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Why study zeros of L-functions?

@ Infinitude of primes, primes in arithmetic progression.
@ Chebyshev’s bias: m34(x) > 71 .4(x) ‘most’ of the time.
e Birch and Swinnerton-Dyer conjecture.

e Goldfeld, Gross-Zagier: bound for h(D) from
L-functions with many central point zeros.

@ Even better estimates for h(D) if a positive
percentage of zeros of {(s) are at most 1/2 — ¢ of the
average spacing to the next zero.
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Distribution of zeros

@ ((s) # 0 for Re(s) = 1: 7(x), maq(X).
@ GRH: error terms.
@ GSH: Chebyshev’s bias.

@ Analytic rank, adjacent spacings: h(D).
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Goals

@ Determine correct scale and statistics to study zeros
of L-functions.

@ See similar behavior in different systems (random
matrix theory).

@ Discuss the tools and techniques needed to prove the
results.

e Highlight calculations for Dirichlet L-functions
(simplest case).

@ New world records for bounding vanishing at central
point.
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Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at
t15 t25 t37""

Question: What rules govern the spacings between the ;?

Examples:
@ Spacings b/w Energy Levels of Nuclei.
@ Spacings b/w Eigenvalues of Matrices.
@ Spacings b/w Primes.
@ Spacings b/w nfa mod 1.
@ Spacings b/w Zeros of L-functions.
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Sketch of proofs

In studying many statistics, often three key steps:
@ Determine correct scale for events.

@ Develop an explicit formula relating what we want to
study to something we understand.

© Use an averaging formula to analyze the quantities
above.

It is not always trivial to figure out what is the correct
statistic to study!

y
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Classical
Random Matrix Theory
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.
Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into
nucleus, see what comes out.

Fundamental Equation:
Hwn = Enwn
H : matrix, entries depend on system

E, : energy levels
¥n : energy eigenfunctions
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Origins of Random Matrix Theory

e Statistical Mechanics: for each configuration,
calculate quantity (say pressure).

@ Average over all configurations — most configurations
close to system average.

@ Nuclear physics: choose matrix at random, calculate
eigenvalues, average over matrices (real Symmetric

A = AT, complex Hermitian A’ = A).

10
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Classical Random Matrix Ensembles

ayn a2 a3z - an
iz dp2 dpz v Q2N T
A - . . . . — A 5 a/j — aﬂ
aiN aN an - ann
Fix p, define
Prob(A) = [ nr(ay)
1<i<j<N
This means
Bij
Prob (A: aj € [oy, 5j]) / p(X;)dx;.
1<i<j<N v Xj=jj

L Want to understand eigenvalues of A.
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Eigenvalue Distribution

I(x — xo) is a unit point mass at xp:
[ f(x)d(x — Xo)dx = f(xo).
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Eigenvalue Distribution

I(x — xo) is a unit point mass at xp:
[ f(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:

pan(x) = 21 ( ))
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Eigenvalue Distribution

I(x — xo) is a unit point mass at xp:
[ f(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:

) = 30 (o)

A Ai(A)

/bMA,N(X)dX - #{ ._l,vve[ab]}
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Eigenvalue Distribution

I(x — xo) is a unit point mass at xp:
[ f(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:

) = 30 (o)

b # N 54 < [a b
/ ,uA,N(X)dX = { A’(I }
Z,’L Ni(A)K Trace(AK)

k" moment = p = —.
2 2
2k Nz +1 2kNz+1
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Wigner’s Semi-Circle Law

Not most general case, gives flavor.

Wigner’s Semi-Circle Law

N x N real symmetric matrices, entries i.i.d.r.v. from a
fixed p(x) with mean 0, variance 1, and other moments
finite. Then for almost all A, as N — o~

v1—x% if |x| <1

2
X) — (T
pan(X) {0 otherwise.
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SKETCH OF PROOF: Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but it is the
matrix elements that are chosen randomly and
independently.

Eigenvalue Trace Lemma
Let Abe an N x N matrix with eigenvalues \;(A). Then

N

Trace(A¥) = Z)\,-(A)k,

n=1

where

TI‘aCG(Ak = Z Z al1 Ip a’Z’S afN/1 .

ii=1 ix=1
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SKETCH OF PROOF: Correct Scale

Trace(A?) = Z)\;(A)Z.

