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Introduction
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Goals

Use math from classes (number theory, group
theory).

Discuss challenges in real world applications.

Creating research questions.
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Wason 4 Card Test
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Cryptography Basics

Enough to send 0’s and 1’s:
⋄ A = 00000, B = 00001, C = 00010, . . .

Z = 11010, 0 = 11011, 1 = 11100, . . . .

Two major issues:
⋄ Transmit message so only desired recipient can

read.
⋄ Ensure correct message received.
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Bit Error Dangers: RSA

If receive wrong bit in RSA, message completely different.

Secret: p = 15217, q = 17569, d = 80998505.

Public: N = pq = 267347473, e = 3141593.
Note: ed = 1 mod (p − 1)(q − 1).
Message: M = 195632041, send Me mod N or

X = 121209473.
Decrypt: X d mod N or 195632041.

Imagine receive X̃ = 121209483.
Message 195632041
Decrypts 121141028, only two digits are the same!
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Outline

Will concentrate on Error Detection and Correction.

How do you detect an error?

How do you fix an error?
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Check Digit
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Check Digit

If easy to read again, just need to detect error.

Think scanner at a supermarket....
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Check Digit

If easy to read again, just need to detect error.

Think scanner at a supermarket....

Last digit makes sum 0 mod 10 (or 0 mod 2).
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Next Steps

More involved methods detecting more: The Verhoeff
algorithm catches single digit errors and flipping adjacent
digits: https:
//en.wikipedia.org/wiki/Verhoeff_algorithm.

Want to detect where the error is:

Tell me twice!
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Majority Rules
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Tell Me Three Times

Tell Me Three Times detects and probably corrects (need
probability of an error small).
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Tell Me Three Times

Tell Me Three Times detects and probably corrects (need
probability of an error small).
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Tell Me Three Times

Crucially uses binary outcome: https:
//www.youtube.com/watch?v=RerJWv5vwxc and
https:
//www.youtube.com/watch?v=vWCGs27_xPI.

What is the problem with this method?

Only one-third is information, if two errors is wrong!

What else can we do? Is it better? With respect to what
metric?

24
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Tell Me n Times

Tell Me Four Times: only 25% of message is data
(general case just 1/n).

Want to correct errors but still send a lot of information.

What’s a success?

Greater than 50% is data.
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Tell Me n Times

Tell Me Four Times: only 25% of message is data
(general case just 1/n).

Want to correct errors but still send a lot of information.

What’s a success? Greater than 50% is data.
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Tell Me Three Times (revisited)

Let’s revisit Tell Me Three Times:

How should we do two data points?
How many check digits do you expect?
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Two of Five

This is better: 2 of 5 or 40% of message is data!

Unfortunately still below 50%.

How many data points should we try next: 3, 4, 5, ...?
Suggestions?
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Three and Four Bits of Data

Which is better?

Both 50% but fewer needed with triangle.

What should we do next: 5, 6, 7, 8, 9, ...?
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Three and Four Bits of Data

Which is better? Both 50% but fewer needed with triangle.

What should we do next: 5, 6, 7, 8, 9, ...?
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Triangle and Square Numbers

Tn = n(n + 1)/2 and Sn = n2.

Both give 60% of the message is data. Can we continue?

Data on exactly two lines, check bits on one.
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Triangle and Square Systems

Triangle: Tn = n(n + 1)/2 data, n + 1 check, so
(n + 2)(n + 1)/2 bits total and n/(n + 2) information.

Square: Sn = n2 data, 2n check, so n2 + 2n bits total and
n/(n + 2) information.
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Triangle and Square Systems

Can get as high a percentage information as desire, at a
cost of longer string (and thus more likely to have two
errors).
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Generalizations

What is a better geometry to use?
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Generalizations

2 × 2 × 2: 8 data points, 6 check bits (for planes): info is
8/14 ≈ 57%.

3 × 3 × 3: 27 data points, 9 check bits (for planes): info is
27/36 = 75%.

For 6 × 6 data square info is 36/48 = 75%, for T7 is
28/36 ≈ 77.78%.
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Generalizations

4 × 4 × 4: 64 data points, 12 check bits: info is
64/76 ≈ 84.21%.

For 9 × 9 data square info is 81/99 ≈ 81.82%.

For T11 triangle: 66 data points, info is 66/79 ≈ 83.54%.
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Generalizations

n× n× n: n3 data points, 3n check bits: info is n2/(n2 + 3).

