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Introduction
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Goals of the Talk

R esearch: What questions to ask? How? With whom?
E xplore: Look for the right perspective.
U tilize: What are your tools and how can they be used?
s ucceed: Control what you can: reports, talks, ....

Joint with many students and junior faculty over the years.
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Utilize: What are your tools and how can they be used?
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I Love Rectangles
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Tiling the Plane with Squares

Have n × n square for each n, place one at a time so that shape
formed is always connected and a rectangle.
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Tiling the Plane with Squares

Have n×n square for each n, extra 1×1 square, place one at a
time so that shape formed is always connected and a rectangle.
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Tiling the Plane with Squares: 1 × 1, 1 × 1, 2 × 2, 3 × 3, . . . .
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Tiling the Plane with Squares: 1 × 1, 1 × 1, 2 × 2, 3 × 3, . . . .
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Tiling the Plane with Squares: 1 × 1, 1 × 1, 2 × 2, 3 × 3, . . . .
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Tiling the Plane with Squares: 1 × 1, 1 × 1, 2 × 2, 3 × 3, . . . .
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Tiling the Plane with Squares: 1 × 1, 1 × 1, 2 × 2, 3 × 3, . . . .

1, 1, 2, 3, 5, . . . .
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Fibonacci Spiral:
https://www.youtube.com/watch?v=kkGeOWYOFoA
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Fibonacci Spiral: (33,552)
https://www.youtube.com/watch?v=kkGeOWYOFoA
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Fibonacci Spiral:
https://www.youtube.com/watch?v=kkGeOWYOFoA
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Pre-requisites
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Pre-requisites: Probability Review

5 10
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Let X be random variable with density p(x):
⋄ p(x) ≥ 0;

∫∞
−∞ p(x)dx = 1;

⋄ Prob (a ≤ X ≤ b) =
∫ b

a p(x)dx .
Mean: µ =

∫∞
−∞ xp(x)dx .

Variance: σ2 =
∫∞
−∞(x − µ)2p(x)dx .

Gaussian: Density (2πσ2)−1/2 exp(−(x − µ)2/2σ2).
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Pre-requisites: Combinatorics Review

n!: number of ways to order n people, order matters.

n!
k!(n−k)! = nCk =

(n
k

)
: number of ways to choose k from n,

order doesn’t matter.

Stirling’s Formula: n! ≈ nne−n
√

2πn.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =?
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 17 = F8 + 17.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 4 = F8 + F6 + 4.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 3 + 1 = F8 + F6 + F3 + 1.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 3 + 1 = F8 + F6 + F3 + F1.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 3 + 1 = F8 + F6 + F3 + F1.
Example: 83 = 55 + 21 + 5 + 2 = F9 + F7 + F4 + F2.
Observe: 51 miles ≈ 82.1 kilometers.

26



Intro I Love Rectangles Pre-reqs Gaussianity Gaps (Bulk) Summand Minimality Zeckendorf Game Refs

Old Results

Central Limit Type Theorem
As n → ∞ distribution of number of summands in Zeckendorf
decomposition for m ∈ [Fn,Fn+1) is Gaussian (normal).
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Figure: Number of summands in [F2010,F2011); F2010 ≈ 10420.
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New Results: Bulk Gaps: m ∈ [Fn,Fn+1) and ϕ = 1+
√

5
2

m =

k(m)=n∑
j=1

Fij , νm;n(x) =
1

k(m)− 1

k(m)∑
j=2

δ
(
x − (ij − ij−1)

)
.

Theorem (Zeckendorf Gap Distribution)
Gap measures νm;n converge almost surely to average gap
measure where P(k) = 1/ϕk for k ≥ 2.
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Figure: Distribution of gaps in [F1000,F1001); F2010 ≈ 10208.
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New Results: Longest Gap

Theorem (Longest Gap)
As n → ∞, the probability that m ∈ [Fn,Fn+1) has longest gap
less than or equal to f (n) converges to

Prob (Ln(m) ≤ f (n)) ≈ e−elog n−f (n)/ log ϕ
.

Immediate Corollary: If f (n) grows slower or faster than
log n/ log ϕ, then Prob(Ln(m) ≤ f (n)) goes to 0 or 1,
respectively.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)
.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)
ways to do.

Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)
.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)
ways to do.

Divides the cookies into P sets.

Example: 8 cookies and 5 people (C = 8, P = 5):
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)
.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)
ways to do.

Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)
.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)
ways to do.

Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)
.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)
ways to do.

Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem
The number of solutions to x1 + · · ·+ xP = C with xi ≥ 0 is(C+P−1

P−1

)
.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · ·+ Fik−1 + Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.

Cookie counting ⇒ pn,k =
(n−2k+1 + k−1

k−1

)
=
(n−k

k−1

)
.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem
The number of solutions to x1 + · · ·+ xP = C with xi ≥ 0 is(C+P−1
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k−1

)
.
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Preliminaries: The Cookie Problem: Reinterpretation
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Gaussian Behavior
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Generalizing Lekkerkerker: Erdos-Kac type result

Theorem (KKMW 2010)
As n → ∞, the distribution of the number of summands in
Zeckendorf’s Theorem is a Gaussian.

Sketch of proof: Use Stirling’s formula,

n! ≈ nne−n
√

2πn

to approximates binomial coefficients, after a few pages of
algebra find the probabilities are approximately Gaussian.
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(Sketch of the) Proof of Gaussianity
The probability density for the number of Fibonacci numbers that add up to an integer in [Fn, Fn+1) is

fn(k) =
(

n−1−k
k

)
/Fn−1. Consider the density for the n + 1 case. Then we have, by Stirling

fn+1(k) =

(n − k

k

) 1

Fn

=
(n − k)!

(n − 2k)!k!

1

Fn
=

1
√

2π

(n − k)n−k+ 1
2

k(k+ 1
2 )

(n − 2k)n−2k+ 1
2

1

Fn

plus a lower order correction term.
Also we can write Fn = 1√

5
ϕn+1 = ϕ√

5
ϕn for large n, where ϕ is the golden ratio (we are using relabeled

Fibonacci numbers where 1 = F1 occurs once to help dealing with uniqueness and F2 = 2). We can now split the
terms that exponentially depend on n.

fn+1(k) =

(
1

√
2π

√
(n − k)

k(n − 2k)

√
5

ϕ

)(
ϕ
−n (n − k)n−k

kk (n − 2k)n−2k

)
.

Define

Nn =
1

√
2π

√
(n − k)

k(n − 2k)

√
5

ϕ
, Sn = ϕ

−n (n − k)n−k

kk (n − 2k)n−2k
.