By the Central Limit Theorem:

N N N N
Trace(A?) = Zzaijaji = Zza,?j ~ N?

=1 j=1 i=1 j=1
> N(AP ~ NP

Gives NAve()\;(A)?) ~ N? or Ave(\i(A)) ~ V'N.
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SKETCH OF PROOF: Averaging Formula

Recall k-th moment of 14 n(X) is Trace(AK) /2K Nk/2+1,

Average k-th moment is

Trace Ak
/ / ok Nk/2+1 Hp a;)daj.

i<j

Proof by method of moments: Two steps

@ Show average of k-th moments converge to moments
of semi-circle as N — oc;

e Control variance (show it tends to zero as N — o).
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SKETCH OF PROOF: Averaging Formula for Second Moment

Substituting into expansion gives

OoN/\/

22N2/ / a; - p(as1)das - - - p(anw)dann

711/1

Integration factors as

oo
/ ,,p aj)daj
ajj=—00

Higher moments involve more advanced combinatorics
(Catalan numbers).

H / ak, dak, = 1.
a

(i) * B=—00
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SKETCH OF PROOF: Averaging Formula for Higher Moments

Higher moments involve more advanced combinatorics
(Catalan numbers).

2ka/2+1/_ / Z Zalﬂg * iy - Hp aj)da;.

i1=1 ix=1 i<j

Main term a,,;,,,’s matched in pairs, not all matchings
contribute equally (if did have Gaussian, see in Real
Symmetric Palindromic Toeplitz matrices; interesting
results for circulant ensembles (joint with Gene Kopp,
Murat Kologlu).
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Riemann Zeta Function

n=1 p prime

Functional Equation:
&(s) = r(3)mic(s) = €1 - ).
Riemann Hypothesis (RH):
All non-trivial zeros have Re(s) = %; can write zeros as %—H'v.

Observation: Spacings b/w zeros appear same as b/w

. . . —T
elgenvalues of Complex Hermitian matrices A° = A.
Ple]
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General L-functions

L(s,f) = f:afrff) — I Lo(s.f)™", Re(s)>1.
n=1 p prime

Functional Equation:
A(s, f) = No(s, f)L(s,f) = N1 —s,f).

Generalized Riemann Hypothesis (RH):

- 1 : 1.
All non-trivial zeros have Re(s) = 5 can write zeros as >t

Observation: Spacings b/w zeros appear same as b/w
: . =T
eigenvalues of Complex Hermitian matrices A = A.




L-Functions
oe

Zeros of ((s) vs GUE

0.0

0.0 0.5 10 15 2.0 2.5 3.0

70 million spacings b/w adjacent zeros of ((s), starting at
the 102°" zero (from Odlyzko).
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Explicit Formula (Contour Integration)
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Explicit Formula (Contour Integration)

C/(S) B d - d —s\—1
s —glogg(s) = ——S|0g1;I(1_p )

d _
— ﬁipzlogﬁ - p~°)

_ logp - p~° log p
_ 2—1 - Z—ps + Good(s).
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Explicit Formula (Contour Integration)

¢(s) _ _d B »
NOBE —d—logC ——IogH (1-p

d _

_ logp - p~° log p
— ;1_—'0_3_; = + Good(s).

Contour Integration:

[~

X\" ds
P S
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Explicit Formula (Contour Integration)

= —dilogg = ——IogH 1— -

d _
— £;|og(1 - p~°)

_ logp - p~° log p
— %:—1_'05 = zp: e + Good(s).

Contour Integration:

_d(s) o s
) $(s)ds vs ;I gp/¢(s)p ds.
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Explicit Formula (Contour Integration)

- logp - p~° log p
- ;—1_'05 = zp: e + Good(s).