Better percentage is information for large n; how should
we generalize?
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Generalizations

What is a better geometry to use?
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Other Approaches

Hamming Codes: Can send a message with 7 bits, 4 are
data, and can correct one error:
https://en.wikipedia.org/wiki/Hamming_code.

Extended binary Golay code: Can send a message with
24 bits, 12 are data, can correct any 3-bit errors and can
detect some other errors: https:
//en.wikipedia.org/wiki/Binary_Golay_code.
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Manhamming

If no errors, all correct.
If only one color error, is P1, P2 or P3.
If just blue and orange is D1.
If just blue and green is D2.
If just orange and green is D3
If all wrong is D4.
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Comparison

Say want to transmit around 212 = 4096 bits of data.

Can do a square and cube; the Hamming code will do
212 − 1 − 12.

Square: 4096 out of 4224 data: 96.9697%.
Cube: 4096 out of 4144 data: 98.8417%.
Hamming: 4083 out of 4095 data: 99.707%.

All converge to 100%, difference narrows as size
increases.
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Challenge Problems

Even if these are known, value in trying to solve yourself.

For a given n, what is the fewest number of check
digits one needs to successfully transmit n data digits
and be able to correct up to one error?

Now assume there can be up to two errors....

Now assume there can be up to k errors....

Happy to chat: sjm1@williams.edu.
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Interleaving

Say transmit

01111010010101010101010101010101010101011110...

but a localized burst of noise, receive

01110111010101010101010101010101010101011110...
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Interleaving

Transmit every fourth:
01000000001 7→ 00000000001
10111111111 7→ 11111111111
11000000001 7→ 11000000001
10111111110 7→ 11111111110
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Steganography
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Can you see the cat in the tree?
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Transmitting Images

How to transmit an image?
Have an L × W grid with LW pixels.

Each pixel a triple, maybe (Red, Green, Blue).

Often each value in {0,1,2,3, . . . ,2n − 1}.

n = 8 gives 256 choices for each, or 16,777,216
possibilities.
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Steganography

Steganography: Concealing a message in another
message: https:
//en.wikipedia.org/wiki/Steganography.

Take one of the colors, say red, a number from 0 to 255.

Write in binary: r727 + r626 + · · ·+ r12 + r0.

If change just the last or last two digits, very minor change
to image.

Can hide an image in another.

If just do last, can hide a black and white image easily....
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Can you see the cat in the tree?
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Can you see the cat in the tree?
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Bonus: 0’s, 1’s and
Cookie Monster
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Pre-requisites: Combinatorics Review

n!: number of ways to order n people, order matters.

n!
k!(n−k)! = nCk =

(n
k

)
: number of ways to choose k

from n, order doesn’t matter.

Stirling’s Formula: n! ≈ nne−n
√

2πn.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =?
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 17 = F8 + 17.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 4 = F8 + F6 + 4.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 3 + 1 = F8 + F6 + F3 + 1.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 3 + 1 = F8 + F6 + F3 + F1.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 3 + 1 = F8 + F6 + F3 + F1.
Example: 83 = 55 + 21 + 5 + 2 = F9 + F7 + F4 + F2.
Observe: 51 miles ≈ 82.1 kilometers.
Observe: Write 51 as 101001010Fib.
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Old Results

Central Limit Type Theorem
As n → ∞ distribution of number of summands in
Zeckendorf decomposition for m ∈ [Fn,Fn+1) is Gaussian
(normal).

500 520 540 560 580 600

0.005

0.010

0.015

0.020

0.025

0.030

Figure: Number of summands in [F2010,F2011); F2010 ≈ 10420.
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New Results: Bulk Gaps: m ∈ [Fn,Fn+1) and ϕ = 1+
√

5
2

m =

k(m)=n∑
j=1

Fij , νm;n(x) =
1

k(m)− 1

k(m)∑
j=2

δ (x − (ij − ij−1)) .

Theorem (Zeckendorf Gap Distribution)
Gap measures νm;n converge almost surely to average
gap measure where P(k) = 1/ϕk for k ≥ 2.

5 10 15 20 25 30

0.1

0.2

0.3

5 10 15 20 25

0.5

1.0

1.5

Figure: Distribution of gaps in [F1000,F1001); F2010 ≈ 10208.
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New Results: Longest Gap

Theorem (Longest Gap)
As n → ∞, the probability that m ∈ [Fn,Fn+1) has longest
gap less than or equal to f (n) converges to

Prob (Ln(m) ≤ f (n)) ≈ e−elog n−f (n)/ log ϕ

.