Thus, write the density function as
fn+1(k) = NnSn

where Nn is the first term that is of order n−1/2 and Sn is the second term with exponential dependence on n.
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(Sketch of the) Proof of Gaussianity
Model the distribution as centered around the mean by the change of variable k = µ + xσ where µ and σ are the
mean and the standard deviation, and depend on n. The discrete weights of fn(k) will become continuous. This
requires us to use the change of variable formula to compensate for the change of scales:

fn(k)dk = fn(µ + σx)σdx.

Using the change of variable, we can write Nn as

Nn =
1

√
2π

√
n − k

k(n − 2k)

ϕ
√

5

=
1

√
2πn

√
1 − k/n

(k/n)(1 − 2k/n)

√
5

ϕ

=
1

√
2πn

√
1 − (µ + σx)/n

((µ + σx)/n)(1 − 2(µ + σx)/n)

√
5

ϕ

=
1

√
2πn

√
1 − C − y

(C + y)(1 − 2C − 2y)

√
5

ϕ

where C = µ/n ≈ 1/(ϕ + 2) (note that ϕ2 = ϕ + 1) and y = σx/n. But for large n, the y term vanishes since
σ ∼

√
n and thus y ∼ n−1/2. Thus

Nn ≈
1

√
2πn

√
1 − C

C(1 − 2C)

√
5

ϕ
=

1
√

2πn

√
(ϕ + 1)(ϕ + 2)

ϕ

√
5

ϕ
=

1
√

2πn

√
5(ϕ + 2)

ϕ
=

1
√

2πσ2

since σ2 = n ϕ
5(ϕ+2) .
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(Sketch of the) Proof of Gaussianity
For the second term Sn , take the logarithm and once again change variables by k = µ + xσ,

log(Sn) = log

(
ϕ
−n (n − k)(n−k)

kk (n − 2k)(n−2k)

)
= −n log(ϕ) + (n − k) log(n − k) − (k) log(k)

− (n − 2k) log(n − 2k)

= −n log(ϕ) + (n − (µ + xσ)) log(n − (µ + xσ))

− (µ + xσ) log(µ + xσ)

− (n − 2(µ + xσ)) log(n − 2(µ + xσ))

= −n log(ϕ)

+ (n − (µ + xσ))

(
log(n − µ) + log

(
1 −

xσ

n − µ

))
− (µ + xσ)

(
log(µ) + log

(
1 +

xσ

µ

))
− (n − 2(µ + xσ))

(
log(n − 2µ) + log

(
1 −

xσ

n − 2µ

))
= −n log(ϕ)

+ (n − (µ + xσ))

(
log

( n

µ
− 1
)

+ log

(
1 −

xσ

n − µ

))
− (µ + xσ) log

(
1 +

xσ

µ

)
− (n − 2(µ + xσ))

(
log

( n

µ
− 2
)

+ log

(
1 −

xσ

n − 2µ

))
.
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(Sketch of the) Proof of Gaussianity

Note that, since n/µ = ϕ + 2 for large n, the constant terms vanish. We have log(Sn)

= −n log(ϕ) + (n − k) log
( n

µ
− 1
)

− (n − 2k) log
( n

µ
− 2
)

+ (n − (µ + xσ)) log

(
1 −

xσ

n − µ

)
− (µ + xσ) log

(
1 +

xσ

µ

)
− (n − 2(µ + xσ)) log

(
1 −

xσ

n − 2µ

)
= −n log(ϕ) + (n − k) log (ϕ + 1) − (n − 2k) log (ϕ) + (n − (µ + xσ)) log

(
1 −

xσ

n − µ

)
− (µ + xσ) log

(
1 +

xσ

µ

)
− (n − 2(µ + xσ)) log

(
1 −

xσ

n − 2µ

)
= n(− log(ϕ) + log

(
ϕ

2
)
− log (ϕ)) + k(log(ϕ2) + 2 log(ϕ)) + (n − (µ + xσ)) log

(
1 −

xσ

n − µ

)
− (µ + xσ) log

(
1 +

xσ

µ

)
− (n − 2(µ + xσ)) log

(
1 − 2

xσ

n − 2µ

)
= (n − (µ + xσ)) log

(
1 −

xσ

n − µ

)
− (µ + xσ) log

(
1 +

xσ

µ

)
− (n − 2(µ + xσ)) log

(
1 − 2

xσ

n − 2µ

)
.
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(Sketch of the) Proof of Gaussianity
Finally, we expand the logarithms and collect powers of xσ/n.

log(Sn) = (n − (µ + xσ))

(
−

xσ

n − µ
−

1

2

( xσ

n − µ

)2
+ . . .

)

− (µ + xσ)

(
xσ

µ
−

1

2

( xσ

µ

)2
+ . . .

)

− (n − 2(µ + xσ))

(
−2

xσ

n − 2µ
−

1

2

(
2

xσ

n − 2µ

)2
+ . . .

)

= (n − (µ + xσ))

−
xσ

n (ϕ+1)
(ϕ+2)

−
1

2

 xσ

n (ϕ+1)
(ϕ+2)

2

+ . . .



− (µ + xσ)

 xσ
n

ϕ+2

−
1

2

 xσ
n

ϕ+2

2

+ . . .


− (n − 2(µ + xσ))

−
2xσ

n ϕ
ϕ+2

−
1

2

 2xσ

n ϕ
ϕ+2

2

+ . . .


=

xσ

n
n

(
−
(

1 −
1

ϕ + 2

)
(ϕ + 2)

(ϕ + 1)
− 1 + 2

(
1 −

2

ϕ + 2

)
ϕ + 2

ϕ

)

−
1

2

( xσ

n

)2
n
(
−2

ϕ + 2

ϕ + 1
+

ϕ + 2

ϕ + 1
+ 2(ϕ + 2) − (ϕ + 2) + 4

ϕ + 2

ϕ

)
+O

(
n (xσ/n)3

)
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(Sketch of the) Proof of Gaussianity

log(Sn) =
xσ

n
n
(
−

ϕ + 1

ϕ + 2

ϕ + 2

ϕ + 1
− 1 + 2

ϕ

ϕ + 2

ϕ + 2

ϕ

)

−
1

2

( xσ

n

)2
n(ϕ + 2)

(
−

1

ϕ + 1
+ 1 +

4

ϕ

)

+O

(
n
( xσ

n

)3
)

= −
1

2

(xσ)2

n
(ϕ + 2)

(
3ϕ + 4

ϕ(ϕ + 1)
+ 1

)
+ O

(
n
( xσ

n

)3
)

= −
1

2

(xσ)2

n
(ϕ + 2)

(
3ϕ + 4 + 2ϕ + 1

ϕ(ϕ + 1)

)
+ O

(
n
( xσ

n

)3
)

= −
1

2
x2

σ
2
( 5(ϕ + 2)

ϕn

)
+ O

(
n (xσ/n)3

)
.
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(Sketch of the) Proof of Gaussianity

But recall that

σ
2 =

ϕn

5(ϕ + 2)
.

