaps

For F,, + F, +--- + F,,, the gaps are the differences
I'n—"In—1,In—1 —In—2,..., 2 — 1.

Example: For F; + Fg + Fig, the gaps are 7 and 10.

Let P,(k) be the probability that a gap for a decomposition
in [Fp, Fryt) is of length k.

TS
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Distribution of Gaps

For F,, + F, +--- + F,,, the gaps are the differences
I'n—"In—1,In—1 —In—2,..., 2 — 1.

Example: For F; + Fg + Fig, the gaps are 7 and 10.

Let P,(k) be the probability that a gap for a decomposition
in [Fp, Fryt) is of length k.

What is P(k) = limp_ec Pa(k)?
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Distribution of Gaps

For F,, + F, +--- + F,,, the gaps are the differences
I'n—"In—1,In—1 —In—2,..., 2 — 1.

Example: For F; + Fg + Fig, the gaps are 7 and 10.

Let P,(k) be the probability that a gap for a decomposition
in [Fp, Fryt) is of length k.

What is P(k) = limp_ec Pa(k)?

Can ask similar questions about binary or other
expansions: 2012 = 210 1 29 1. 28 1 27 1 26 4 4 4 23 4 D2

y
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Main Result

Theorem (Distribution of Bulk Gaps (SMALL 2012))

LetHp.1 = ciHy+ ¢oHpo1 + - - + ¢LHp 1 be a positive
linear recurrence of length L where ¢c; > 1 forall1 < i < L.
Then

1_(CLek)(2)\ +a -3) :j=0
P(j) = A171(CLek)(A1(1 _231)+a1) /:1
(A= 1) (CLek> )\1_] j=>2

v/ EEEEEEEEOOSOSGSSSSSSE
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Special Cases

Theorem (Base B Gap Distribution (SMALL 2011))

For base B decompositions, P(0) = B=XE=2) "and for
k> 1, P(k) = cgB, with cg = (B=038-2),

Theorem (Zeckendorf Gap Distribution (SMALL 2011))

For Zeckendorf decompositions, P(k) = 1/¢* fork > 2,
with ¢ = 12/ the golden mean.

y
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker = total number of gaps ~ F,_1 #.
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker = total number of gaps ~ F,_1 #.

Let Xi; = #{m € [F,, Fn+1): decomposition of m includes
Fi, Fj, but not F, for i < g < j}.
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker = total number of gaps ~ F,_4 #.
Let Xi; = #{m € [F,, Fn+1): decomposition of m includes
Fi, Fj, but not F, for i < g < j}.

P(k) = lim w

n—oo n—1 W
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Calculating X, «

How many decompositions contain a gap from F; to Fi?

OO --0OReRRRQ—-- RO - -OR@
Fy Fi1 F, B Fbyi By B




Gaps (Bulk)
[ ]

Calculating X, «

How many decompositions contain a gap from F; to Fi?

OO ---OR@RRR— - RRIWRO--- -OX@
F Fi1 F; B Fbyi By B

For the indices less than i: F;_1 choices. Why? Have F; as largest
summand and follows by Zeckendorf: #[F;, Fi 1) = Fix1 — Fi = Fi_q.
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Calculating X, «

How many decompositions contain a gap from F; to Fi?

OO --0OReRRRQ—-- RO - -OR@
Fy Fi1 F, B Fbyi By B

For the indices less than i: F;_1 choices. Why? Have F; as largest
summand and follows by Zeckendorf: #[F;, Fi 1) = Fix1 — Fi = Fi_q.

For the indices greater than i + k: F,_x_;_o choices. Why? Shift.
Choose summands from {Fy, ..., Fo_k—i+1} with Fy, Fr_k_it1
chosen. Decompositions with largest summand F,_x_;;1 minus
decompositions with largest summand F,_x_;.
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Calculating X, «

How many decompositions contain a gap from F; to Fi?

OO --0OReRRRQ—-- RO - -OR@
Fy Fi1 F, B Fbyi By B

For the indices less than i: F;_1 choices. Why? Have F; as largest
summand and follows by Zeckendorf: #[F;, Fi 1) = Fix1 — Fi = Fi_q.