Contour Integration (see Fourier Transform arising):

C s)ds Vs Zlogp/qﬁ e~ gitloer g

Knowledge of zeros glves info on coefficients.
’
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Explicit Formula: Examples

Riemann Zeta Function: Let 3 denote the sum over the
zeros of ((s) in the critical strip, g an even Schwartz

function of compact support and ¢(r) f g(u)e™du.
Then
> 2lo
S0 = 20 (5) - 2% 25 kiogp)
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Explicit Formula: Examples

Dirichlet L-functions: Let h be an even Schwartz function
and L(s, x) = >_,x(n)/n® a Dirichlet L-function from a
non-trivial character y with conductor m and zeros

p= % + iv,; if the Generalized Riemann Hypothesis is

true then v € R. Then

Zh( log m/w)) _ /_Zh(y)dy

logp ([ logp "\ x(p)
22 g (igtm) o

> st 1" (Ziagmr) -+ Oliogm)
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Explicit Formula: Examples

Cuspidal Newforms: Let F be a family of cupsidal
newforms (say weight k, prime level N and possibly split

by sign) L(s,f) =>_,A«(n)/n°. Then

log R B 1 .
X o(E ) = 0+ o) 7] 2 P()

feF
log log R
i O( log R >

_ B logp\ Z2logp
Plfo) = Z)\f (IogR) VPlog R’
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Measures of Spacings: n-Level Correlations

{a;} increasing sequence, box B  R".

n-level correlation

# (ozh = @y ooy @y q = Oéjn) € B,j,' 7§ jk

[im
N—oco N

(Instead of using a box, can use a smooth test function.)
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Measures of Spacings: n-Level Correlations

{a;} increasing sequence, box B c R".

© Normalized spacings of ¢(s) starting at 102°
(Odlyzko).

@ 2 and 3-correlations of {(s) (Montgomery, Hejhal).

© n-level correlations for all automorphic cupsidal
L-functions (Rudnick-Sarnak).

©Q n-level correlations for the classical compact groups
(Katz-Sarnak).

@ Insensitive to any finite set of zeros.

‘.
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Measures of Spacings: n-Level Density and Families

o(x) =11, ¢i(x;), ¢i even Schwartz functions whose
Fourier Transforms are compacitly supported.

n-level density

distinct
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Measures of Spacings: n-Level Density and Families

o(x) =11, ¢i(x;), ¢i even Schwartz functions whose
Fourier Transforms are compacitly supported.

n-level density

distinct

@ Individual zeros contribute in limit.
© Most of contribution is from low zeros.
© Average over similar curves (family).

‘.
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Measures of Spacings: n-Level Density and Families

o(x) =11, ¢i(x;), ¢i even Schwartz functions whose
Fourier Transforms are compacitly supported.

n-level density

distinct

@ Individual zeros contribute in limit.
© Most of contribution is from low zeros.
© Average over similar curves (family).

Katz-Sarnak Conjecture

For a ‘nice’ family of L-functions, the n-level density
depends only on a symmetry group attached to the family.
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Normalization of Zeros

Local (hard, use Cs) vs Global (easier, use log C =
| Fn| ™ >_rery l0g Cr). Hope: ¢ a good even test function
with compact support, as |F| — oo,

A 200 = S S H¢’<Iog0f u)

feFn feFn /1 ----- /n i

- / /Cb Wh.g(7)(Xx)dx

Katz-Sarnak Conjecture

As C; — oo the behavior of zeros near 1/2 agrees with
N — oo limit of eigenvalues of a classical compact group.
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1-Level Densities

The Fourier Transforms for the 1-level densities are

— 1
W1 ,SO(even)(U) = 50(“) + EU(U)
— 1
VV1,50(U) = (50(U) + E
— 1
Wi so(eday(U) = do(U) — §TI(U) +1
1

Wisp(u) = do(u) — 5n(u)

Wio(u) = do(u)
where do(u) is the Dirac Delta functional and

1 if|u) <1
n(u) = {% if |u] =1
0 iflul>1




L-Functions
L]

Correspondences

Similarities between L-Functions and Nuclei:

Zeros <«— Energy Levels
Schwartz test function ——  Neutron

Support of test function «+—  Neutron Energy.
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Some Number Theory Results

@ Orthogonal: Iwaniec-Luo-Sarnak, Ricotta-Royer:
1-level density for holomorphic even weight k
cuspidal newforms of square-free level N (SO(even)
and SO(odd) if split by sign).

@ Symplectic: Rubinstein, Gao, Levinson-Miller, and
Entin, Roddity-Gershon and Rudnick: n-level
densities for twists L(s, yq) of the zeta-function.

