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Zeckendorf’s Theorem

The Fibonacci numbers are given by F1 = 1,F2 = 2,
and Fn = Fn−1 + Fn−2.

Theorem (Zeckendorf, 1972)
Every positive integer can be written uniquely as a sum of
nonconsecutive Fibonacci numbers.

Greedy algorithm: Given a positive integer N,
find largest Fibonacci number less than or equal to N:

Fk ≤ N < Fk+1;

and repeat the algorithm with N − Fk , a smaller integer.
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The Zeckendorf Game

In 2018, Baird-Smith, Epstein, Flint, and Miller introduced
a 2-player game based on the Zeckendorf decomposition
of a positive integer N ≥ 2.

The game is played on a board of bins labeled with the
Fibonacci numbers and begins with N tokens in the F1
bin.

F1 F2 F3 ... Fn

N 0 0 ... 0
Players alternate making moves (Combine or Split)
based on the Fibonacci recurrence.
The last player to move wins.
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Moves in the Zeckendorf Game

Combine Moves:
C1 : F1 ∧ F1 7→ F2

Ck : Fk−1 ∧ Fk 7→ Fk+1 (k > 1)
Split Moves:

S2 : F2 ∧ F2 7→ F3 ∧ F1

Sk : Fk ∧ Fk 7→ Fk−2 ∧ Fk+1 (k > 2)

Note that
The total weighted sum of tokens remains constant.
The total number of tokens is a monovariant.
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Sample Zeckendorf Game

N = 7

F1 F2 F3 F4

7 0 0 0

5 1 0 0
3 2 0 0
4 0 1 0
2 1 1 0
2 0 0 1
0 1 0 1
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Game Termination and Winning Strategy

Theorem (Baird-Smith et al., 2018)
The Zeckendorf Game terminates in a finite number of
moves at the Zeckendorf decomposition of N.

Theorem (Baird-Smith et al., 2018)
For all N > 2, Player 2 has a winning strategy for the
Zeckendorf Game.

A constructive winning strategy for Player 2 remains
unknown for all N.
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Game Tree

Figure: Game tree given by the first several moves of the Zeckendorf
Game (image credit: Baird-Smith et al.)
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Machine Learning for Constructive Proofs
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Minimax Algorithm

Naive approach: Traverse the entire game tree and
determine which states are winning and losing for
“small” N.
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“small” N.
Alpha-Beta Pruning: Ignore branches that cannot
supply additional information.
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Value-Policy Neural Network

Implement the minimax algorithm with alpha-beta
pruning for “small” N.
Feed this minimax data to a neural network and train it
to predict the quality of games.

State 7→ (Value,Policy)
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Monte Carlo Tree Search

Implement the minimax algorithm for “small" N.

Train neural network with minimax data.

Perform a Monte Carlo Tree Search guided by this
value-policy network.
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Machine Learning for a Constructive Proof

Implement the minimax algorithm for “small" N.

Train neural network with minimax data.

Perform a Monte Carlo Tree Search (MCTS) guided by
this value-policy network.

Train and test the neural network with the MCTS data
repeatedly.
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Deterministic Zeckendorf Games
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Deterministic Zeckendorf Games

Li et al. began the study of Deterministic Zeckendorf
Games, in which available moves must be made in a
prescribed order. They introduced four variants:

Combine Largest (CL): Apply Ck moves from largest to
smallest, apply Sk moves from largest to smallest

Combine Smallest (CS): Apply Ck moves from smallest
to largest, apply Sk moves from smallest to largest
Split Largest (SL): Apply Sk moves from largest to
smallest, apply Ck moves from largest to smallest
Split Smallest (SS): Apply Sk moves from smallest to
largest, apply Ck moves from smallest to largest
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Sample Deterministic Game

N = 7; Player 1 plays Split Largest and Player 2 plays
Split Smallest

F1 F2 F3 F4

7 0 0 0

5 1 0 0
3 2 0 0
4 0 1 0
2 1 1 0
2 0 0 1
0 1 0 1

19 / 27



Background Machine Learning for Constructive Proofs Deterministic Zeckendorf Games References

Sample Deterministic Game

N = 7; Player 1 plays Split Largest and Player 2 plays
Split Smallest

F1 F2 F3 F4

7 0 0 0
5 1 0 0

3 2 0 0
4 0 1 0
2 1 1 0
2 0 0 1
0 1 0 1

19 / 27



Background Machine Learning for Constructive Proofs Deterministic Zeckendorf Games References

Sample Deterministic Game

N = 7; Player 1 plays Split Largest and Player 2 plays
Split Smallest

F1 F2 F3 F4

7 0 0 0
5 1 0 0
3 2 0 0

4 0 1 0
2 1 1 0
2 0 0 1
0 1 0 1

19 / 27



Background Machine Learning for Constructive Proofs Deterministic Zeckendorf Games References