For the indices greater than i + k: F,_x_;_o choices. Why? Shift.
Choose summands from {Fy, ..., Fo_k—i+1} with Fy, Fr_k_it1
chosen. Decompositions with largest summand F,_x_;;1 minus
decompositions with largest summand F,_x_;.

So total number of choices is F,,_x_o_;Fi_1.
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Determining P(k)

Recall
n—K vy ()—k =
P(k) = lim Zi:1 XI,H-k — Iim Z,:1 Fn—k—nZ—lF/—1'
e P n—o0 Fr_1 P
Use Binet’s formula. Sums of geometric series:
P(k) = 1/¢k.

) 25 0

Figure: Distribution of summands in [Fioq0, F1g01)-
R R R R RRRRRRBRBRRBRBRREBBRBBBBERDEREBEEB BB
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Summand Minimality
with Cordwell, Hlavacek, Huynh, Peterson, Vu
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Introduction

Fibonaccis: Fo =1,F =1, Fpi0 = Fpy1 + Fo.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.
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Introduction

Fibonaccis: Fo =1,F =1, Fpi0 = Fpy1 + Fo.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2018 = 1597 + 377 +34+8+2 = Fig + F13+ Fg + F5 + Fo.
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Introduction

Fibonaccis: Fo =1,F =1, Fpi0 = Fpy1 + Fo.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2018 = 1597 + 377 +34+8+2 = Fig + F13+ Fg + F5 + Fo.

Conversely, we can construct the Fibonacci sequence using
this property:

1
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Introduction

Fibonaccis: Fo =1,F =1, Fpi0 = Fpy1 + Fo.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2018 = 1597 + 377 +34+8+2 = Fig + F13+ Fg + F5 + Fo.

Conversely, we can construct the Fibonacci sequence using
this property:

1,2
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Introduction

Fibonaccis: Fo =1,F =1, Fpi0 = Fpy1 + Fo.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2018 = 1597 + 377 +34+8+2 = Fig + F13+ Fg + F5 + Fo.

Conversely, we can construct the Fibonacci sequence using
this property:

1,2,3
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Introduction

Fibonaccis: Fo =1,F =1, Fpi0 = Fpy1 + Fo.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2018 = 1597 + 377 +34+8+2 = Fig + F13+ Fg + F5 + Fo.

Conversely, we can construct the Fibonacci sequence using
this property:

1,2,3,5
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Introduction

Fibonaccis: Fo =1,F =1, Fpi0 = Fpy1 + Fo.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2018 = 1597 + 377 +34+8+2 = Fig + F13+ Fg + F5 + Fo.

Conversely, we can construct the Fibonacci sequence using
this property:

1,2,3,5,8
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Introduction

Fibonaccis: Fo =1,F =1, Fpi0 = Fpy1 + Fo.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2018 = 1597 + 377 +34+8+2 = Fig + F13+ Fg + F5 + Fo.

Conversely, we can construct the Fibonacci sequence using
this property:

1,2,3,5,8,13...
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Summand Minimality

@ 18 = 18 + 5= F5 + F4, legal decomposition, two
summands.

@18 = 183 + 3 + 2=Fs + F3+ Fp, non-legal
decomposition, three summands.
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Summand Minimality

@ 18 = 18 + 5= F5 + F4, legal decomposition, two
summands.

@18 = 183 + 3 + 2=Fs + F3+ Fp, non-legal
decomposition, three summands.

The Zeckendorf decomposition is summand minimal.
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Summand Minimality

@ 18 = 18 + 5= F5 + F4, legal decomposition, two
summands.

@18 = 183 + 3 + 2=Fs + F3+ Fp, non-legal
decomposition, three summands.

The Zeckendorf decomposition is summand minimal.

What other recurrences are summand minimal?
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Positive Linear Recurrence Sequences

Definition
A positive linear recurrence sequence (PLRS) is the
sequence given by a recurrence {an} with

an = Ciap-1 + -+ Cran—t

and each ¢; > 0 and c¢q, ¢; > 0. We use ideal initial conditions
a_(n-1)=0,...,a1=0,a =1andcall (¢, ..., c) the
signature of the sequence.
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Positive Linear Recurrence Sequences

Definition
A positive linear recurrence sequence (PLRS) is the
sequence given by a recurrence {an} with

an = Ciap-1 + -+ Cran—t

and each ¢; > 0 and c¢q, ¢; > 0. We use ideal initial conditions
a_(n-1)=0,...,a1=0,a =1andcall (¢, ..., c) the
signature of the sequence.

