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Eigenvalues are important!

Example
PCA
Spectral graph theory
Differential equations
Markov chains
Control theory
· · ·
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Extensions

Example

Multiparameter: Solve
∑k

j=0 λjAijx = 0 for
i = 1, . . . , k simultaneously. [Atk72]
Quaternions: Solve Ax = xλ where A ∈ Hn×n and
λ ∈ H. [Lee48]
Tensors: Solve A(In, x, . . . , x) = λϕp−1(x). [Lim06]
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What if the eigenvalues are matrices themselves?
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Definitions

Definition (Nested matrix)
An n× n nested matrix of order k over C is an n× n array
A where each entry Ai,j is a k × k matrix over C. The set
of all such nested matrices is denoted
MMn,k(C) := Mn(Mk(C)).

Remark
MMn,k(C) forms a ring of matrices over a
non-commutative ring.
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Generalizing “scalar” multiplication

Definition (Scalar multiplication on nested matrices)
For z ∈ C and A ∈ MMn,k(C), we define:
Left matrix multiplication: The map
LX : MMn,k(C) → MMn,k(C) given by

(LX(A ))i,j := zAi,j for all 1 ≤ i, j ≤ n

We similarly define the right scalar multiplication Ai,jz.
It is easy to show that they are the same.
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Generalizing “scalar” multiplication

Definition (Matrix multiplication on nested matrices)
For X ∈ Mk(C) and A ∈ MMn,k(C), we define:
Left matrix multiplication: The map
LX : MMn,k(C) → MMn,k(C) given by

(LX(A ))i,j := X · Ai,j for all 1 ≤ i, j ≤ n,

where · denotes matrix multiplication in Mk(C). We
similarly define the right matrix multiplication Ai,j ·X.
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Isn’t this the same as block matrices?

Almost.
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Flattening Map

Definition
The flattening map is the function

Φ : MMn,k(C) → Mnk(C)

Ai,j 7→ (A⌊(i−1)/k⌋+1,⌊(j−1)/k⌋+1)((i−1) mod k)+1,((j−1) mod k)+1

Remark
Φ can be understood as removing the “internal boundaries”
between the k × k matrix blocks.

Proposition
Φ is a ring isomorphism.

11



Motivation Definitions Block Matrices Inverses Eigenvalues Importance References

Flattening Map

Definition
The flattening map is the function

Φ : MMn,k(C) → Mnk(C)

Ai,j 7→ (A⌊(i−1)/k⌋+1,⌊(j−1)/k⌋+1)((i−1) mod k)+1,((j−1) mod k)+1

Remark
Φ can be understood as removing the “internal boundaries”
between the k × k matrix blocks.

Proposition
Φ is a ring isomorphism.

12



Motivation Definitions Block Matrices Inverses Eigenvalues Importance References

Flattening Map

Definition
The flattening map is the function

Φ : MMn,k(C) → Mnk(C)

Ai,j 7→ (A⌊(i−1)/k⌋+1,⌊(j−1)/k⌋+1)((i−1) mod k)+1,((j−1) mod k)+1

Remark
Φ can be understood as removing the “internal boundaries”
between the k × k matrix blocks.

Proposition
Φ is a ring isomorphism.

13



Motivation Definitions Block Matrices Inverses Eigenvalues Importance References

Definition (Inverse of a nested matrix)
A nested matrix A ∈ MMn,k(C) is invertible if there exists
B ∈ MMn,k(C) such that

A B = BA = In,k.
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Existence of inverses

For all rings, even non-commutative, if an element has both
a left and a right inverse, then the inverses are the same.