Also, since σ ∼ n−1/2, n
(

xσ
n

)3
∼ n−1/2. So for large n, the O

(
n
(

xσ
n

)3
)

term vanishes. Thus we are left

with

log Sn = −
1

2
x2

Sn = e−
1
2 x2

.

Hence, as n gets large, the density converges to the normal distribution:

fn(k)dk = NnSndk

=
1

√
2πσ2

e−
1
2 x2

σdx

=
1

√
2π

e−
1
2 x2

dx.

□
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Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn−L+1, n ≥ L

with H1 = 1, Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1, n < L,
coefficients ci ≥ 0; c1, cL > 0 if L ≥ 2; c1 > 1 if L = 1.

Zeckendorf: Every positive integer can be written
uniquely as

∑
aiHi with natural constraints on the ai ’s

(e.g. cannot use the recurrence relation to remove
any summand).
Lekkerkerker
Central Limit Type Theorem
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Generalizing Lekkerkerker

Generalized Lekkerkerker’s Theorem
The average number of summands in the generalized
Zeckendorf decomposition for integers in [Hn,Hn+1) tends
to Cn + d as n → ∞, where C > 0 and d are computable
constants determined by the ci ’s.

C = −y ′(1)
y(1)

=

∑L−1
m=0(sm + sm+1 − 1)(sm+1 − sm)ym(1)
2
∑L−1

m=0(m + 1)(sm+1 − sm)ym(1)
.

s0 = 0, sm = c1 + c2 + · · ·+ cm.

y(x) is the root of 1 −
∑L−1

m=0

∑sm+1−1
j=sm

x jym+1.

y(1) is the root of 1 − c1y − c2y2 − · · · − cLyL.
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Central Limit Type Theorem

Central Limit Type Theorem
As n → ∞, the distribution of the number of summands,
i.e., a1 + a2 + · · ·+ am in the generalized Zeckendorf
decomposition

∑m
i=1 aiHi for integers in [Hn,Hn+1) is

Gaussian.

1000 1050 1100 1150 1200

0.005

0.010

0.015

0.020
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Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.
Legal decomposition is decimal expansion:

∑m
i=1 aiHi :

ai ∈ {0,1, . . . ,9} (1 ≤ i < m), am ∈ {1, . . . ,9}.
For N ∈ [Hn,Hn+1), m = n, i.e., first term is
anHn = an10n−1.
Ai : the corresponding random variable of ai .
The Ai ’s are independent.
For large n, the contribution of An is immaterial.
Ai (1 ≤ i < n) are identically distributed random
variables
with mean 4.5 and variance 8.25.
Central Limit Theorem: A2 +A3 + · · ·+An → Gaussian
with mean 4.5n + O(1)
and variance 8.25n + O(1).
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(
1+

√
5

2

)n
−
(

−1+
√

5
2

)n]
.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑
n>0 F nxn.

(1) ⇒
∑
n≥2

F n+1xn+1 =
∑
n≥2

F nxn+1 +
∑
n≥2

F n−1xn+1

⇒
∑
n≥3

F nxn =
∑
n≥2

F nxn+1 +
∑
n≥1

F nxn+2

⇒
∑
n≥3

F nxn = x
∑
n≥2

F nxn + x2
∑
n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)
⇒ g(x) = x/(1 − x − x2).
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(
1+

√
5

2

)n
−
(

−1+
√

5
2

)n]
.

Recurrence relation: F n+1 = F n + F n−1 (1)

Generating function: g(x) =
∑

n>0 F nxn.

(1) ⇒
∑
n≥2

F n+1xn+1 =
∑
n≥2

F nxn+1 +
∑
n≥2

F n−1xn+1

⇒
∑
n≥3

F nxn =
∑
n≥2

F nxn+1 +
∑
n≥1

F nxn+2

⇒
∑
n≥3

F nxn = x
∑
n≥2

F nxn + x2
∑
n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)
⇒ g(x) = x/(1 − x − x2).

54



Intro I Love Rectangles Pre-reqs Gaussianity Gaps (Bulk) Summand Minimality Zeckendorf Game Refs

Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(
1+

√
5

2

)n
−
(

−1+
√

5
2

)n]
.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑
n>0 F nxn.

(1) ⇒
∑
n≥2

F n+1xn+1 =
∑
n≥2

F nxn+1 +
∑
n≥2

F n−1xn+1

⇒
∑
n≥3

F nxn =
∑
n≥2

F nxn+1 +
∑
n≥1

F nxn+2

⇒
∑
n≥3

F nxn = x
∑
n≥2

F nxn + x2
∑
n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)
⇒ g(x) = x/(1 − x − x2).
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(
1+

√
5

2

)n
−
(

−1+
√

5
2

)n]
.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑
n>0 F nxn.

(1) ⇒
∑
n≥2

F n+1xn+1 =
∑
n≥2

F nxn+1 +
∑
n≥2

F n−1xn+1

⇒
∑
n≥3

F nxn =
∑
n≥2

F nxn+1 +
∑
n≥1

F nxn+2

⇒
∑
n≥3

F nxn = x
∑
n≥2

F nxn + x2
∑
n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)
⇒ g(x) = x/(1 − x − x2).
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(
1+

√
5

2

)n
−
(

−1+
√

5
2

)n]
.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑
n>0 F nxn.

(1) ⇒
∑
n≥2

F n+1xn+1 =
∑
n≥2

F nxn+1 +
∑
n≥2

F n−1xn+1

⇒
∑
n≥3

F nxn =
∑
n≥2

F nxn+1 +
∑
n≥1

F nxn+2

⇒
∑
n≥3

F nxn = x
∑
n≥2

F nxn + x2
∑
n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)
⇒ g(x) = x/(1 − x − x2).
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(
1+

√
5

2

)n
−
(

−1+
√

5
2

)n]
.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑
n>0 F nxn.