Theorem (Cordwell, Hlavacek, Huynh, M., Peterson, Vu)

For a PLRS with signature (¢4, Co, . . ., Ct), the Generalized
Zeckendorf Decompositions are summand minimal if and only if

Ci>C>:-- 2> Ct.
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Proof for Fibonacci Case

Idea of proof:

@ D=DbiFy +---+ byF, decomposition of N, set
Ind(D)=by-1+---+bp-n.
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Proof for Fibonacci Case

Idea of proof:

@ D=DbiFy +---+ byF, decomposition of N, set
Ind(D)=by-1+---+bp-n.

@ Move to D’ by
o 2Fk = Fxi1 + Fxk_2 (and 2F, = F3 + Fy).
o Fi + Fiy1 = Fiy2 (@and Fy + F1 = Fp).
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Proof for Fibonacci Case

Idea of proof:

@ D=DbiFy +---+ byF, decomposition of N, set
Ind(D)=by-1+---+bp-n.

@ Move to D’ by
o 2Fk = Fxi1 + Fxk_2 (and 2F, = F3 + Fy).
o Fi + Fiy1 = Fiy2 (@and Fy + F1 = Fp).

@ Monovariant: Note Ind(D’) < Ind(D).
o 2F = Fk+1 + Fi_o: 2k vs 2k — 1.
<>Fk—|-Fk+1 = Fk+21 2k +1vs k + 2.
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Proof for Fibonacci Case

Idea of proof:

@ D=DbiFy +---+ byF, decomposition of N, set
Ind(D)=by-1+---+bp-n.

@ Move to D’ by
o 2Fk = Fxi1 + Fxk_2 (and 2F, = F3 + Fy).
o Fi + Fiy1 = Fiy2 (@and Fy + F1 = Fp).

@ Monovariant: Note Ind(D’) < Ind(D).
o 2F = Fk+1 + Fi_o: 2k vs 2k — 1.
<>Fk—|-Fk+1 = Fk+21 2k +1vs k + 2.

@ If not at Zeckendorf decomposition can continue, if at
Zeckendorf cannot. Better: Ind'(D) = byv/1 + -+ + bpy/n.
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The Zeckendorf Game
with Alyssa Epstein and Kristen Flint
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@ Two player game, alternate turns, last to move wins.
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@ Two player game, alternate turns, last to move wins.

@ Bins F4, F», F3, ..., start with N pieces in Fy and others
empty.
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@ Two player game, alternate turns, last to move wins.

@ Bins F4, F», F3, ..., start with N pieces in Fy and others
empty.

@ Aturn is one of the following moves:
o If have two pieces on F, can remove and put one
piece at Fx.1 and one at Fx_»
(if Kk =1 then 2F; becomes 1F,)
o If pieces at Fx and F,1 remove and add one at Fg_.».
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@ Two player game, alternate turns, last to move wins.

@ Bins F4, F», F3, ..., start with N pieces in Fy and others
empty.

@ Aturn is one of the following moves:
o If have two pieces on F, can remove and put one
piece at Fx.1 and one at Fx_»
(if Kk =1 then 2F; becomes 1F,)
o If pieces at Fx and F,1 remove and add one at Fg_.».

Questions:
@ Does the game end? How long?
@ For each N who has the winning strategy?
@ What is the winning strategy?
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Sample Game

Start with 10 pieces at F4, rest empty.

10 0 0 0 0
[F1 =1] [Fo = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player1: F1 + F{ = F»
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Sample Game

Start with 10 pieces at F4, rest empty.

8 1 0 0 0
[F1 =1] [Fo = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player2: F1 + F{ = F»
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Sample Game

Start with 10 pieces at F4, rest empty.

6 2 0 0 0
[F1 =1] [Fo = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 1: 2F, = F3 + F4
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Sample Game

Start with 10 pieces at F4, rest empty.

7 0 1 0 0
[F1 =1] [Fo = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player2: F1 + F{ = F»
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Sample Game

Start with 10 pieces at F4, rest empty.

5 1 1 0 0
[F1 =1] [Fo = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 1: Fo + F3 = F4.
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Sample Game

Start with 10 pieces at F4, rest empty.