@ Unitary: Fiorilli-Miller, Hughes-Rudnick: Families of
Primitive Dirichlet Characters.

@ Orthogonal: Miller, Young: One and two-parameter
families of elliptic curves.
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Main Tools

@ Control of conductors: Usually monotone, gives scale
to study low-lying zeros.

@ Explicit Formula: Relates sums over zeros to sums
over primes.

© Averaging Formulas: Petersson formula in
lwaniec-Luo-Sarnak, Orthogonality of characters in
Fiorilli-Miller, Gao, Hughes-Rudnick, Levinson-Miller,
Rubinstein.
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Applications of n-level density

One application: bounding the order of vanishing at the
central point.
Average rank - ¢(0) < [ ¢(x)Wg(r)(x)dx if ¢ non-negative.
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Applications of n-level density

One application: bounding the order of vanishing at the
central point.

Average rank - ¢(0) < [ ¢(x)Wg(r)(x)dx if ¢ non-negative.
Can also use to bound the percentage that vanish to
order r for any r.

Theorem (Miller, Hughes-Miller)

Using n-level arguments, for the family of cuspidal
newforms of prime level N — oo (split or not split by sign),
for any r there is a ¢, such that probability of at least r
zeros at the central point is at most c,r=".

Better results using 2-level than Iwaniec-Luo-Sarnak
using the 1-level for r > 5.

A
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Example:
Dirichlet L-functions
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Dirichlet Characters (m prime)

(Z/mZ)* is cyclic of order m — 1 with generator g. Let
(m_q1 = €2™/(m=1)_ The principal character y, is given by

The m — 2 primitive characters are determined (by
multiplicativity) by action on g.

As each x : (Z/mZ)* — C*, for each y there exists an /
such that x(g) = ¢, ;. Hence foreach /,1 </ < m—2we

have
m1  k=gi(m)
k) = m—1
wilk) {o (k,m) > 0

A7
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Dirichlet L-Functions

Let x be a primitive character mod m. Let
m—1 ‘
c(m, X) — Z X(k)e27r/k/m'
k=0

c(m, x) is a Gauss sum of modulus /m.

L(s,x) = JJ(1 = x(p)p~5)™

o

A(s,x) = m2eIr (STJFE) mz9IL (s, x),

R
CT O (=) =1
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Explicit Formula

Let ¢ be an even Schwartz function with compact support
(—o,0), let x be a non-trivial primitive Dirichlet character
of conductor m.

(%)

- Z st (oo ) Lx(p) + ()l

> (2 erens )U¥(P) + PPl




Dirichlet L-fns
°

Expansion

{x0} U{xi}1<i<m-2 are all the characters mod m.
Consider the family of primitive characters mod a prime m
(m — 2 characters):

/ " o(y)ay

lo ~ lo _ 1
- — 2 > ;ﬁ; cb(log(iﬁﬂ))[x(l?) + ¥(p)p

X#Xx0 P

lo ~ lo > 5 _1
- 2 2 o ,fj/’w ¢(2log(§7’jw))[x (p) + (P)Ip

+ O(Io;m)'

_ Note can pass Character Sum through Test Function.
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Character Sums

m—1 k=1(m)
ZX(k) - {0 otherwise.

S EEEOTSTSTSTSSSSSSSSSEE -
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Character Sums

) m=1 k=1(m)
; x(k) = {0 otherwise.
For any prime p # m

S (o) - {—1+m—1 p=1(m)

—1 otherwise.

N TS
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Character Sums

x(k otherwise.
For any prime p # m

> x(p) = {j]*’"” P =1(m)

otherwise.
X7#X0

Substitute into

lo A lo _ 1
1 Z Z o i’/’ﬂ (,Og(ﬁv’j’w))mm + X(p)lp3

[
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First Sum: no contribution if 0 < 2

—2 <~ _logp ¢ logp \ s
m—2 Z Iog(m/ﬂ)¢<|og(m/ﬂ)>p :

S~ _logp 5 logp
Z Iog m/m) (Iog(m/ﬂ)p

N

BA
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First Sum: no contribution if 0 < 2

o logp (P
Zlog (m/m) (Iog(m/ﬂ)p i

o logp J(_logP -
Z Iog m/7r (Iog(m/ﬂ)p

=

L




;
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First Sum: no contribution if 0 < 2

