Erdős Distinct Angle Problems

Henry Fleischmann and Ethan Pesikoff

University of Michigan and Yale University

May 24 - 27, 2022

arXiv link: https://arxiv.org/abs/2108.120151

Contact: henryfl@umich.edu, ethan.pesikoff@yale.edu

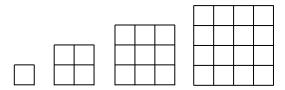
¹Joint work with Faye Jackson, Hongyi Hu, Steven J. Miller, Eyvindur A. Palsson, and Charles Wolf.

Erdős Distinct Distance Problems

- Erdős 1946:
 - What is the minimum number of distinct distances between n points in the plane?

Erdős Distinct Distance Problems

- Erdős 1946:
 - What is the minimum number of distinct distances between n points in the plane?
- The integer lattice provides upper bound $O(n/\sqrt{\log n})$.
 - The number of positive integers smaller than n that are the sum of two squares is $\Theta(n/\sqrt{\log n})$ (Landau-Ramanujan).
- Only finally resolved in 2015 by Guth and Katz with a lower bound of $\Omega(n/\log(n))$.



• What is the minimal number of distinct distances among sets of n points with no three on a line or both no three on a line and no four on a circle?

- What is the minimal number of distinct distances among sets of n points with no three on a line or both no three on a line and no four on a circle?
- 2) What is the maximal size of a k-distance set?

- What is the minimal number of distinct distances among sets of n points with no three on a line or both no three on a line and no four on a circle?
- 2 What is the maximal size of a k-distance set?
- 3 For a fixed n points, what is the largest subset with all distinct distances? In restricted settings?

- What is the minimal number of distinct distances among sets of n points with no three on a line or both no three on a line and no four on a circle?
- 2 What is the maximal size of a k-distance set?
- **3** For a fixed *n* points, what is the largest subset with all distinct distances? In restricted settings?

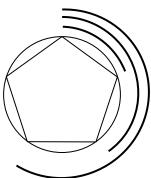
There are many, many more. See Adam Sheffer's survey.

The Erdős Distinct Angle Problem

- Erdős and Purdy, 1995:
 - What is the minimum number of distinct angles, A(n), in $(0, \pi)$ formed by n non-collinear points in the plane?

The Erdős Distinct Angle Problem

- Erdős and Purdy, 1995:
 - What is the minimum number of distinct angles, A(n), in $(0, \pi)$ formed by n non-collinear points in the plane?
- They conjectured that regular n-gons are optimal (n-2) distinct angles:



General Lower Bound on the Erdős Angle Problem

Conjecture (Weak Dirac Conjecture)

Every set \mathcal{P} of n non-collinear points in the plane contains a point incident to at least $\lceil n/2 \rceil$ lines between points in \mathcal{P} .

The best current bound of $\left\lceil \frac{n}{3} \right\rceil + 1$ was proven by Han in 2017.

General Lower Bound on the Erdős Angle Problem

Conjecture (Weak Dirac Conjecture)

Every set \mathcal{P} of n non-collinear points in the plane contains a point incident to at least $\lceil n/2 \rceil$ lines between points in \mathcal{P} .

The best current bound of $\lceil \frac{n}{3} \rceil + 1$ was proven by Han in 2017.

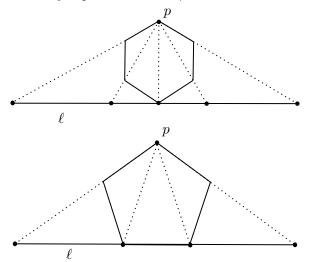
Corollary

$$A(n) \ge \frac{n}{6}, \ A_{no3l}(n) \ge \frac{n-2}{2}.$$



Projected Polygon

What is the optimal configuration for $A_{no4c}(n)$, the minimum number of distinct angles among n points with no 4 cocircular?



Theorem

$$A_{\text{gen}}(n) = O(n^{\log_2(7)}).$$

Proof sketch:

• Project the points of a d-dimensional hypercube onto a plane chosen such that the orthogonal projection is injective and the projected points are in general position. Call the projection T.