Proposition
In MMn,k, the left inverse exists if and only if the right
inverse exists.
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Invertibility via flattening

Theorem
A nested matrix A ∈ MMn,k(C) is invertible if and only if
Φ(A ) ∈ Mnk(C) is invertible.
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General Linear Group

Definition (General linear group of nested matrices)
The general linear group of nested matrices is

G L n,k(C) := {A ∈ MMn,k(C) : A is invertible}

Theorem
G L n,k(C) ≈ GLnk(C)
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Eigenvalues and eigenvectors

Definition
Given A ∈ MMn,k(C), a matrix Λ ∈ Mk(C) is called a left
eigenvalue of A if there exists a nonzero X⃗ ∈ Mn

k (C) such
that

A X⃗ = ΛX⃗

Similarly, Λ ∈ Mk(C) is called a right eigenvalue of A if
there exists a nonzero X⃗ ∈ Mn

k (C) such that

A X⃗ = X⃗Λ

In both cases, such X⃗ is called an eigenvector
corresponding to Λ.
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Alternative definitions

What about X⃗A = ΛX⃗ and X⃗A = X⃗Λ?

Proposition

(X⃗A )H = (ΛX⃗)H ⇐⇒ A HX⃗H = X⃗HΛH

(X⃗A )H = (X⃗Λ)H ⇐⇒ A HX⃗H = ΛHX⃗H
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Notation

Let A ∈ Rm×n and B ∈ Rp×q be matrices. The Kronecker
product A⊗B is defined as the mp× nq block matrix:

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
... . . . ...

am1B am2B · · · amnB

 (1)
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Trivial eigenvalues

Definition (Trivial eigenvalues)
If λ is an eigenvalue of A ∈ Mk(C), then λIk is called a
trivial eigenvalue. An eigenvalue is non-trivial if it is not
trivial.

Theorem
A trivial eigenvalue λIk, where λ is an eigenvalue of
A ∈ Mk(C), is both a left and a right eigenvalue of
Φ−1(A) ∈ MMn,k for all n, k such that n mod k = 0.
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How do we compute eigenvalues?

Let A ∈ MMn,k(C), with Λ ∈ Mk(C) and X⃗ ∈ Mn
k (C) as

unknowns.

Theorem

A X⃗ = ΛX⃗ has non-zero solutions if and only if
Φ(S ) ∈ Mnk2(C) is singular, where Si,j = Ik ⊗Ai,j if i ̸= j
and Ik ⊗ (Ai,j − Λ) otherwise.

Theorem

A X⃗ = X⃗Λ has non-zero solutions if and only if
Φ(S ) ∈ Mnk2(C) is singular, where Si,j = Ik ⊗Ai,j if i ̸= j
and Ik ⊗ Ai,j − ΛT ⊗ Ik otherwise.
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Example

Let’s look at an example of matrix-valued eigenvalues.

A =


[
16 13
13 10

] [
4 7
7 0

]
[
4 7
7 0

] [
16 13
13 10

]


X⃗ =
z 1

49
w(4x+ 9) + 1

7
u(x− 10)

y − 1
49
u(4x+ 9)− 8

343
w(2x+ 29)

1
7
(x− 10)y + 1

49
(4x+ 9)z w

− 1
49
(4x+ 9)y − 8

343
(2x+ 29)z u



Λ =
[

12 6
4x+100

7
x

]
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Properties of right eigenvalues

Let Λ ∈ Mk(C) is a right eigenvalue of A ∈ MMn,k(C).

Theorem (Right eigenvalues form conjugacy classes)

P−1ΛP is a right eigenvalue for any P ∈ GLk(C).

Theorem
If λ ∈ C is an eigenvalue of Λ and a flattened eigenvector
corresponding to Λ has full rank, then λ is also a eigenvalue
of Φ(A ). [JEDJ71]
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Extensions

Current work is on the spectral properties of matrices in
the left spectrum of “symmetric” nested matrices.
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Goal of the project

1 Formalize the algebraic structure of nested matrices
2 Analyze the spectral properties of nested matrices
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Applications for Matrix Polynomials

Matrix polynomial in matrix variable:
M(X) = Xm +Am−1X

m−1 + · · ·+A0, with X,Ai ∈ Cn×n

X is a block eigenvalue of block companion matrix C if
CV = V X for full-rank V [JEDJ71]
Arise in control theory, queueing theory, and other fields
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