5 0 0 1 0
[F1 =1] [Fo = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 2: F; + F = Fo.
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Sample Game

Start with 10 pieces at F4, rest empty.

3 1 0 1 0
[F1 =1] [Fo = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 1: F; + F = Fo.
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Sample Game

Start with 10 pieces at F4, rest empty.

1 2 0 1 0
[F1 =1] [Fo = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 2: F; + F> = F3.
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Sample Game

Start with 10 pieces at F4, rest empty.

0 1 1 1 0
[F1 =1] [Fo = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 1: F3 + F4 = Fs.
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Sample Game

Start with 10 pieces at F4, rest empty.

0 1 0 0 1
[Fr=11 [Fo=2] [FR=3] [F=5 [F=28

No moves left, Player One wins.
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Sample Game

Player One won in 9 moves.

10 0 0 0 0

8 1 0 0 0

6 2 0 0 0

7 0 1 0 0

5 1 1 0 0

5 0 0 1 0

3 1 0 1 0

1 2 0 1 0

0 1 1 1 0

0 1 0 0 1
[Fr=11 [FR=2] [FR=3] [F=5 I[FfF=28

A




Zeckendorf Game
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Player Two won in 10 moves.

10

[Fs = 8]

[F: = 5]

[Fs =3]

[F2 = 2]

[Fr = 1]
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Games end

All games end in finitely many moves.
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Games end

All games end in finitely many moves.

Proof: The sum of the square roots of the indices is a strict
monovariant.

@ Adding consecutive terms: (\/R+ \/E) -vk+2<0.
@ Splitting: 2vk — (Vk+1+ vk +1) <O0.

@ Adding 1’s: 2v/1 — V2 < 0.

o Splitting 2's: 2v/2 — (\/§+ \ﬁ) <0.




Zeckendorf Game
[ ]

Games Lengths: |

Upper bound: At most nlog,, (nv/5 + 1/2) moves.

Fastest game: n— Z(n) moves (Z(n) is the number of
summands in n's Zeckendorf decomposition).
From always moving on the largest summand possible
(deterministic).
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Games Lengths: I

Frequency
0A125
0.10
o.oaf
0.0Gi
0‘045

0‘02:

0.007

e o o 4 4 Moves
70

Figure: Frequency graph of the number of moves in 9,999
simulations of the Zeckendorf Game with random moves when
n = 60 vs a Gaussian. Natural conjecture....




Zeckendorf Game
[ ]

Winning Strategy

Player Two Has a Winning Strategy

Idea is to show if not, Player Two could steal Player One’s
strategy.

Non-constructive!

Will highlight idea with a simpler game.
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Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i, j) and
coloring every dot (m,n) with i < mandj < n.

Once all dots colored game ends; whomever goes last loses.

Proof Player 1 has a winning strategy. If have, play; if not, steal.
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Two players, alternate. Turn is choosing a dot at (i, j) and
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Proof Player 1 has a winning strategy. If have, play; if not, steal.
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Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i, j) and
coloring every dot (m, n) with i < mand j < n.

Once all dots colored game ends; whomever goes last loses.

Proof Player 1 has a winning strategy. If have, play; if not, steal.




Zeckendorf Game
L]

Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i, j) and
coloring every dot (m, n) with i < mand j < n.

Once all dots colored game ends; whomever goes last loses.

Proof Player 1 has a winning strategy. If have, play; if not, steal.
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Sketch of Proof for Player Two’s Winning Strategy

](n—?.DA 2

1(:1—4) A 22

I 1(11—5)/\5 I 1(11—7)/\ 22 A3 I 1(n=6) A 32 I 1(11—5)/\ 2A3 I 1(11—8)/\ 24'
T~ — |

Il"’_7'/\2/\5|l‘”‘g'A23A3| ]("_6)A32I1'"_S‘A2A3:I 1=9A5 |1‘"-"A23A3|1("—“”/\25|

1(n=7) A2AS

1=9A2A3
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Sketch of Proof for Player Two’s Winning Strategy

l(n—()) A 23

I ](n—5) AS I l(n—7) A 22/\ 3 | 1(::—0)/\ 32| 1(11—51 A2A3 | l(n—S)A 24|

| PANSSRSTSS

Il“”’AzASIHWmAzlAslﬁ”*’A33|HFNA2A33|]“FS’AS IV“”AZ:A3IIM_M'A25I

1D A2 A5
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Sketch of Proof for Player Two’s Winning Strategy

