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Abstract

We consider the question of the minimum number of distinct angles in
three dimensions. We discuss the difficulties of constructing a point con-
figuration in general position with fewer than O(n2) distinct angles, and
we examine explicit constructions of point configurations in R3, such as
the cylindrical helix and the conchospiral, which use self-similarity to
minimize the number of distinct angles. We then consider pinned vari-
ants of the question.

1. Introduction

The Question: There are n points distributed in space, where n
is some large number. No three points are allowed on the same
line, and no four points are allowed on the same circle. What is
the smallest possible number of distinct angles formed?

There are
(n
3

)
≈ n3/6 ways to choose three of the n points. Three

points form a triangle, which has three angles. So the total num-
ber of angles is 3 ·n3/6 = n3/2. The goal is to repeat angles many
times so that the number of distinct angles is as small as possible.

When points are placed in the two-dimensional plane, [FlHu] and
[FlKo] showed that the minimum number of distinct angles is Ω(n),
which means that we must have at least a constant times n dis-
tinct angles, and O(n2), which means that it is possible to have
only a constant times n2 distinct angles. They used a logarith-
mic spiral to get O(n2) distinct angles.

Figure 1: Points distributed along the logarithmic spiral.

Due to the geometric properties of the logarithmic spiral, any an-
gle in this construction can be made again by “rotating” the three
points along the spiral. This point configuration exhibits what we
call self-similarity: any angle that can be made from three of
the points can also be made with a special point A as one of
the points. There are

(n
2

)
≈ n2/2 ways to choose the remaining

two points, so any point configuration with self-similarity has only
O(n2) angles.

2. Three-dimensional constructions

Minimizing the number of distinct angles seems easier in three
dimensions: there is more space in which to move around. Con-
sider the following question.

If we fix an endpoint and a center point, how many distinct an-
gles must be formed by choosing the other endpoint out of the
remaining points?

In two dimensions, the answer is at least (n−2)/2. Indeed, for any
angle, there are only two lines from the fixed center point that form
that angle with the fixed endpoint. We can’t have three points on
a line, so we can only put one point on each of these lines.

But in three dimensions, if we fix an endpoint and a center point,
we might only form one distinct angle. This can be done by plac-
ing all the remaining points on a cone whose vertex is the center
point and whose axis is the line formed by the center point and
the middle point.

Nevertheless, no constructions have been found with fewer than
n2 angles in order of magnitude. We conjecture that no such con-
struction exists.

Conjecture 2.1. For any configuration of n points in two or three
dimensions that has no three points on a line and no three
points on a circle, Ω(n2) distinct angles must be formed.

Still, it is worth studying uniquely three-dimensional constructions
that use self-similarity to have only O(n2) distinct angles.

Figure 2: To the left, points are distributed along a cylindrical
helix, parametrized by (cos(t), sin(t), t). To the right, points are dis-
tributed on a conchospiral, parametrized by (et cos(t), et sin(t), et).
Due to their symmetry, both of these point configurations exhibit
self-similarity.

The cylindrical helix has an additional layer of symmetry: flipping
it upside down doesn’t change the configuration! This cuts the
number of angles in half compared to the conchospiral.

3. Pinned Variants

We can also ask “pinned” variants of the distinct angles question.
For example, how many angles must be formed with a special
point pinned as the center point, or as the endpoint?

3.1 Pinned Center Point and Distinct Distances on
the Sphere
Consider pinning a point A. If B and C are arbitrary points, how
many distinct angles of the form ∠BAC are there? In other words,
how many distinct angles are there when we pin A as the center
point?

Notice that the angle ∠BAC does not depend on the distance of
B from A or on the distance of C from A. Therefore, we can ma-
nipulate the distance of each point from A, so that for any point B,
the distance of B from A is 1. After this manipulation, each point
lies on a sphere of radius 1 centered at A.

Figure 3: The angular distance between B and C, which is mea-
sured by the angle ∠BAC, is a constant multiple of the spherical
distance between B and C, the distance between B and C along
a great circle of the sphere centered at A.

Therefore, determining the number of distinct angles with fixed
center point A is equivalent to determining the number of distinct
distances for these points lying on a sphere of radius 1 centered
at A. The best-known lower bound for the number of distinct dis-
tance on the sphere is Ω( n

log n), which is a generalization of the
bound for the Erdős distinct distance conjecture proven by Guth
and Katz ([GuKa]).

Corollary 3.1. The number of distinct angles for n points in R3

is Ω
(

n
log n

)
.

3.2 One Pinned Endpoint
Suppose we are fixing point A as an endpoint. Now introduce
another point B, and consider the angle formed with A and B as
end points and the angle with B as the central point. The surfaces
that preserve these 2 angles are a cone and a spindle torus, both
with line AB as axis. The intersection of the two is a circle, so we
are allowed no more than 3 points on it. So, the number of cones
multiplied by the number of spindle tori must be at least (n− 2)/3.

There are at least (#{cones}+#{spindle tori})/2 distinct angles.
To minimize this, #{cones} = #{spindle tori} =

√
(n− 2)/3.

Figure 4: A spindle torus (a circle rotated around a chord other
than the diameter), cutaway view, and cross section. Credit:
[WoAl].

Theorem 3.2. Consider a configuration of n points in general
position in three dimensions, and fix a point A. The number of
angles formed with A as an endpoint is Ω(

√
n).

This gives us a lower bound, but it is likely a substantial under-
count, because we are neglecting angles formed with A as an
endpoint that have center points on the cone/torus intersections.
In fact, we conjecture that having a pinned endpoint provides no
asymptotic improvement in terms of lower bound compared to the
unpinned case.

Conjecture 3.3. The number of distinct angles with a pinned
endpoint in general position in R3 is Ω(n2).
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