Motivation	Definitions	Block Matrices	Inverses	Eigenvalues	Importance	References
00	0000	00	0000	00000000	000	00

Eigenvalues of matrix-valued matrices

Arman Rysmakhanov (ar21@williams.edu)

Advised by Steven J. Miller (sjm1@williams.edu)

SMALL REU 2025 Yale, July 23, 2025

Motivation	Definitions	Block Matrices	Inverses	Eigenvalues	Importance	References
•0	0000	00	0000	00000000	000	00

Eigenvalues are important!

Example
• PCA
• Spectral graph theory
• Differential equations
• Markov chains
• Control theory

• • • •

$\underset{O \bullet}{\text{Motivation}}$	Definitions 0000	Block Matrices 00	Inverses 0000	Eigenvalues 00000000	Importance 000	References 00
-						

Extensions

Example

- Multiparameter: Solve $\sum_{j=0}^{k} \lambda_j A_{ij} x = 0$ for i = 1, ..., k simultaneously. [Atk72]
- Quaternions: Solve $Ax = x\lambda$ where $A \in \mathbb{H}^{n \times n}$ and $\lambda \in \mathbb{H}$. [Lee48]
- **Tensors**: Solve $\mathcal{A}(I_n, x, \dots, x) = \lambda \phi_{p-1}(x)$. [Lim06]

Motivation	Definitions	Block Matrices	Inverses	Eigenvalues	Importance	References
00	●000	00	0000	00000000	000	00

What if the eigenvalues are matrices themselves?

Motivation 00	Definitions 0000	Block Matrices 00	Inverses 0000	Eigenvalues 00000000	Importance 000	References 00
D.C						

Definition (Nested matrix)

Denminons

An $n \times n$ nested matrix of order k over \mathbb{C} is an $n \times n$ array \mathscr{A} where each entry $\mathscr{A}_{i,j}$ is a $k \times k$ matrix over \mathbb{C} . The set of all such nested matrices is denoted $MM_{n,k}(\mathbb{C}) := M_n(M_k(\mathbb{C})).$

Motivation 00	Definitions 0●00	Block Matrices 00	Inverses 0000	Eigenvalues 00000000	Importance 000	References 00	
D 0							

Definition (Nested matrix)

An $n \times n$ nested matrix of order k over \mathbb{C} is an $n \times n$ array \mathscr{A} where each entry $\mathscr{A}_{i,j}$ is a $k \times k$ matrix over \mathbb{C} . The set of all such nested matrices is denoted $MM_{n,k}(\mathbb{C}) := M_n(M_k(\mathbb{C})).$

Remark

 $MM_{n,k}(\mathbb{C})$ forms a ring of matrices over a non-commutative ring.

Motivation	Definitions	Block Matrices	Inverses	Eigenvalues	Importance	References
00	00●0	00	0000	00000000	000	00
General	izing "sca	lar" multipl	ication			

Definition (Scalar multiplication on nested matrices)

For $z \in \mathbb{C}$ and $\mathscr{A} \in MM_{n,k}(\mathbb{C})$, we define: **Left matrix multiplication:** The map $L_X : MM_{n,k}(\mathbb{C}) \to MM_{n,k}(\mathbb{C})$ given by

 $(L_X(\mathscr{A}))_{i,j} := z \mathscr{A}_{i,j} \text{ for all } 1 \le i, j \le n$

We similarly define the **right scalar multiplication** $\mathscr{A}_{i,j}z$. It is easy to show that they are the same.

Motivation	Definitions	Block Matrices	Inverses	Eigenvalues	Importance	References
00	000●	00	0000	00000000	000	00

Generalizing "scalar" multiplication

Definition (Matrix multiplication on nested matrices)

For $X \in M_k(\mathbb{C})$ and $\mathscr{A} \in MM_{n,k}(\mathbb{C})$, we define: Left matrix multiplication: The map $L_X : MM_{n,k}(\mathbb{C}) \to MM_{n,k}(\mathbb{C})$ given by

$$(L_X(\mathscr{A}))_{i,j} := X \cdot \mathscr{A}_{i,j} \text{ for all } 1 \le i, j \le n,$$

where \cdot denotes matrix multiplication in $M_k(\mathbb{C})$. We similarly define the **right matrix multiplication** $\mathscr{A}_{i,j} \cdot X$.

Motivation	Definitions	Block Matrices $\bullet \circ$	Inverses	Eigenvalues	Importance	References
00	0000		0000	00000000	000	00

Isn't this the same as block matrices?

Motivation	Definitions	Block Matrices	Inverses	Eigenvalues	Importance	References
00	0000	●0	0000	00000000	000	00

Isn't this the same as block matrices? Almost.