<

m—1
2

m-—2
1
m

=1(m)

logp ~ log p _1
m—2 Z Iog(m/ﬂ)¢<|og(m/ﬂ)>p i

N

logp  ~¢ logp '\ _
log(m/ ) ¢ ( log(m/7) >,D

+ Z p2<<—Zk‘*+ Zk—*

k=1(
p= 1(m) k>mJT1
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First Sum: no contribution if 0 < 2

e
m_—22 Z Iogl?i‘lljﬂ)g(bgl?lgnl/)ﬂ»p_;
L oom1 o~ logp A( log p >p_%
m-—2 eyl log(m/7) " \log(m/x)
< ;—7m R i: p2<<—Zk‘*+ Zk—*
’ PSi(m B

1 1 17 A
— Nk 2+ —N k< —nrl2




Dirichlet L-fns
°

Second Sum

logp  ~/, logp \x*(P)+ X*(P)
2);0; log(m/) ( Iog(m/ﬁ)) p '

Y D)+ %P(p)] = {Z(m ~2) p=+i(m)

XFX0 —2 p §_,£ :|:1 (m)
Up to O(,ogm> we find that
me/2 I
2m 2
P—ﬁ:1(m)
m0/2 me /2 e /2

m— 22k1+2k‘+ Zk1

k=—1(m
[
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Cuspidal Newforms
Hughes-Miller

BQ
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Results from lwaniec-Luo-Sarnak

@ Orthogonal: lwaniec-Luo-Sarnak: 1-level density for
holomorphic even weight k cuspidal newforms of
square-free level N (SO(even) and SO(odd) if split by
sign) in (—2,2).

@ Symplectic: lwaniec-Luo-Sarnak: 1-level density for
sym?(f), f holomorphic cuspidal newform.

Will review Orthogonal case and talk about extensions
(joint with Chris Hughes).
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Modular Form Preliminaries

_ a b\ ad—-bc =1
Fo(N) = {( c d) " c=0(N) }
f is a weight k holomorphic cuspform of level N if

vy € To(N), f(72) = (cz+ d)f(2).

e Fourier Expansion: f(z) = >, a:(n)e*™=,

Ls.f) = Yr, ann—s
@ Petersson Norm: = Jrovnn f 9(z)y*2dxdy.
e Normalized coeff|0|ents

Ye(n) = %ﬁaf(m
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Modular Form Preliminaries: Petersson Formula

Bk(N) an orthonormal basis for weight k level N. Define

Agn(m, n) = Z Vi(m)v(n).

fEB(N)

Petersson Formula
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Modular Form Preliminaries: Explicit Formula

Let F be a family of cupsidal newforms (say weight k,
prime level N and possibly split by sign)
L(s,f)=>_,A(n)/n°. Then

log R B 1 .
X o(E ) = 0+ o) 7] 2 P()

feF
log log R
i O( log R >

_ B logp\ Z2logp
Plfo) = Z)\f (IogR) VPlog R’
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Modular Form Preliminaries:Fourier Coefficient Review

Af(n) = ai(n)n->
Mma(n) = % Af(?)
d|(m,n)
(d,M)=1

For a newform of level N, X\¢(N) is trivially related to the
sign of the form:

er = *u(N)X(N)VN.

The above will allow us to split into even and odd families:
1+ €f.
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Key Kloosterman-Bessel integral from ILS

Ramanujan sum:
R(n.q) = Y elan/q) = > u(g/d)d,
amod q d|(n,q)

where x restricts the summation to be over all a relatively
prime to q.