(1) ⇒
∑
n≥2

F n+1xn+1 =
∑
n≥2

F nxn+1 +
∑
n≥2

F n−1xn+1

⇒
∑
n≥3

F nxn =
∑
n≥2

F nxn+1 +
∑
n≥1

F nxn+2

⇒
∑
n≥3

F nxn = x
∑
n≥2

F nxn + x2
∑
n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)
⇒ g(x) = x/(1 − x − x2).
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(
1+

√
5

2

)n
−
(

−1+
√

5
2

)n]
.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑
n>0 F nxn.

(1) ⇒
∑
n≥2

F n+1xn+1 =
∑
n≥2

F nxn+1 +
∑
n≥2

F n−1xn+1

⇒
∑
n≥3

F nxn =
∑
n≥2

F nxn+1 +
∑
n≥1

F nxn+2

⇒
∑
n≥3

F nxn = x
∑
n≥2

F nxn + x2
∑
n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)

⇒ g(x) = x/(1 − x − x2).
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(
1+

√
5

2

)n
−
(

−1+
√

5
2

)n]
.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑
n>0 F nxn.

(1) ⇒
∑
n≥2

F n+1xn+1 =
∑
n≥2

F nxn+1 +
∑
n≥2

F n−1xn+1

⇒
∑
n≥3

F nxn =
∑
n≥2

F nxn+1 +
∑
n≥1

F nxn+2

⇒
∑
n≥3

F nxn = x
∑
n≥2

F nxn + x2
∑
n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)
⇒ g(x) = x/(1 − x − x2).
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:

⇒ g(x) =
x

1 − x − x2 =
1√
5

(
1+

√
5

2 x

1 − 1+
√

5
2 x

−
−1+

√
5

2 x

1 − −1+
√

5
2 x

)
.

Coefficient of xn (power series expansion):

F n = 1√
5

[(
1+

√
5

2

)n
−
(

−1+
√

5
2

)n]
- Binet’s Formula!

(using geometric series: 1
1−r = 1 + r + r 2 + r 3 + · · · ).
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:

⇒ g(x) =
x

1 − x − x2 =
1√
5

(
1+

√
5

2 x

1 − 1+
√

5
2 x

−
−1+

√
5

2 x

1 − −1+
√

5
2 x

)
.

Coefficient of xn (power series expansion):

F n = 1√
5

[(
1+

√
5

2

)n
−
(

−1+
√

5
2

)n]
- Binet’s Formula!

(using geometric series: 1
1−r = 1 + r + r 2 + r 3 + · · · ).
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:

⇒ g(x) =
x

1 − x − x2 =
1√
5

(
1+

√
5

2 x

1 − 1+
√

5
2 x

−
−1+

√
5

2 x

1 − −1+
√

5
2 x

)
.

Coefficient of xn (power series expansion):

F n = 1√
5

[(
1+

√
5

2

)n
−
(

−1+
√

5
2

)n]
- Binet’s Formula!

(using geometric series: 1
1−r = 1 + r + r 2 + r 3 + · · · ).
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:

⇒ g(x) =
x

1 − x − x2 =
1√
5

(
1+

√
5

2 x

1 − 1+
√

5
2 x

−
−1+

√
5

2 x

1 − −1+
√

5
2 x

)
.

Coefficient of xn (power series expansion):

F n = 1√
5

[(
1+

√
5

2

)n
−
(

−1+
√

5
2

)n]
- Binet’s Formula!

(using geometric series: 1
1−r = 1 + r + r 2 + r 3 + · · · ).
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Differentiating Identities and Method of Moments

Differentiating identities
Example: Given a random variable X such that
Pr(X = 1) = 1

2 , Pr(X = 2) = 1
4 , Pr(X = 3) = 1

8 , ....
then what’s the mean of X (i.e., E [X ])?
Solution: Let f (x) = 1

2x + 1
4x2 + 1

8x3 + · · · = 1
1−x/2 − 1.

f ′(x) = 1 · 1
2 + 2 · 1

4x + 3 · 1
8x2 + · · · .

f ′(1) = 1 · 1
2 + 2 · 1

4 + 3 · 1
8 + · · · = E [X ].

Method of moments: Random variables X1, X2, . . . .
If ℓth moments E [X ℓ

n] converges those of standard
normal then Xn converges to a Gaussian.
Standard normal distribution:
2mth moment: (2m − 1)!! = (2m − 1)(2m − 3) · · · 1,
(2m − 1)th moment: 0.
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + · · · , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + · · ·

pn,k+1 = pn−2,k + pn−3,k + · · ·
⇒ pn+1,k+1 = pn,k+1 + pn−1,k .

Generating function:
∑

n,k>0 pn,kxkyn = y
1−y−xy2 .

Partial fraction expansion:
y

1 − y − xy2 = − y
y1(x)− y2(x)

(
1

y − y1(x)
− 1

y − y2(x)

)
where y1(x) and y2(x) are the roots of 1 − y − xy2 = 0.

Coefficient of yn: g(x) =
∑

k>0 pn,kxk .

66



Intro I Love Rectangles Pre-reqs Gaussianity Gaps (Bulk) Summand Minimality Zeckendorf Game Refs

New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + · · · , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + · · ·
pn,k+1 = pn−2,k + pn−3,k + · · ·

⇒ pn+1,k+1 = pn,k+1 + pn−1,k .

Generating function:
∑

n,k>0 pn,kxkyn = y
1−y−xy2 .

Partial fraction expansion:
y

1 − y − xy2 = − y
y1(x)− y2(x)

(
1

y − y1(x)
− 1

y − y2(x)

)
where y1(x) and y2(x) are the roots of 1 − y − xy2 = 0.

Coefficient of yn: g(x) =
∑

k>0 pn,kxk .
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + · · · , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + · · ·
pn,k+1 = pn−2,k + pn−3,k + · · ·

⇒ pn+1,k+1 = pn,k+1 + pn−1,k .

Generating function:
∑

n,k>0 pn,kxkyn = y
1−y−xy2 .

Partial fraction expansion:
y

1 − y − xy2 = − y
y1(x)− y2(x)

(
1

y − y1(x)
− 1

y − y2(x)

)
where y1(x) and y2(x) are the roots of 1 − y − xy2 = 0.

Coefficient of yn: g(x) =
∑

k>0 pn,kxk .
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + · · · , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + · · ·
pn,k+1 = pn−2,k + pn−3,k + · · ·

⇒ pn+1,k+1 = pn,k+1 + pn−1,k .

Generating function:
∑

n,k>0 pn,kxkyn = y
1−y−xy2 .