Motivation 00	Definitions 0000	Block Matrices $\circ \bullet$	Inverses 0000	Eigenvalues 00000000	Importance 000	References 00
Flatteni	ng Map					

Definition

The flattening map is the function

$$\Phi: MM_{n,k}(\mathbb{C}) \to M_{nk}(\mathbb{C})$$

$$A_{i,j} \mapsto (\mathscr{A}_{\lfloor (i-1)/k \rfloor + 1, \lfloor (j-1)/k \rfloor + 1})_{((i-1) \bmod k) + 1, ((j-1) \bmod k) + 1}$$

Motivation 00	Definitions 0000	Block Matrices $0 \bullet$	Inverses 0000	Eigenvalues 00000000	Importance 000	References 00					
Flatteni	Flattening Map										

Definition

The flattening map is the function

$$\Phi: MM_{n,k}(\mathbb{C}) \to M_{nk}(\mathbb{C})$$

$$A_{i,j} \mapsto (\mathscr{A}_{\lfloor (i-1)/k \rfloor + 1, \lfloor (j-1)/k \rfloor + 1})_{((i-1) \bmod k) + 1, ((j-1) \bmod k) + 1}$$

Remark

 Φ can be understood as removing the "internal boundaries" between the $k \times k$ matrix blocks.

Motivation 00	Definitions 0000	Block Matrices $0 \bullet$	Inverses 0000	Eigenvalues 00000000	Importance 000	References 00					
Flatteni	Flattening Map										

Definition

The flattening map is the function

$$\Phi: MM_{n,k}(\mathbb{C}) \to M_{nk}(\mathbb{C})$$

$$A_{i,j} \mapsto (\mathscr{A}_{\lfloor (i-1)/k \rfloor + 1, \lfloor (j-1)/k \rfloor + 1})_{((i-1) \bmod k) + 1, ((j-1) \bmod k) + 1}$$

Remark

 Φ can be understood as removing the "internal boundaries" between the $k \times k$ matrix blocks.

Proposition

 Φ is a ring isomorphism.

Motivation	Definitions	Block Matrices	Inverses	Eigenvalues	Importance	References
00	0000	oo	●000	00000000	000	00

Definition (Inverse of a nested matrix)

A nested matrix $\mathscr{A} \in MM_{n,k}(\mathbb{C})$ is *invertible* if there exists $\mathscr{B} \in MM_{n,k}(\mathbb{C})$ such that

$$\mathscr{AB} = \mathscr{BA} = \mathscr{I}_{n,k}.$$

Motivation 00	Definitions 0000	Block Matrices 00	Inverses 0●00	Eigenvalues 00000000	Importance 000	References 00					
Existon	Existence of inverses										

For all rings, even non-commutative, if an element has both a left and a right inverse, then the inverses are the same.

Proposition

In $MM_{n,k}$, the left inverse exists if and only if the right inverse exists.

Motivati 00	Definiti 0000	Block I 00	Matrices	Inverses 0000	Eigenvalues 00000000	Importance 000	References 00
-	 						

Invertibility via flattening

Theorem

A nested matrix $\mathscr{A} \in MM_{n,k}(\mathbb{C})$ is invertible if and only if $\Phi(\mathscr{A}) \in M_{nk}(\mathbb{C})$ is invertible.

Conoral	Conoral Linear Croup									
Notivation 00	0000	OO	Inverses 000●	00000000	Importance 000	References 00				
Mationtion	Defenitions	Dlasla Materiana	T	IV: manual las an	Terra en en entre en en en	Defenses				

Definition (General linear group of nested matrices)

The general linear group of nested matrices is

$$\mathscr{GL}_{n,k}(\mathbb{C}) := \{ \mathscr{A} \in MM_{n,k}(\mathbb{C}) : \mathscr{A} \text{ is invertible} \}$$

Theorem

$$\mathscr{GL}_{n,k}(\mathbb{C}) \approx \mathrm{GL}_{nk}(\mathbb{C})$$

Motivation 00	Definitions 0000	Block Matrices 00	Inverses 0000	Eigenvalues ●0000000	Importance 000	References 00

Eigenvalues and eigenvectors

Definition

Given $\mathscr{A} \in MM_{n,k}(\mathbb{C})$, a matrix $\Lambda \in M_k(\mathbb{C})$ is called a **left** eigenvalue of \mathscr{A} if there exists a nonzero $\vec{X} \in M_k^n(\mathbb{C})$ such that

$$\mathscr{A}\vec{X} = \Lambda\vec{X}$$

Similarly, $\Lambda \in M_k(\mathbb{C})$ is called a **right eigenvalue** of \mathscr{A} if there exists a nonzero $\vec{X} \in M_k^n(\mathbb{C})$ such that

$$\mathscr{A}\vec{X} = \vec{X}\Lambda$$

In both cases, such \vec{X} is called an **eigenvector** corresponding to Λ .