Theorem (ILS)

Let W be an even Schwartz function with supp(V) C (—2, 2). Then

R(m?, b)R(1,b) oo — byv/N
1 5 (m?, b)R(1 )/y:oJk71(y)w<2log(y /47Tm)> dy

m<Ne m2 (b,N)=1 w(b) log R log R

1 o sin 2w X 1
S / v X g — Lw)| + 0
2 — oo 2wX 2

( k log log kN)
log kN ’

where R = kN and ¢ is Euler’s totient function. y

T2~ UGGk
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Limited Support (o < 1): Sketch of proof

e Estimate Kloosterman-Bessel terms trivially.
o Kloosterman sum: dd = 1 mod q, 7(q) is the
number of divisors of g,

o (ma
S(mnq) = Y e<q +q)

d mod g

S(m.maq) < (m.nq) \/m;n{i, 9 }T(q).

o Bessel function: integer k > 2,
Ji—1(X) < min (x, X1, x71/2).

e Use Fourier Coefficients to split by sign: N fixed:

£ Ar(N) * ().
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Increasing Support (¢ < 2): Sketch of the proof

@ Using Dirichlet Characters, handle Kloosterman
terms.

@ Have terms like

o0 m?yN '\ ~ (logy\ dy
/oJk1 <4W c >¢(|ogﬁ)ﬁ

with arithmetic factors to sum outside.

@ Works for support up to (-2, 2).
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Increasing Support (o < 2): Kloosterman-Bessel details

Stating in greater generality for later use.

Gauss sum: x a character modulo q: |G, (n)| < ,/q with

Gy(n) = > x(a)exp(2rian/q).

amod q
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Increasing Support (o < 2): Kloosterman-Bessel details

Kloosterman expansion:

S(m?, pi - - - paN; Nb)
—1
) Y. X(N)G (MG (1)X(ps - -~ Pn)-
¥ x(mod b)
Lemma: Assuming GRH for Dirichlet L-functions,

supp(®) C C (-2, 2), non-principal characters negligible.
Proof: use Jx_1(x) < x and see

< Y E S L S lama)

m<N (b,N)=1 X(modb
b< N2006 X#XQ
1 ~/(logp;
)1 .
< ’,Hu,% P)oep (g (e
]
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2-Level Density

/Ro / |Og X1 |Og Xo J 4 \/ m2X1 X2N dX1 ng
X Xo= |Og R |Og R . " C v X1 X2
Change of variables and Jacobian:

u

U = XiX2 Xo = m
u = X1 X1 = U
ox| _ 100 1
ou| —5—13 B
Left with
/ / |Og U4 |Og (%) 1 J A \/ m2u2N dU1 dU2
log R log R VU2 e c U
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2-Level Density

Changing variables, u;-integral is

7 ~ ~ (log U
/W_|ogu2_a¢(w1)¢ (IogR - W1) aw.

1= Tog R

Support conditions imply
logu\ [~ ~ (log U>
Ve <|0g5’) - /W1—_oo¢(w1)¢ ('ogR N W1) .
Substituting gives

00 2
/ s 47rx/m uN v, (Iog Ug) duy
U2:0 C |Og R \/U_2

y
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3-Level Density

RZ R BT og xq | ~ |OgX2)A(
/)(1—2/)(2—2/)(3—2¢(|0g/:1)>¢(|OgR ¢

s« Jos (47‘(‘ \/ m2X1 X2X3N> ax; dxodxs

(o v X1 X2 X3

Change variables as below and get Jacobian:

U3 = X1XoX3 X3 = Z—z

U = XiXo Xo = Z—f

b = X4 X1 = U

5 1 0 O 1

X Up 1
‘_ N Ui s 0| = —
aU 0 _ W l u1 u2
w2 U
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n-Level Density: Determinant Expansions from RMT

o U(N), U(N): et (Kot )

1<jk<n
@ USp(N): det <K1(Xj>xk))1<j <n
@ SO(even): det <K1 (Xj,Xk)>1<j en

@ SO(odd): det (K_1(x;, Xk))1§j,k§n +
S04 3(%,) det (K 10, %))

where

1<) kAv<n

K(x,y) =

y
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n-Level Density: Sketch of proof

Expand Bessel-Kloosterman piece, use GRH to drop
non-principal characters, change variables, main term is

J 2log(bxv/N/4rm)\ dx
/ e log R log R

27Tm

with ®,(x) = ¢(x)".