Partial fraction expansion:
y

1 − y − xy2 = − y
y1(x)− y2(x)

(
1

y − y1(x)
− 1

y − y2(x)

)
where y1(x) and y2(x) are the roots of 1 − y − xy2 = 0.

Coefficient of yn: g(x) =
∑

k>0 pn,kxk .
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New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k .
g(x) =

∑
k>0 pn,kxk .

Differentiating identities:
g(1) =

∑
k>0 pn,k = Fn+1 − Fn,

g′(x) =
∑

k>0 kpn,kxk−1, g′(1) = g(1)E [Kn],

(xg′(x))′ =
∑

k>0 k2pn,kxk−1,

(xg′(x))′ |x=1 = g(1)E [K 2
n ],
(
x (xg′(x))′

)′ |x=1 = g(1)E [K 3
n ], ...

Similar results hold for the centralized Kn: K ′
n = Kn − E [Kn].

Method of moments (for normalized K ′
n):

E [(K ′
n)

2m]/(SD(K ′
n))

2m → (2m − 1)!!,

E [(K ′
n)

2m−1]/(SD(K ′
n))

2m−1 → 0. ⇒ Kn → Gaussian.
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New Approach: General Case

Let pn,k = # {N ∈ [Hn,Hn+1): the generalized Zeckendorf
decomposition of N has exactly k summands}.

Recurrence relation:
Fibonacci: pn+1,k+1 = pn,k+1 + pn,k .

General: pn+1,k =
∑L−1

m=0
∑sm+1−1

j=sm
pn−m,k−j .

where s0 = 0, sm = c1 + c2 + · · ·+ cm.

Generating function:
Fibonacci: y

1−y−xy2 .

General:∑
n≤L pn,kxkyn −

∑L−1
m=0

∑sm+1−1
j=sm

x jym+1∑
n<L−m pn,kxkyn

1 −
∑L−1

m=0
∑sm+1−1

j=sm
x jym+1

.
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New Approach: General Case (Continued)

Partial fraction expansion:

Fibonacci: − y
y1(x)−y2(x)

(
1

y−y1(x)
− 1

y−y2(x)

)
.

General:

− 1∑sL−1
j=sL−1

x j

L∑
i=1

B(x , y)
(y − yi(x))

∏
j ̸=i
(
yj(x)− yi(x)

) .
B(x , y) =

∑
n≤L

pn,kxkyn −
L−1∑
m=0

sm+1−1∑
j=sm

x jym+1
∑

n<L−m

pn,kxkyn,

yi(x): root of 1 −
∑L−1

m=0
∑sm+1−1

j=sm
x jym+1 = 0.

Coefficient of yn: g(x) =
∑

n,k>0 pn,kxk .

Differentiating identities

Method of moments: implies Kn → Gaussian.
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Gaps in the Bulk
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Distribution of Gaps

For Fr1 + Fr2 + · · ·+ Frn , the gaps are the differences
rn − rn−1, rn−1 − rn−2, . . . , r2 − r1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition
in [Fn,Fn+1) is of length k .

What is P(k) = limn→∞ Pn(k)?

Can ask similar questions about binary or other
expansions: 2012 = 210 + 29 + 28 + 27 + 26 + 24 + 23 + 22.

74



Intro I Love Rectangles Pre-reqs Gaussianity Gaps (Bulk) Summand Minimality Zeckendorf Game Refs

Distribution of Gaps

For Fr1 + Fr2 + · · ·+ Frn , the gaps are the differences
rn − rn−1, rn−1 − rn−2, . . . , r2 − r1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition
in [Fn,Fn+1) is of length k .

What is P(k) = limn→∞ Pn(k)?

Can ask similar questions about binary or other
expansions: 2012 = 210 + 29 + 28 + 27 + 26 + 24 + 23 + 22.

75



Intro I Love Rectangles Pre-reqs Gaussianity Gaps (Bulk) Summand Minimality Zeckendorf Game Refs

Distribution of Gaps

For Fr1 + Fr2 + · · ·+ Frn , the gaps are the differences
rn − rn−1, rn−1 − rn−2, . . . , r2 − r1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition
in [Fn,Fn+1) is of length k .

What is P(k) = limn→∞ Pn(k)?

Can ask similar questions about binary or other
expansions: 2012 = 210 + 29 + 28 + 27 + 26 + 24 + 23 + 22.

76



Intro I Love Rectangles Pre-reqs Gaussianity Gaps (Bulk) Summand Minimality Zeckendorf Game Refs

Distribution of Gaps

For Fr1 + Fr2 + · · ·+ Frn , the gaps are the differences
rn − rn−1, rn−1 − rn−2, . . . , r2 − r1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition
in [Fn,Fn+1) is of length k .

What is P(k) = limn→∞ Pn(k)?

Can ask similar questions about binary or other
expansions: 2012 = 210 + 29 + 28 + 27 + 26 + 24 + 23 + 22.

77



Intro I Love Rectangles Pre-reqs Gaussianity Gaps (Bulk) Summand Minimality Zeckendorf Game Refs

Main Result

Theorem (Distribution of Bulk Gaps (SMALL 2012))
Let Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn+1−L be a positive
linear recurrence of length L where ci ≥ 1 for all 1 ≤ i ≤ L.
Then

P(j) =


1 − ( a1

CLek
)(2λ−1

1 + a−1
1 − 3) : j = 0

λ−1
1 ( 1

CLek
)(λ1(1 − 2a1) + a1) : j = 1

(λ1 − 1)2
(

a1
CLek

)
λ−j

1 : j ≥ 2.
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Special Cases

Theorem (Base B Gap Distribution (SMALL 2011))

For base B decompositions, P(0) = (B−1)(B−2)
B2 , and for

k ≥ 1, P(k) = cBB−k , with cB = (B−1)(3B−2)
B2 .

Theorem (Zeckendorf Gap Distribution (SMALL 2011))

For Zeckendorf decompositions, P(k) = 1/ϕk for k ≥ 2,
with ϕ = 1+

√
5

2 the golden mean.
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker ⇒ total number of gaps ∼ Fn−1
n

ϕ2+1 .

Let Xi,j = #{m ∈ [Fn,Fn+1): decomposition of m includes
Fi , Fj , but not Fq for i < q < j}.

P(k) = lim
n→∞

∑n−k
i=1 Xi,i+k

Fn−1
n

ϕ2+1

.
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Calculating Xi,i+k

How many decompositions contain a gap from Fi to Fi+k?