Motivation 00	Definitions 0000	Block Matrices 00	Inverses 0000	Eigenvalues 0●000000	Importance 000	References 00					
Alterna	Alternative definitions										

What about $\vec{X}\mathscr{A} = \Lambda \vec{X}$ and $\vec{X}\mathscr{A} = \vec{X}\Lambda$?

00	0000	00	0000	o●ooooooo	ooo	00					
Alterna	Alternative definitions										

What about
$$\vec{X}\mathscr{A} = \Lambda \vec{X}$$
 and $\vec{X}\mathscr{A} = \vec{X}\Lambda$?

Proposition

$$\begin{array}{l} (\vec{X}\mathscr{A})^{H} = (\Lambda \vec{X})^{H} \iff \mathscr{A}^{H} \vec{X}^{H} = \vec{X}^{H} \Lambda^{H} \\ (\vec{X}\mathscr{A})^{H} = (\vec{X} \Lambda)^{H} \iff \mathscr{A}^{H} \vec{X}^{H} = \Lambda^{H} \vec{X}^{H} \end{array}$$

Motivation 00	Definitions 0000	Block Matrices 00	Inverses 0000	Eigenvalues 00€00000	Importance 000	References 00				
Notatio	Netation									

Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$ be matrices. The **Kronecker product** $A \otimes B$ is defined as the $mp \times nq$ block matrix:

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{pmatrix}$$
(1)

Motivation 00	Definitions 0000	Block Matrices 00	Inverses 0000	Eigenvalues 000●0000	Importance 000	References 00
Trivial e	igenvalue	s				

Definition (Trivial eigenvalues)

If λ is an eigenvalue of $A \in M_k(\mathbb{C})$, then λI_k is called a trivial eigenvalue. An eigenvalue is non-trivial if it is not trivial.

Motivation 00	Definitions 0000	Block Matrices 00	Inverses 0000	Eigenvalues 000€0000	Importance 000	References 00
Trivial	eigenvalue	es				

Definition (Trivial eigenvalues)

If λ is an eigenvalue of $A \in M_k(\mathbb{C})$, then λI_k is called a trivial eigenvalue. An eigenvalue is non-trivial if it is not trivial.

Theorem

A trivial eigenvalue λI_k , where λ is an eigenvalue of $A \in M_k(\mathbb{C})$, is both a left and a right eigenvalue of $\Phi^{-1}(A) \in MM_{n,k}$ for all n, k such that $n \mod k = 0$.

How do we compute eigenvalues?

Let $\mathscr{A} \in MM_{n,k}(\mathbb{C})$, with $\Lambda \in M_k(\mathbb{C})$ and $\vec{X} \in M_k^n(\mathbb{C})$ as unknowns.

Theorem

 $\mathscr{A}\vec{X} = \Lambda \vec{X}$ has non-zero solutions if and only if $\Phi(\mathscr{S}) \in M_{nk^2}(\mathbb{C})$ is singular, where $\mathscr{S}_{i,j} = I_k \otimes \mathscr{A}_{i,j}$ if $i \neq j$ and $I_k \otimes (\mathscr{A}_{i,j} - \Lambda)$ otherwise.

Theorem

 $\mathscr{A}\vec{X} = \vec{X}\Lambda$ has non-zero solutions if and only if $\Phi(\mathscr{S}) \in M_{nk^2}(\mathbb{C})$ is singular, where $\mathscr{S}_{i,j} = I_k \otimes \mathscr{A}_{i,j}$ if $i \neq j$ and $I_k \otimes \mathscr{A}_{i,j} - \Lambda^T \otimes I_k$ otherwise.

$\underset{00}{\mathrm{Motivation}}$	Definitions 0000	Block Matrices 00	Inverses 0000	Eigenvalues 00000●00	Importance 000	References 00		
Example								

Let's look at an example of matrix-valued eigenvalues. $\mathscr{A} = \begin{bmatrix} \begin{bmatrix} 16 & 13 \\ 13 & 10 \end{bmatrix} & \begin{bmatrix} 4 & 7 \\ 7 & 0 \end{bmatrix} \\ \begin{bmatrix} 4 & 7 \\ 7 & 0 \end{bmatrix} & \begin{bmatrix} 16 & 13 \\ 13 & 10 \end{bmatrix} \end{bmatrix}$

$\underset{00}{\text{Motivation}}$	Definitions 0000	Block Matrices 00	Inverses 0000	Eigenvalues 00000●00	Importance 000	References 00		
Example								