Main Idea

Difficulty in comparison with classical RMT is that instead
of having an n-dimensional integral of ¢1(x1) - - - on(Xn) We
have a 1-dimensional integral of a new test function. This
leads to harder combinatorics but allows us to appeal to
the result from ILS.

y
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Support for n-Level Density

Careful book-keeping gives (originally just had —— 1/2)

- 1

n-Level Density is trivial for o, < 1, non-trivial up to -

Expected 2. Obstruction from partial summation on
primes.

y
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Support Problems: 2-Level Density

Partial Summation on p; first, looks like

~ /2
> S(mP, pip2N. c) 2 log ¢ (Iogp1> Ji—1 <4W—m p1p2N>
Py

VPpilog R \ log R
P1#P2
Similar to ILS, obtain (¢ = bN):

Z S(m?, p1p2N, c)lc\)i_f = 25((2)/) R(m?, b, pg)x1%+0(b(bx1 N)©

>p, 10 [y, error < b(bN)‘m+/pNN"2/?/bN, yields
1 1 1 b(bN)‘m\/p.NN*%
VN SO BN 2
mene M pons PN po<Ng VP2 bN

< N%+e’+ag+%+%—2 < Ngaz—1+e’

Py =Xy
pytb

y
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Support Problems: n-Level Density:

e Ifno ", , have above without the N° which arose
from >_, , giving
ry 191

< N%+E+§+ 2 _ N%m—H—e’

@ Fine for o4 < 2. For 3-Level, have two sums over
primes giving N?3, giving

< N%+e’+203+%+“—23—2 _ Ngas—1+e’

@ n-Level, have an additional (n — 1) prime sums, each
giving N°n, yields

< NEteHn-Donti+P-2 _ N@Jn—ﬁke'

y
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Summary

@ More support for RMT Conjectures.
e Control of Conductors.

@ Averaging Formulas.

Theorem (Hughes-Miller 2007)

n-level densities of weight k cuspidal newforms of prime
level N, N — oo, agree with orthogonal in non-trivial
range (with or without splitting by sign).

y
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Extending Support
and Bounding Vanishing

With Elzbieta Botdyriew, Fangu Chen, Charles Devlin VI,
Justine Dell, Simran Khunger, Stella Li, Alexander E.
Shashkov, Alicia G. Smith Reina, Stephen D. Willis, Yingzi
Yang, Jason Zhao

y
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Methods: the term of interest

@ Conditional on GE{H, we want to show that for
a<n/2,if supp(¢) C (—+1, =), then the n"

centered moments of D(f; ¢) averaged over f € Hf
satisfy the Density Conjecture.

e To compute the n" centered moments of D(f; ¢), it
suffices to convert the following sum over primes into

an integral:
(n) d logpi\ 2logp; L
S = > H(@( ]> = ></\f(N)H/\f(Pi)> ;
PN, PN =1 log 1/ vpilog R =t .

At(pi) are the normalized Fourier coefficients of f.




Extending Support & Bounding Vanishing
®0

Extending to Higher Support

e Expanding SY” yields many terms. The smaller the
support, the more of these terms vanish as N — oc.
As we increase support, the terms we have to handle
become more complex and more numerous.

@ Our work fully generalized the number theoretic
techniques needed to convert these sums over
primes into sums over integers.

e We are currently generalizing the work of lwaniec,
Luo, and Sarnak to convert these terms to integrals in
order to show agreement with random matrix theory.




Extending Support & Bounding Vanishing
oe

Methods: removing negligible subterms

Expand S{” into subterms, each of
which is a sum over distinct primes
!

Apply inclusion-exclusion to con-
vert to sums over non-distinct primes
!

Expand Fourier coefficients into expo-
nential (Bessel-Kloosterman) sums
!

Expand exponential sums into
terms involving Dirichlet characters
. ¢ J
[Use Mellin transforms to convert to integrals}




Extending Support & Bounding Vanishing
.

@ We extended and generalized to centered moments
with arbitrary test functions, which introduces
combinatorial challenges that we surmount through
careful analysis, in particular constructing new
ancillary functions to assist in the estimation, and
using inclusion / exclusion.

@ Needed to construct a new ancillary test function

zZe(x) that is point-wise larger than any test function qg,
to use in our error analysis.

@ Usually after first few papers (lwaniec-Luo Sarnak,
Freeman-Miller, Botdyriew-Chen-Devlin-Miller-Zhao)
progress is small, in deep digits, but we see
remarkable improvements.
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Comparison of order of vanishing bounds for SO(even)
functions from various approaches.