Sample Deterministic Game

N = 7; Player 1 plays Split Largest and Player 2 plays
Split Smallest

F1 F2 F3 F4

7 0 0 0
5 1 0 0
3 2 0 0
4 0 1 0

2 1 1 0
2 0 0 1
0 1 0 1

19 / 27



Background Machine Learning for Constructive Proofs Deterministic Zeckendorf Games References

Sample Deterministic Game

N = 7; Player 1 plays Split Largest and Player 2 plays
Split Smallest

F1 F2 F3 F4

7 0 0 0
5 1 0 0
3 2 0 0
4 0 1 0
2 1 1 0

2 0 0 1
0 1 0 1

19 / 27



Background Machine Learning for Constructive Proofs Deterministic Zeckendorf Games References

Sample Deterministic Game

N = 7; Player 1 plays Split Largest and Player 2 plays
Split Smallest

F1 F2 F3 F4

7 0 0 0
5 1 0 0
3 2 0 0
4 0 1 0
2 1 1 0
2 0 0 1

0 1 0 1

19 / 27



Background Machine Learning for Constructive Proofs Deterministic Zeckendorf Games References

Sample Deterministic Game

N = 7; Player 1 plays Split Largest and Player 2 plays
Split Smallest

F1 F2 F3 F4

7 0 0 0
5 1 0 0
3 2 0 0
4 0 1 0
2 1 1 0
2 0 0 1
0 1 0 1

19 / 27



Background Machine Learning for Constructive Proofs Deterministic Zeckendorf Games References

Sample Deterministic Game

N = 7; Player 1 plays Split Largest and Player 2 plays
Split Smallest

F1 F2 F3 F4

7 0 0 0
5 1 0 0
3 2 0 0
4 0 1 0
2 1 1 0
2 0 0 1
0 1 0 1

19 / 27



Background Machine Learning for Constructive Proofs Deterministic Zeckendorf Games References

Strategy in Deterministic Zeckendorf Games

Question: Given deterministic variants (A,B), what can
be determined about the Deterministic Zeckendorf Game
where Player 1 plays variant A and Player 2 variant B?
Several of our games mirror each other in structure.

Theorem (SMALL 2025)
For N ≥ 4, Player 1 wins the SL-SS game on N if and
only if Player 2 wins the SS-SL game on N.

Theorem (SMALL 2025)
For N ≥ 4, Player 1 wins the SL-CS game on N if and
only if Player 2 wins the CS-SL game on N.
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Minimal Length of Zeckendorf Games

Let Z (N) be the number of terms in the Zeckendorf
decomposition of N.

Theorem (Baird-Smith et al., 2018)
The shortest Zeckendorf Game on N arrives at the
Zeckendorf decomposition in N − Z (N) moves.

This game is achieved by making the largest possible
combine move at each turn.
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Deterministic Zeckendorf Games of Minimal Length

Theorem (Li et al., 2020)
The CL-CL and SL-SL games achieve the shortest
Zeckendorf Game of N − Z (N) moves for all N ≥ 2.

Theorem (SMALL 2025)
The SL-CL and CL-SL games achieve the shortest
Zeckendorf Game for all N ≥ 2. No other of our
deterministic games besides these, CL-CL, and SL-SL
achieve the shortest game for all N.
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Parity of Minimal Length Games

We can observe a recursive structure in the parity of
N − Z (N).

N 2
N − Z (N) (mod 2) 1

N 3 4
N − Z (N) (mod 2) 0 0

N 5 6 7
N − Z (N) (mod 2) 1 0 0
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Parity of Minimal Length Games

N 3 4
N − Z (N) (mod 2) 0 0

N 5 6 7
N − Z (N) (mod 2) 1 0 0

N 8 9 10 11 12
N − Z (N) (mod 2) 1 1 0 1 1

Theorem (SMALL 2025)
For N := Fi + a ∈ [Fi ,Fi + Fi−2),
N − Z (N) ≡ Fi−1 + a − Z (Fi−1 + a) (mod 2) if and only if
i ≡ 1 (mod 3). For N := Fi + b ∈ [Fi + Fi−2,Fi+1),
N − Z (N) ≡ Fi−2 + b − Z (Fi−2 + b) (mod 2) if and only if
i ≡ 0,1 (mod 3).
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Winning Proportion in Minimal Length Games

Utilizing the recursive structure of the parity of N − Z (N),
we can determine the following.

Theorem (SMALL 2025)
As i → ∞, the proportions of shortest games won by
Player 1 and by Player 2 for N ∈ [Fi ,Fi+1) both converge
to 0.5.

Theorem (SMALL 2025)
As i → ∞, the proportion of shortest games won by
Player 1 and by Player 2 for N < Fi both converge to 0.5.
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