Theorem

$$A_{\text{gen}}(n) = O(n^{\log_2(7)}).$$

Proof sketch:

- Project the points of a d-dimensional hypercube onto a plane chosen such that the orthogonal projection is injective and the projected points are in general position. Call the projection T.
- Note that $p_1 p_2 = p_3 p_4 \implies |T(p_1) T(p_2)| = |T(p_3) T(p_4)|$.

Theorem

$$A_{\text{gen}}(n) = O(n^{\log_2(7)}).$$

Proof sketch:

chosen such that the orthogonal projection is injective and the projected points are in general position. Call the projection T.

• Project the points of a d-dimensional hypercube onto a plane

- Note that $p_1 p_2 = p_3 p_4 \implies |T(p_1) T(p_2)| = |T(p_3) T(p_4)|$.
- This means triangles congruent up to edge translation are congruent under the projection.

Theorem

$$A_{\text{gen}}(n) = O(n^{\log_2(7)}).$$

Proof sketch:

chosen such that the orthogonal projection is injective and the projected points are in general position. Call the projection T.

• Project the points of a d-dimensional hypercube onto a plane

- Note that $p_1 p_2 = p_3 p_4 \implies |T(p_1) T(p_2)| = |T(p_3) T(p_4)|$.
- This means triangles congruent up to edge translation are congruent under the projection.

Theorem

$$A_{\text{gen}}(n) = O(n^{\log_2(7)}).$$

Proof sketch:

chosen such that the orthogonal projection is injective and the projected points are in general position. Call the projection T.

• Project the points of a d-dimensional hypercube onto a plane

- Note that $p_1 p_2 = p_3 p_4 \implies |T(p_1) T(p_2)| = |T(p_3) T(p_4)|$.
- This means triangles congruent up to edge translation are congruent under the projection.
- The number of equivalence classes of edge translation equivalent triangles in a d-dimensional cube is

$$\frac{7^d - 3^{d+1} + 2}{12}.$$

Low Angle Constructions

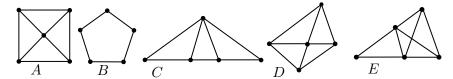
Definition

Let P(k) be the maximum number of points in a planar point configuration admitting at most k distinct angles.

Lemma

$$k + 2 \le P(k) \le 6k.$$

- P(2) = 5. The unique optimal configuration is A.
- P(3) = 5. There are 5 unique optimal configurations.



What is the minimum maximum size of a subset of n points with no repeated angles, R(n)?

Lemma

Let $\mathcal{P} \subseteq \mathbb{R}^2$ such that $|\mathcal{P}| = n$ and \mathcal{P} contains no 3 collinear points. $R(n) \leq (2A(\mathcal{P}))^{\frac{1}{3}}$.

- $S \subseteq \mathcal{P}$ admits at most $A(\mathcal{P})$ distinct angles.
- Moreover, if $3\binom{|S|}{3} > A(\mathcal{P})$, there are repeated angles in S.
- $\implies R(n), R_{\text{no3l}}(n) = O(n^{1/3})$
- Moreover, $R_{\text{no4c}}(n)$, $R_{\text{gen}}(n) = O(n^{\log_2(7)/3})$.

Theorem

$$R_{\rm gen}(n) = \Omega(n^{1/5}).$$

• Let \mathcal{P} be a point configuration in general position with n points.

$$R_{\rm gen}(n) = \Omega(n^{1/5}).$$

- Let \mathcal{P} be a point configuration in general position with n points.
- Let $Q \subseteq P$ with each element chosen with probability p.

$$R_{\rm gen}(n) = \Omega(n^{1/5}).$$

- Let \mathcal{P} be a point configuration in general position with n points.
- Let $Q \subseteq P$ with each element chosen with probability p.
- Let $q_i(n)$ be the number of pairs of equal angles on i total points.

$$R_{\rm gen}(n) = \Omega(n^{1/5}).$$

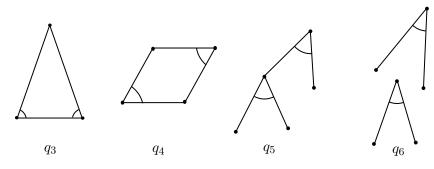
- Let \mathcal{P} be a point configuration in general position with n points.
- Let $Q \subseteq P$ with each element chosen with probability p.
- Let $q_i(n)$ be the number of pairs of equal angles on i total points.
- Remove an element from Q in each of the pairs in the q_i -sets to form Q'.