1(n=6) A 2.’-

I 10-D A5 I 1D A 22 A3 | 1‘”‘"’/\33| 1= A2 A3 | 108 A 24|
== \

(n=7) (n=9) 5 73 (n—6) 2] =8) 5 A 22 (n=5) (n=T) p 2 (n—=10) A 75
1=DA2A5 1242343 1 A3 1m9A2A32] 1 AS |15 A22A3]1 A2
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Sketch of Proof for Player Two’s Winning Strategy

I 1(11—5)/\ 5 I ](n—7)A 22 A3 | 1()1—6) A 32 I 1(!1—5)/\ 2A3 I 1(11—8)/\ 24I

l L >N _— |

Il"“”/\z/\sl1'"-“'A23A3| 1=6) A 32|1'"-“'A2A31| 1975 Il'"-”/\ 27 3|1“"””/\25|

1D A2AS
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Sketch of Proof for Player Two’s Winning Strategy
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Sketch of Proof for Player Two’s Winning Strategy
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Sketch of Proof for Player Two’s Winning Strategy

l(n—(y) A 23
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Future Work

@ What if p > 3 people play the Fibonacci game?

@ Does the number of moves in random games converge to
a Gaussian?

@ Define k-nacci numbersby S; 1 = Si+ Sj_ 1+ -+ Sj_x;
game terminates but who has the winning strategy?
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Black Hole Zeckendorf Game

How can we simplify the game?
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Black Hole Zeckendorf Game

How can we simplify the game?

Fr, Black Hole Variation

Any pieces placed in a column F; for i > m are permanently
removed from gameplay.

For the F4 case, this allows for the following moves:

P2.1
(a,b,c)
W Azw S3
(a—2,b+1,c)(a—1,b—1,c+1)(ab-1,c—1)(a+1,b-2,c+1)(a+1,b,c—2)
P1.1.M P1.1.A P1.1.A2 P1.1.S, P1.1.S;5
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Empty Board Black Hole Zeckendorf Game

@ We define a pre-game where players place pieces on the
outer columns of the board.
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Empty Board Black Hole Zeckendorf Game

@ We define a pre-game where players place pieces on the
outer columns of the board.

@ Players can use move mirroring to force an advantageous
setup.
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Empty Board Black Hole Zeckendorf Game

@ We define a pre-game where players place pieces on the
outer columns of the board.

@ Players can use move mirroring to force an advantageous
setup.

Fi | F | Fs
0[0]o0
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Empty Board Black Hole Zeckendorf Game

@ We define a pre-game where players place pieces on the
outer columns of the board.

@ Players can use move mirroring to force an advantageous

setup.
Fi| F| F
o0/ 0
F|F| R
11010
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Empty Board Black Hole Zeckendorf Game

@ We define a pre-game where players place pieces on the
outer columns of the board.

@ Players can use move mirroring to force an advantageous

setup.
Fi| F| F
o0/ 0
F|F| R
11010
F || R
110 |1




Zeckendorf Game
0008000000

(a,0,0) Setup

Let (a,0,0) be an initial setup
for an F4 Black Hole
Zeckendorf game. For any
n+2 e 729, Player 2 has a
constructive solution.
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(a,0,0) Setup

(a,0,0)
M
(a—2,1,0)
Let (a,0,0) be an initial setup A,
for an F4 Black Hole (a—3,0.1)
Zeckendorf game. For any
n+2 e 729, Player 2 has a M
constructive solution. (@-5,1,1)
Az
(a—5,0,0)
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(0,0,0) Setup

Let (0,0, ¢) be an initial setup
for an F3 Black Hole
Zeckendorf game. For any
c+#0,1,5 ¢ 729 Player 1 has
a constructive winning strategy.