For the indices less than i : Fi−1 choices. Why? Have Fi as largest
summand and follows by Zeckendorf: #[Fi ,Fi+1) = Fi+1 − Fi = Fi−1.

For the indices greater than i + k : Fn−k−i−2 choices. Why? Shift.
Choose summands from {F1, . . . ,Fn−k−i+1} with F1,Fn−k−i+1
chosen. Decompositions with largest summand Fn−k−i+1 minus
decompositions with largest summand Fn−k−i .

So total number of choices is Fn−k−2−iFi−1.
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Determining P(k)

Recall

P(k) = lim
n→∞

∑n−k
i=1 Xi,i+k

Fn−1
n

ϕ2+1

= lim
n→∞

∑n−k
i=1 Fn−k−2−iFi−1

Fn−1
n

ϕ2+1

.

Use Binet’s formula. Sums of geometric series:
P(k) = 1/ϕk .
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Summand Minimality
with Cordwell, Hlavacek, Huynh, Peterson, Vu
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Introduction

Fibonaccis: F0 = 1,F1 = 1,Fn+2 = Fn+1 + Fn.

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2018 = 1597 + 377 + 34 + 8 + 2 = F16 + F13 + F8 + F5 + F2.

Conversely, we can construct the Fibonacci sequence using
this property:

1, 2, 3, 5, 8, 13. . .
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Summand Minimality

Example
18 = 13 + 5 = F6 + F4, legal decomposition, two
summands.
18 = 13 + 3 + 2 = F6 + F3 + F2, non-legal
decomposition, three summands.

Theorem
The Zeckendorf decomposition is summand minimal.

What other recurrences are summand minimal?
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Positive Linear Recurrence Sequences

Definition
A positive linear recurrence sequence (PLRS) is the
sequence given by a recurrence {an} with

an := c1an−1 + · · ·+ ctan−t

and each ci ≥ 0 and c1, ct > 0. We use ideal initial conditions
a−(n−1) = 0, . . . ,a−1 = 0,a0 = 1 and call (c1, . . . , ct) the
signature of the sequence.

Theorem (Cordwell, Hlavacek, Huynh, M., Peterson, Vu)
For a PLRS with signature (c1, c2, . . . , ct), the Generalized
Zeckendorf Decompositions are summand minimal if and only if

c1 ≥ c2 ≥ · · · ≥ ct .
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Proof for Fibonacci Case

Idea of proof:
D = b1F1 + · · ·+ bnFn decomposition of N, set
Ind(D) = b1 · 1 + · · ·+ bn · n.

Move to D′ by
⋄ 2Fk = Fk+1 + Fk−2 (and 2F2 = F3 + F1).
⋄ Fk + Fk+1 = Fk+2 (and F1 + F1 = F2).

Monovariant: Note Ind(D′) ≤ Ind(D).
⋄ 2Fk = Fk+1 + Fk−2: 2k vs 2k − 1.
⋄ Fk + Fk+1 = Fk+2: 2k + 1 vs k + 2.

If not at Zeckendorf decomposition can continue, if at
Zeckendorf cannot. Better: Ind′(D) = b1

√
1 + · · ·+ bn

√
n.
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The Zeckendorf Game
with Alyssa Epstein and Kristen Flint
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Rules

Two player game, alternate turns, last to move wins.

Bins F1, F2, F3, . . . , start with N pieces in F1 and others
empty.

A turn is one of the following moves:
⋄ If have two pieces on Fk can remove and put one

piece at Fk+1 and one at Fk−2
(if k = 1 then 2F1 becomes 1F2)

⋄ If pieces at Fk and Fk+1 remove and add one at Fk+2.

Questions:
Does the game end? How long?
For each N who has the winning strategy?
What is the winning strategy?
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Sample Game

Start with 10 pieces at F1, rest empty.

10 0 0 0 0
[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 1: F1 + F1 = F2
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Sample Game

Start with 10 pieces at F1, rest empty.

8 1 0 0 0
[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 2: F1 + F1 = F2
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Sample Game

Start with 10 pieces at F1, rest empty.

6 2 0 0 0
[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 1: 2F2 = F3 + F1
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Sample Game

Start with 10 pieces at F1, rest empty.

7 0 1 0 0
[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 2: F1 + F1 = F2
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Sample Game

Start with 10 pieces at F1, rest empty.

5 1 1 0 0
[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 1: F2 + F3 = F4.
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Sample Game

Start with 10 pieces at F1, rest empty.

5 0 0 1 0
[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 2: F1 + F1 = F2.
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Sample Game

Start with 10 pieces at F1, rest empty.

3 1 0 1 0
[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 1: F1 + F1 = F2.
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Sample Game

Start with 10 pieces at F1, rest empty.

1 2 0 1 0
[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 2: F1 + F2 = F3.
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Sample Game

Start with 10 pieces at F1, rest empty.

0 1 1 1 0
[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 1: F3 + F4 = F5.
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Sample Game

Start with 10 pieces at F1, rest empty.

0 1 0 0 1
[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]

No moves left, Player One wins.
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Sample Game

Player One won in 9 moves.

10 0 0 0 0
8 1 0 0 0
6 2 0 0 0
7 0 1 0 0
5 1 1 0 0
5 0 0 1 0
3 1 0 1 0
1 2 0 1 0

0 1 1 1 0
0 1 0 0 1

[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]
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Sample Game

Player Two won in 10 moves.

10 0 0 0 0
8 1 0 0 0
6 2 0 0 0
7 0 1 0 0
5 1 1 0 0
5 0 0 1 0
3 1 0 1 0
1 2 0 1 0
2 0 1 1 0
0 1 1 1 0
0 1 0 0 1

[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]
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Games end

Theorem
All games end in finitely many moves.

Proof: The sum of the square roots of the indices is a strict
monovariant.

Adding consecutive terms:
(√

k +
√

k
)
−
√

k + 2 < 0.

Splitting: 2
√

k −
(√

k + 1 +
√

k + 1
)
< 0.

Adding 1’s: 2
√

1 −
√

2 < 0.

Splitting 2’s: 2
√

2 −
(√

3 +
√

1
)
< 0.
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Games end

Theorem
All games end in finitely many moves.

Proof: The sum of the square roots of the indices is a strict
monovariant.

Adding consecutive terms:
(√

k +
√

k
)
−
√

k + 2 < 0.

Splitting: 2
√

k −
(√

k + 1 +
√

k + 1
)
< 0.

Adding 1’s: 2
√

1 −
√

2 < 0.