Order vanish | 1-level 2-level 4™ centered moment’
6 0.144090 | 0.0157687 | 0.008538410
8 0.108067 | 0.0157687 | 0.000813368
10 0.086454 | 0.0047306 | 0.000186846

@ These are upper bounds for vanishing at least r (number in order vanishing
column).

@ For the 1-level column, used the optimal 1-level bound from [ILS]. The support of
the Fourier transform of the test function used is (-2, 2).

@ For the 2-level column, used the optimal 2-level bound from [BCDMZ]. The
support of the Fourier transform of the test functions is (—1, 1).

@ For the 4! centered moment™ column, the "~ signifies that we used the 4 copies of
the naive test functions ¢n.ive. The support of the Fourier transform of the test
function used is (—1/3,1/3).

L
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Comparison of order of vanishing bounds for SO(odd)
forms from various approaches.

Order vanishing | 1-level 2-level 4™ centered moment”
5 0.222908 | 0.0674429 | 0.06580440
7 0.159220 | 0.0299746 | 0.00221997
9 0.123838 | 0.0168607 | 0.00036405

@ These are upper bounds for vanishing at least r (number in order vanishing
column).

@ For the 1-level column, using the optimal 1-level bound from [ILS]. The support of
the Fourier transform of the test function used is (-2, 2).

@ For the 2-level column, using the optimal 2-level bound from [BCDMZ]. The
support of the Fourier transform of the test functions is (—1, 1).

@ For the 4™ centered moment” column, the * signifies that we used the 4 copies of

the naive test functions ¢n,ive. The support of the Fourier transform of the test
function used is (—1/3,1/3).

TGOS
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Comparison of order of vanishing bounds for SO(odd)
forms from various approaches.

2-level

4th centered
moment’

4th centered
moment”

1.51987*10~°

5.48858*10~ 12

4.94335*10~ 12

Order

vanishing | 1-level

500 0.00172908
600 0.00144090
700 0.00123506

1.05476*10~°

2.63448*10~ 12

2.36440*10~ 12

7.74556*10~7

1.41727*10~ 2

1.26878*10 12

@ These are upper bounds for vanishing at least r (order vanishing column).

@ For the 1-level column, using the optimal 1-level bound from [ILS]. The support of
the Fourier transform of the test functions is (-2, 2).

@ For the 2-level column, using the optimal 2-level bound from [BCDMZ]. The

support of the Fourier transform of the test functions is (—1, 1).

@ For the 4™ centered moment” column, the * signifies that we used the 4 copies of
the naive test functions pp,ive. The support of the Fourier transform of the test

functions is (—1/3,1/3).

@ For the 4! centered moment™ column, the** signifies that we used 2 copies of ¢
generated by g(x) = sin x2 for x < 1/8 and 2 copies of the naive test functions
©naive- The support of the Fourier transform of the test functions is (—1/4,1/4).

™'’




Extending Support & Bounding Vanishing
.

Upper bounds for vanishing at least r (number in order
vanishing column).

Order 4th centered 4th centered
vanishing | 1-level 2-level moment’ moment”

499 0.00223355 | 4.35109*10~° | 5.52644*10~ "> | 4.98359*10 2
599 0.00186067 | 3.01755*10~° | 2.64907*10~ ™% | 2.3804*10 2
699 0.00159448 | 2.21486*10°° | 1.42374*10- " | 1.27612*10~ 2

@ For the 1-level column, using the optimal 1-level bound from [ILS]. The support of
the Fourier transform of the test functions is (-2, 2).

@ For the 2-level column, using the optimal 2-level bound from [BCDMZ]. The

support of the Fourier transform of the test functions is (—1, 1).

@ For the 4™ centered moment” column, the * signifies that we used the 4 copies of
the naive test functions pn,ive. The support of the Fourier transform of the test

functions is (—1/3,1/3).

@ For the 4™ centered moment™ column, the ** signifies that we used 2 copies of ¢
generated by g(x) = sin x2 for x < 1/8 and 2 copies of the naive test functions
©naive- 1he support of the Fourier transform of the test functions is (—1/4,1/4).

Q7
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