Corollary 5.4
(1,0, ¢) wins for all ¢ # 3.
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(0,0,c) Setup

Let (0,0, ¢) be an initial setup (1,0,c-2)
for an F3 Black Hole ‘ss
Zeckendorf game. For any (2,0,c —4)
c+#0,1,5 ¢ 729 Player 1 has ‘M
a constructive winning strategy. (0.1.c-4)

Az/ \33
Corollary 5.4 0.0.c_5) 1 1.c_6)
(1,0, c) wins for all ¢ # 3. S5 /ﬁ

(1,0,c—7)
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(a,0,c) Setup

Consider a setup (a,0, ¢) as some (3« + k1, 0,4~ + k3) with
ki € {0,1,2} and k3 € {0,1,2,3}. Player 2 wins are depicted in
bold blue, and Player 1 wins are depicted in red.

a=0 (mod3) | a=1(mod3) | a=2 (mod 3)
c=0 (mod 4) a >y Yo,y a>~y+1
a<y-—1 a <7y
c=1 (mod 4) a>y—1 Va,~y a>y
a<~vy-—2 a<~vy-—1
c=2 (mod 4) Va, v a>y+1 Va,
a<«y
¢ =3 (mod 4) Va, v >y Va, vy
a<~vy-—1
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A Non-Constructive Proof

(Ba+ ki,1,4y + k)

AT T

(Bar+ ki —1,0,4y + kg + 1) (B + k1,0, 47 + ks — 1)
Mo
For all a, 7y such that B+ ki —3,1,4v + k3 + 1) (3a + ki, 0,4~ + k3 — 1)
ki € {1,2} and AL T
ks € {0,1,2,3}, (Ba+ ki —4,0,47 + ks +2) (o + ki — 3,0, 47 + ky)
Player 1 has a [
winning strategy for Ba+ ki —6,1,4y + k3 +2) (3cx + ki — 3,0,4~ + k3)
(Ba+ ki, 1,47 + ka) | \

(Ba+ ki —3a,1,4y + k3 + )
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A Non-Constructive Proof cont.

Reminder
(1,0, ¢) wins for all ¢ # 3
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A Non-Constructive Proof cont.

Reminder
(1,0, ¢) wins for all ¢ # 3

1,1,4v+ k3 + o)
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A Non-Constructive Proof cont.

Reminder
(1,0, ¢) wins for all ¢ # 3

1,1,4v+ k3 + o)
As
(1034’Y‘|‘k3—|—(l—1)
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A Non-Constructive Proof cont.

Reminder
(1,0, ¢) wins for all ¢ # 3

(1,1,4y + k3 + ) (2,1,4~ + k3 + a)
As
(1034’Y‘|‘k3—|—(l—1)
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A Non-Constructive Proof cont.

Reminder
(1,0, ¢) wins for all ¢ # 3

(1,1,4y + k3 + ) (2,1,4~ + k3 + a)
he Al
(1,0,47 + kg + a — 1) (1,0,47 + ks + o+ 1)
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Empty Board Game on F,

Player 2 wins an Empty Board F,4 Black Hole Zeckendorf game
forn=0,2,4,6,9,11,13 (mod 16) when n # 2,32, and also
winsn = 17,47.

Player 1 wins forn=1,3,5,7,8,10,12,14,15 (mod 16) when
n 17,47, and also wins n = 2,32.
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Empty Board Game on F,

Player 2 wins an Empty Board F,4 Black Hole Zeckendorf game
forn=0,2,4,6,9,11,13 (mod 16) when n # 2,32, and also
winsn = 17,47.

Player 1 wins forn=1,3,5,7,8,10,12,14,15 (mod 16) when
n 17,47, and also wins n = 2,32.

@ For large enough n, « > ~ is always true when move
mirroring is used.
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What happens when n = 25?

Player 2 can use move mirroring to force the Player 1 to set the
board as (7,0, 6), so Player 2 moves first in the decomposition
phase.
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What happens when n = 25?

Player 2 can use move mirroring to force the Player 1 to set the
board as (7,0, 6), so Player 2 moves first in the decomposition

phase.

(6.1,4)
(5,6,5)

(3,1,5)
(3,0,4)
(1,1.4)  (4,0,2)
(0, 6,5) (3,6,0)

() )

(0,0,0) (0,0,0)

(7.0.6)
(8,0,4)

(5,0,3)
(5,6,1)
(3,1,1)
(3,6,0)
()
(0,6,0)

\

(9,0,2)
(10,0,0)
(-;-)
(0,0,0)
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