Splitting 2’s: 2
√

2 −
(√

3 +
√

1
)
< 0.
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Games Lengths: I

Upper bound: At most n logϕ
(
n
√

5 + 1/2
)

moves.

Fastest game: n − Z (n) moves (Z (n) is the number of
summands in n’s Zeckendorf decomposition).

From always moving on the largest summand possible
(deterministic).
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Games Lengths: II

Figure: Frequency graph of the number of moves in 9,999
simulations of the Zeckendorf Game with random moves when
n = 60 vs a Gaussian. Natural conjecture....
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Winning Strategy

Theorem
Player Two Has a Winning Strategy

Idea is to show if not, Player Two could steal Player One’s
strategy.

Non-constructive!

Will highlight idea with a simpler game.
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Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i , j) and
coloring every dot (m,n) with i ≤ m and j ≤ n.

Once all dots colored game ends; whomever goes last loses.

Proof Player 1 has a winning strategy. If have, play; if not, steal.
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Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i , j) and
coloring every dot (m,n) with i ≤ m and j ≤ n.

Once all dots colored game ends; whomever goes last loses.

Proof Player 1 has a winning strategy. If have, play; if not, steal.
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Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i , j) and
coloring every dot (m,n) with i ≤ m and j ≤ n.

Once all dots colored game ends; whomever goes last loses.

Proof Player 1 has a winning strategy. If have, play; if not, steal.
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Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i , j) and
coloring every dot (m,n) with i ≤ m and j ≤ n.

Once all dots colored game ends; whomever goes last loses.

Proof Player 1 has a winning strategy. If have, play; if not, steal.
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Sketch of Proof for Player Two’s Winning Strategy
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Sketch of Proof for Player Two’s Winning Strategy
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Sketch of Proof for Player Two’s Winning Strategy
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Sketch of Proof for Player Two’s Winning Strategy

135



Intro I Love Rectangles Pre-reqs Gaussianity Gaps (Bulk) Summand Minimality Zeckendorf Game Refs

Sketch of Proof for Player Two’s Winning Strategy
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Sketch of Proof for Player Two’s Winning Strategy
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Sketch of Proof for Player Two’s Winning Strategy
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Sketch of Proof for Player Two’s Winning Strategy
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Sketch of Proof for Player Two’s Winning Strategy
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Sketch of Proof for Player Two’s Winning Strategy
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Future Work

What if p ≥ 3 people play the Fibonacci game?

Does the number of moves in random games converge to
a Gaussian?

Define k -nacci numbers by Si+1 = Si + Si−1 + · · ·+ Si−k ;
game terminates but who has the winning strategy?
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Black Hole Zeckendorf Game

How can we simplify the game?

Fm Black Hole Variation
Any pieces placed in a column Fi for i ≥ m are permanently
removed from gameplay.

For the F4 case, this allows for the following moves:

(a,b,c)

P2.1

(a − 2,b + 1, c)

P1.1.M

(a − 1,b − 1, c + 1)

P1.1.A1

(a,b − 1, c − 1)

P1.1.A2

(a + 1,b − 2, c + 1)

P1.1.S2

(a + 1,b, c − 2)

P1.1.S3

M A1 A2 S2 S3
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Black Hole Zeckendorf Game

How can we simplify the game?

Fm Black Hole Variation
Any pieces placed in a column Fi for i ≥ m are permanently
removed from gameplay.

For the F4 case, this allows for the following moves:

(a,b,c)

P2.1

(a − 2,b + 1, c)

P1.1.M

(a − 1,b − 1, c + 1)

P1.1.A1

(a,b − 1, c − 1)

P1.1.A2

(a + 1,b − 2, c + 1)

P1.1.S2

(a + 1,b, c − 2)

P1.1.S3

M A1 A2 S2 S3

144



Intro I Love Rectangles Pre-reqs Gaussianity Gaps (Bulk) Summand Minimality Zeckendorf Game Refs

Empty Board Black Hole Zeckendorf Game

We define a pre-game where players place pieces on the
outer columns of the board.

Players can use move mirroring to force an advantageous
setup.

F1 F2 F3
0 0 0

F1 F2 F3
1 0 0

F1 F2 F3
1 0 1
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Empty Board Black Hole Zeckendorf Game

We define a pre-game where players place pieces on the
outer columns of the board.
Players can use move mirroring to force an advantageous
setup.

F1 F2 F3
0 0 0

F1 F2 F3
1 0 0

F1 F2 F3
1 0 1
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Empty Board Black Hole Zeckendorf Game

We define a pre-game where players place pieces on the
outer columns of the board.
Players can use move mirroring to force an advantageous
setup.

F1 F2 F3
0 0 0

F1 F2 F3
1 0 0

F1 F2 F3
1 0 1
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Empty Board Black Hole Zeckendorf Game

We define a pre-game where players place pieces on the
outer columns of the board.
Players can use move mirroring to force an advantageous
setup.

F1 F2 F3
0 0 0

F1 F2 F3
1 0 0

F1 F2 F3
1 0 1
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Empty Board Black Hole Zeckendorf Game

We define a pre-game where players place pieces on the
outer columns of the board.
Players can use move mirroring to force an advantageous
setup.

F1 F2 F3
0 0 0

F1 F2 F3
1 0 0

F1 F2 F3
1 0 1
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(a,0,0) Setup

Theorem 5.1
Let (a,0,0) be an initial setup
for an F4 Black Hole
Zeckendorf game. For any
n ̸= 2 ∈ Z≥0, Player 2 has a
constructive solution.

(a,0,0)

(a − 2,1,0)

(a − 3,0,1)

(a − 5,1,1)

(a − 5,0,0)

M

A1

M

A2

150



Intro I Love Rectangles Pre-reqs Gaussianity Gaps (Bulk) Summand Minimality Zeckendorf Game Refs

(a,0,0) Setup

Theorem 5.1
Let (a,0,0) be an initial setup
for an F4 Black Hole
Zeckendorf game. For any
n ̸= 2 ∈ Z≥0, Player 2 has a
constructive solution.

(a,0,0)

(a − 2,1,0)

(a − 3,0,1)

(a − 5,1,1)

(a − 5,0,0)

M

A1

M

A2
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(0,0,c) Setup

Theorem 5.3
Let (0,0, c) be an initial setup
for an F3 Black Hole
Zeckendorf game. For any
c ̸= 0,1,5 ∈ Z≥0, Player 1 has
a constructive winning strategy.

Corollary 5.4
(1,0, c) wins for all c ̸= 3.

