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Algebraic Curves

A curve is a zero set of some polynomial over a field. For example:

C : x2 + y2 = 1 over R.
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Algebraic Curves (and Arithmetic!)

Solutions over Q correspond in some sense to solutions over Z (e.g. clear
denominators), so it encodes arithmetic properties.

C : x2 + y2 = 1 over Q.

The solution set to x2 + y2 = 1 in Q encodes the information of pythagorean
triples x2 + y2 = z2 in Z.
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An important invariant: genus

Idea: A curve in C2 is 1 C-dimensional, so it is 2 R-dimensional. So every
curve corresponds to a surface.

Genus is a topological invariant of surfaces. It counts the number of holes.
This is an invariant of curves as well.
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What’s an Elliptic Curve?

Formally, smooth curve of genus 1. Easier over Q : an elliptic curve E is given by

E : y2 = x3 + ax + b

with a,b ∈ Z, 4a3 + 27b2 ̸= 0.

They are of study throughout number theory.

They are one of the main objects used in the proof of Fermat’s Last Theorem.
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What’s an Elliptic Curve?
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Counting Points

The mod p reductions looked very chaotic, we need tools to help understand them.

Define the Legendre symbol: for a ∈ N and p a prime,

(
a
p

)
=


1 if a is a non-zero square mod p
−1 if a is not a non-zero square mod p
0 if a ≡ 0 modp

Important observation: 1 +
(

a
p

)
is the number of solutions to y2 = a modp.
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Sato-Tate Distributions over Q

That is, #E(Fp) =
∑p−1

x=0

[
1 +

(
x3+ax+b

p

)]
+ point at ∞ = p + 1 + a(p).

We wish to understand how a(p) varies with p.

Theorem (Sato-Tate Conjecture, 2011)
Let E be an elliptic curve without complex multiplication. As p → ∞, the sequence
{a(p)√

p }p becomes equidistributed according to the density

dµST =

√
4 − x2

2π
dx

which is compactly supported on [−2,2].
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Sato-Tate Distributions over Q

https://math.mit.edu/~drew/g1_D1_a1f.gif
https://math.mit.edu/~drew/g1_D2_a1f.gif

https://math.mit.edu/~drew/g1_D1_a1f.gif
https://math.mit.edu/~drew/g1_D2_a1f.gif
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Genus 2

The above come from the Haar measure on certain subgroups of the compact
group USp(2). To classify Sato-Tate distributions of genus 2 curves, use USp(4).
Exactly 34 possibilities over Q.
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Families of curves

Idea: Allow a free parameter T to vary. One elliptic curve for each T :

ET : y2 = x3 + A(T )x + B(T ),

where A(T ),B(T ) ∈ Q(T ).
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Families of curves

(a) Elliptic curve fibers (b) Plot of ET in R3

Figure: t ∈ Q gives an elliptic curve y2 = x3 + A(t)x + B(t).
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The Bias Conjecture

Definition
The second moment of the bias is defined as

A2,E(p) :=
∑
t∈Fp

aE(t)(p)2.

Theorem (Second moment asymptotic (Michel) [Mic95])
For families E with j(T ) non-constant,

A2,E(p) = p2 + O(p3/2).

The lower order terms are p3/2, p, p1/2 and 1.
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The Bias Conjecture

Theorem (Second moment asymptotic (Michel) [Mic95])
For families E with j(T ) non-constant,

A2,E(p) = p2 + O(p3/2).

Conjecture (Bias conjecture, Steven J. Miller ’02)
The largest non-zero lower order term in A2,E(p) is on average negative as p runs
through the primes.

One way to disprove the bias conjecture: ET such that

B2,E(p) :=
A2,E(p)− p2

p3/2

averages to a negative value.
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Why Do We Care?

"Rank" of elliptic surface (family of elliptic curves) related to first moment
Applications to Katz-Sarnak conjecture
Order of vanishing of L-functions associated to the family
Higher moments show family-specific behavior (rate of convergence)
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Pencils of cubics

Given a family y2 = x3 + A(T )x + B(T ), we can think of it as a surface π : ET → P1

fibered in elliptic curves.

Let’s specialize to the case

ET : y2 = P(x)T + Q(x)

where degP(x), degQ(x) ≤ 3. This is a pencil of cubics.
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Some Algebraic Geometry

Proposition (SMALL 2025)
Let

ET : y2 = P(x)T + Q(x)

be a pencil of cubics. If the curve is “generic”a all moments of B2,E are integers.

aand the associated pair (∆̃, C̃) to E is K -typical,
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Previous numerical investigations/motivation

Motivation from last year’s SMALL [CGJ+24]:

Figure: SMALL 2024’s numerical evidence suggests the second moment converges to an
integer.
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Some Algebraic Geometry

The following approach is taken from Professors Bartosz Naskrȩcki and Matija
Kazalicki’s paper [KN25].

Proof. To the elliptic surface π : ET → P1 associate a threefold

M ⊂ A1 × A1 × P1 × A1

whereby they show in [Theorem 2.2] that

#M(Fp) = p3 + p2 + Ã2,E(p).

This allows us to attack the problem through arithmetic geometry.
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Computing the distribution of B2(p)

It follows from their main results, [Prop 3.15, Cor 3.19] that in our special case we
have the explicit formula

A2,E(p) = p2 − p · dp − p ·#S(Fp)− a2
∞(p)

where
1 dp is the trace on some curve D,
2 S is a polynomial,
3 a2

∞(p) is the contribution of the fiber at infinity.
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Computing the distribution of B2(p)

A2,E(p) = p2 − p · dp − p ·#S(Fp)− a2
∞(p)

B2,E(p) =
A2,E(p)− p2

p3/2 = −
dp√

p
−

#S(Fp)√
p

− a2
∞

p3/2 .

Average over p to compute moments. We find that B2(p) is distributed exactly as
dp/

√
p.
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Distribution of dp/
√

p

B2,E(p) ∼ dp/
√

p, so it suffices to show all moments are integers.
In the "typical" case considered in their paper, D is genus 2.

Hence, we can use the classification of Sato-Tate distributions for genus 2
curves [FKRS12].
All of these distributions have integer moments.
For generic curves, whose Jacobian has small endomorphism group, the
Sato-Tate conjecture has been verified and so we’re done.
In general, assuming the generalized Sato-Tate conjecture allows us to
compute the distribution. ■
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Our Other Work

Again, assuming the generalized Sato-Tate conjecture, we prove this result for
more families of elliptic curves.

We have expanded data from SMALL 2024: p ≤ 250 000 → p ≤ 1 000 000.
This allows for deeper numerical investigations.
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