$$R_{\rm gen}(n) = \Omega(n^{1/5}).$$

- Let \mathcal{P} be a point configuration in general position with n points.
- Let $Q \subseteq P$ with each element chosen with probability p.
- Let $q_i(n)$ be the number of pairs of equal angles on i total points.
- Remove an element from Q in each of the pairs in the q_i -sets to form Q'.
- $\mathbb{E}[|\mathcal{Q}'|] \ge pn \sum_{i=3}^6 p^i q_i(n)$.

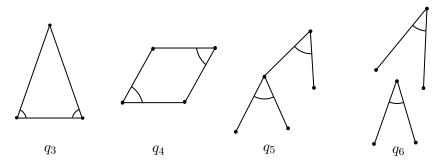
• $\mathbb{E}[|\mathcal{Q}'|] \ge pn - \sum_{i=3}^6 p^i q_i(n)$.

- $\mathbb{E}[|\mathcal{Q}'|] \ge pn \sum_{i=3}^6 p^i q_i(n)$.
- $q_3(n) = O(n^{7/3}), q_4(n) = O(n^3), q_5(n) = O(n^4), q_6(n) = O(n^5).$



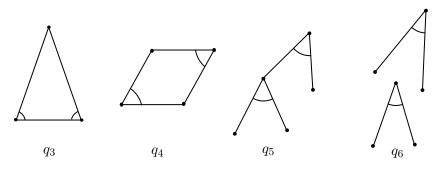
Example configurations of $q_3(n), q_4(n), q_5(n), q_6(n)$.

- $\mathbb{E}[|\mathcal{Q}'|] \ge pn \sum_{i=3}^6 p^i q_i(n)$.
- $q_3(n) = O(n^{7/3}), q_4(n) = O(n^3), q_5(n) = O(n^4), q_6(n) = O(n^5).$



Example configurations of $q_3(n), q_4(n), q_5(n), q_6(n)$.

- $\mathbb{E}[|\mathcal{Q}'|] \ge pn \sum_{i=3}^6 p^i q_i(n)$.
- $q_3(n) = O(n^{7/3}), q_4(n) = O(n^3), q_5(n) = O(n^4), q_6(n) = O(n^5).$



Example configurations of $q_3(n), q_4(n), q_5(n), q_6(n)$.

• Let $p = cn^{-4/5}$ for some carefully chosen constant c, and conclude the result!

Acknowledgements

This research was done as part of the SMALL REU program and was funded by NSF grant number 1947438.

Special thanks to our co-researchers Faye Jackson and Hongyi Hu and Professors Charles Wolf, Eyvindur A. Palsson, and Steven J. Miller for their mentorship.

References

- P. Brass, W. Moser, and J. Pach, Research problems in discrete geometry, Springer Science & Business Media, 2006.
- P. Erdős, D. Hickerson, and J. Pach, A problem of Leo Moser about repeated distances on the sphere, *American Mathematical Monthly* **96** (1989), 569-575.
- P. Erdős, Some unsolved problems, Magyar Tud. Akad. Mat. Kut. Int. Közl., 6 (1961), 221-254.
- P. Erdős, G. Purdy, Extremal problems in combinatorial geometry, *Handbook of Combinatorics*, Vol. 1, R.L. Graham et al., eds., Elsevier (1995), 809–874.
- P. Erdős, On Sets of Distances of n Points, The American Mathematical Monthly 53(5) (1946), 248-250.
- L. Guth and N. Katz, On the Erdős distinct distances problem in the plane, Annals of
- Mathematics 181(1) (2015), 155-190.

 Z. Han, A Note on the Weak Dirac Conjecture, Electronic Journal of Combinatorics
- 24(1) (2017), P1.63.

 J. Pach and M. Sharir, Repeated angles in the plane and related problems, Journal of
- J. Pach and M. Sharir, Repeated angles in the plane and related problems, Journal of Combinatorial Theory, Series A 59(1) (1992), 12-22.
- A. Sheffer, Distinct Distances: Open Problems and Current Bounds, preprint (2018). https://arxiv.org/abs/1406.1949.