(0,0,c)

(1,0, c − 2)

(2,0,c − 4)

(0,1, c − 4)

(0,0,c − 5) (1,1,c − 6)

(1,0, c − 7)

S3

S3

M

A2 S3

S3 A2
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(0,0,c) Setup

Theorem 5.3
Let (0,0, c) be an initial setup
for an F3 Black Hole
Zeckendorf game. For any
c ̸= 0,1,5 ∈ Z≥0, Player 1 has
a constructive winning strategy.

Corollary 5.4
(1,0, c) wins for all c ̸= 3.

(0,0,c)

(1,0, c − 2)

(2,0,c − 4)

(0,1, c − 4)

(0,0,c − 5) (1,1,c − 6)

(1,0, c − 7)

S3

S3

M

A2 S3

S3 A2
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(a,0,c) Setup

Consider a setup (a,0, c) as some (3α+ k1,0,4γ + k3) with
k1 ∈ {0,1,2} and k3 ∈ {0,1,2,3}. Player 2 wins are depicted in
bold blue, and Player 1 wins are depicted in red.

a ≡ 0 (mod 3) a ≡ 1 (mod 3) a ≡ 2 (mod 3)
c ≡ 0 (mod 4) α ≥ γ ∀α,γ α ≥ γ + 1

α ≤ γ − 1 α ≤ γ

c ≡ 1 (mod 4) α ≥ γ − 1 ∀α,γ α ≥ γ
α ≤ γ − 2 α ≤ γ − 1

c ≡ 2 (mod 4) ∀α, γ α ≥ γ + 1 ∀α, γ
α ≤ γ

c ≡ 3 (mod 4) ∀α, γ α ≥ γ ∀α, γ
α ≤ γ − 1
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A Non-Constructive Proof

Lemma 5.5
For all α, γ such that
k1 ∈ {1,2} and
k3 ∈ {0,1,2,3},
Player 1 has a
winning strategy for
(3α+ k1,1,4γ + k3)

(3α+ k1,1,4γ + k3)

(3α+ k1 − 1,0,4γ + k3 + 1)

(3α+ k1 − 3,1,4γ + k3 + 1)

(3α+ k1 − 4,0,4γ + k3 + 2)

(3α+ k1 − 6,1,4γ + k3 + 2)

. . .

(3α+ k1 − 3α,1,4γ + k3 +α)

(3α+ k1 − 3,0,4γ + k3)

(3α+ k1 − 3,0,4γ + k3)

(3α+ k1,0,4γ + k3 − 1)

(3α+ k1,0,4γ + k3 − 1)

A1 A2

M S3

A1 A2

M S3
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A Non-Constructive Proof cont.

Reminder
(1,0, c) wins for all c ̸= 3

(1,1,4γ + k3 +α)

(1,0,4γ + k3 + α− 1)

A2

(2,1,4γ + k3 +α)

(1,0,4γ + k3 + α+ 1)

A1
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A Non-Constructive Proof cont.

Reminder
(1,0, c) wins for all c ̸= 3

(1,1,4γ + k3 +α)

(1,0,4γ + k3 + α− 1)

A2

(2,1,4γ + k3 +α)

(1,0,4γ + k3 + α+ 1)

A1
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A Non-Constructive Proof cont.

Reminder
(1,0, c) wins for all c ̸= 3

(1,1,4γ + k3 +α)

(1,0,4γ + k3 + α− 1)

A2

(2,1,4γ + k3 +α)

(1,0,4γ + k3 + α+ 1)

A1
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A Non-Constructive Proof cont.

Reminder
(1,0, c) wins for all c ̸= 3

(1,1,4γ + k3 +α)

(1,0,4γ + k3 + α− 1)

A2

(2,1,4γ + k3 +α)

(1,0,4γ + k3 + α+ 1)

A1
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A Non-Constructive Proof cont.

Reminder
(1,0, c) wins for all c ̸= 3

(1,1,4γ + k3 +α)

(1,0,4γ + k3 + α− 1)

A2

(2,1,4γ + k3 +α)

(1,0,4γ + k3 + α+ 1)

A1

160



Intro I Love Rectangles Pre-reqs Gaussianity Gaps (Bulk) Summand Minimality Zeckendorf Game Refs

Empty Board Game on F4

Theorem 5.17
Player 2 wins an Empty Board F4 Black Hole Zeckendorf game
for n ≡ 0,2,4,6,9,11,13 (mod 16) when n ̸= 2,32, and also
wins n = 17,47.
Player 1 wins for n ≡ 1,3,5,7,8,10,12,14,15 (mod 16) when
n ̸= 17,47, and also wins n = 2,32.

For large enough n, α ≥ γ is always true when move
mirroring is used.

161



Intro I Love Rectangles Pre-reqs Gaussianity Gaps (Bulk) Summand Minimality Zeckendorf Game Refs

Empty Board Game on F4

Theorem 5.17
Player 2 wins an Empty Board F4 Black Hole Zeckendorf game
for n ≡ 0,2,4,6,9,11,13 (mod 16) when n ̸= 2,32, and also
wins n = 17,47.
Player 1 wins for n ≡ 1,3,5,7,8,10,12,14,15 (mod 16) when
n ̸= 17,47, and also wins n = 2,32.

For large enough n, α ≥ γ is always true when move
mirroring is used.
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What happens when n = 25?

Player 2 can use move mirroring to force the Player 1 to set the
board as (7,0,6), so Player 2 moves first in the decomposition
phase.

(7,0,6)

(8,0,4)

(6,1,4)

(5,0,5)

(3,1,5)

(3,0,4)

(1,1,4)

(0,0,5)

(...)

(0,0,0)

(4,0,2)

(3,0,0)

(...)

(0,0,0)

(5,0,3)

(5,0,1)

(3,1,1)

(3,0,0)

(...)

(0,0,0)

(9,0,2)

(10,0,0)

(...)

(0,0,0)
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What happens when n = 25?

Player 2 can use move mirroring to force the Player 1 to set the
board as (7,0,6), so Player 2 moves first in the decomposition
phase.

(7,0,6)

(8,0,4)

(6,1,4)

(5,0,5)

(3,1,5)

(3,0,4)

(1,1,4)

(0,0,5)

(...)

(0,0,0)

(4,0,2)

(3,0,0)

(...)

(0,0,0)

(5,0,3)

(5,0,1)

(3,1,1)

(3,0,0)

(...)

(0,0,0)

(9,0,2)

(10,0,0)

(...)

(0,0,0)
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References

See
https://web.williams.edu/Mathematics/sjmiller/
public_html/349Fa23/writingfiles.htm
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