 $\mathscr{A} = \begin{bmatrix} \begin{bmatrix} 16 & 13 \\ 13 & 10 \end{bmatrix} & \begin{bmatrix} 4 & 7 \\ 7 & 0 \end{bmatrix} \\ \begin{bmatrix} 4 & 7 \\ 7 & 0 \end{bmatrix} & \begin{bmatrix} 16 & 13 \\ 13 & 10 \end{bmatrix} \end{bmatrix} \qquad \Lambda = \begin{bmatrix} 12 & 6 \\ \frac{4x+100}{7} & x \end{bmatrix}$ Let's look at an example of matrix-valued eigenvalues. $\vec{X} = \begin{bmatrix} z \\ y \\ \frac{1}{7}(x-10)y + \frac{1}{49}(4x+9)z \\ -\frac{1}{40}(4x+9)y - \frac{8}{343}(2x+29)z \end{bmatrix}$ $\left. \begin{array}{c} \frac{\frac{1}{49}w(4x+9) + \frac{1}{\overline{\xi}}u(x-10) \\ -\frac{1}{49}u(4x+9) - \frac{8}{343}w(2x+29) \\ w \\ \end{array} \right|$

Motivation oo	Definitions 0000	Block Matrices 00	Inverses 0000	Eigenvalues 000000●0	Importance 000	References 00			
Propert	Properties of right eigenvalues								

Let $\Lambda \in M_k(\mathbb{C})$ is a right eigenvalue of $\mathscr{A} \in MM_{n,k}(\mathbb{C})$.

Theorem (Right eigenvalues form conjugacy classes)

 $P^{-1}\Lambda P$ is a right eigenvalue for any $P \in GL_k(\mathbb{C})$.

Motivation	Definitions	Block Matrices	Inverses	Eigenvalues	Importance	References
00	0000	00	0000	000000€0	000	00
Propert	ies of rigł	nt eigenvalu	es			

Let $\Lambda \in M_k(\mathbb{C})$ is a right eigenvalue of $\mathscr{A} \in MM_{n,k}(\mathbb{C})$.

Theorem (Right eigenvalues form conjugacy classes)

 $P^{-1}\Lambda P$ is a right eigenvalue for any $P \in GL_k(\mathbb{C})$.

Theorem

If $\lambda \in \mathbb{C}$ is an eigenvalue of Λ and a flattened eigenvector corresponding to Λ has full rank, then λ is also a eigenvalue of $\Phi(\mathscr{A})$. [JEDJ71]

Motivation 00	Definitions 0000	Block Matrices 00	Inverses 0000	Eigenvalues 0000000●	Importance 000	References 00	
Extensions							

Current work is on the spectral properties of matrices in the left spectrum of "symmetric" nested matrices.

Motivation 00	Definitions 0000	Block Matrices 00	Inverses 0000	Eigenvalues 00000000	Importance •00	References 00			
Goal of the project									

- Formalize the algebraic structure of nested matrices
- Analyze the spectral properties of nested matrices

Applications for Matrix Polynomials

- Matrix polynomial in matrix variable: $M(X) = X^m + A_{m-1}X^{m-1} + \dots + A_0$, with $X, A_i \in \mathbb{C}^{n \times n}$
- X is a block eigenvalue of block companion matrix C if CV = VX for full-rank V [JEDJ71]
- Arise in control theory, queueing theory, and other fields

Motivation 00	Definitions 0000	Block Matrices 00	Inverses 0000	Eigenvalues 00000000	$\underset{OO}{Importance}$	References 00		
Acknowledgements								

This project is a part of SMALL REU under the guidance of Professor Steven J. Miller. This research was supported by the National Science Foundation, under NSF Grant DMS2241623, Williams College, and the Finnerty Fund.

Motivation 00	Definitions 0000	Block Matrices 00	Inverses 0000	Eigenvalues 00000000	Importance 000	\mathbb{R}_{\bullet}		
References I								

- Frederick Valentine Atkinson, *Multiparameter* eigenvalue problems, Mathematics in Science and Engineering, vol. 82, Academic Press, New York, 1972.
- R. P. Weber J. E. Dennis Jr., J. F. Traub, On the matrix polynomial, lambda-matrix, and block eigenvalue problems, Tech. report, Defense Technical Information Center, 1971.
- H. C. Lee, Eigenvalues and canonical forms of matrices with quaternion coefficients, Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences 52 (1948), 253–260.

Motivation	Definitions	Block Matrices	Inverses	Eigenvalues	Importance	References
00	0000	00	0000	00000000	000	●●
Deferen						

Lek-Heng Lim, Singular values and eigenvalues of tensors: A variational approach, 2006.