Immediate Corollary: If f (n) grows slower or faster than
log n/ log ϕ, then Prob(Ln(m) ≤ f (n)) goes to 0 or 1,
respectively.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies
among P distinct people is

(C+P−1
P−1

)
.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)
ways to do.

Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):

68



Introduction Check Digit Majority Rules Steganography Bonus: 0’s, 1’s and CM Appendix

Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies
among P distinct people is

(C+P−1
P−1

)
.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)
ways to do.

Divides the cookies into P sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

69



Introduction Check Digit Majority Rules Steganography Bonus: 0’s, 1’s and CM Appendix

Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies
among P distinct people is

(C+P−1
P−1

)
.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)
ways to do.

Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):

70



Introduction Check Digit Majority Rules Steganography Bonus: 0’s, 1’s and CM Appendix

Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies
among P distinct people is

(C+P−1
P−1

)
.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)
ways to do.

Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):

71



Introduction Check Digit Majority Rules Steganography Bonus: 0’s, 1’s and CM Appendix

Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies
among P distinct people is

(C+P−1
P−1

)
.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)
ways to do.

Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):

72



Introduction Check Digit Majority Rules Steganography Bonus: 0’s, 1’s and CM Appendix

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem
The number of solutions to x1 + · · ·+ xP = C with xi ≥ 0 is(C+P−1

P−1

)
.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf
decomposition of N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.
N = Fi1 + Fi2 + · · ·+ Fik−1 + Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).
d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.

Cookie counting ⇒ pn,k =
(n−2k+1 + k−1

k−1

)
=

(n−k
k−1

)
.
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(n−k
k−1

)
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Thank You! sjm1@williams.edu
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Appendix:
Gaussian Behavior
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Generalizing Lekkerkerker: Erdos-Kac type result

Theorem (KKMW 2010)
As n → ∞, the distribution of the number of summands in
Zeckendorf’s Theorem is a Gaussian.

Sketch of proof: Use Stirling’s formula,

n! ≈ nne−n
√

2πn

to approximates binomial coefficients, after a few pages of
algebra find the probabilities are approximately Gaussian.
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(Sketch of the) Proof of Gaussianity

The probability density for the number of Fibonacci numbers that add up to an integer in [Fn, Fn+1) is

fn(k) =
(

n−1−k
k

)
/Fn−1. Consider the density for the n + 1 case. Then we have, by Stirling

fn+1(k) =

(n − k

k

) 1

Fn

=
(n − k)!

(n − 2k)!k!

1

Fn
=

1
√

2π

(n − k)n−k+ 1
2

k(k+ 1
2 )

(n − 2k)n−2k+ 1
2

1

Fn

plus a lower order correction term.
Also we can write Fn = 1√

5
ϕn+1 = ϕ√

5
ϕn for large n, where ϕ is the golden ratio (we are using relabeled

Fibonacci numbers where 1 = F1 occurs once to help dealing with uniqueness and F2 = 2). We can now split the
terms that exponentially depend on n.

fn+1(k) =

(
1

√
2π

√
(n − k)

k(n − 2k)

√
5

ϕ

)(
ϕ
−n (n − k)n−k

kk (n − 2k)n−2k

)
.

Define

Nn =
1

√
2π

√
(n − k)

k(n − 2k)

√
5

ϕ
, Sn = ϕ

−n (n − k)n−k

kk (n − 2k)n−2k
.

Thus, write the density function as
fn+1(k) = NnSn

where Nn is the first term that is of order n−1/2 and Sn is the second term with exponential dependence on n.
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(Sketch of the) Proof of Gaussianity

Model the distribution as centered around the mean by the change of variable k = µ + xσ where µ and σ are the
mean and the standard deviation, and depend on n. The discrete weights of fn(k) will become continuous. This
requires us to use the change of variable formula to compensate for the change of scales:

fn(k)dk = fn(µ + σx)σdx.

Using the change of variable, we can write Nn as

Nn =
1

√
2π

√
n − k

k(n − 2k)

ϕ
√

5

=
1

√
2πn

√
1 − k/n

(k/n)(1 − 2k/n)

√
5

ϕ

=
1

√
2πn

√
1 − (µ + σx)/n

((µ + σx)/n)(1 − 2(µ + σx)/n)

√
5

ϕ

=
1

√
2πn

√
1 − C − y

(C + y)(1 − 2C − 2y)

√
5

ϕ

where C = µ/n ≈ 1/(ϕ + 2) (note that ϕ2 = ϕ + 1) and y = σx/n. But for large n, the y term vanishes since
σ ∼

√
n and thus y ∼ n−1/2. Thus

Nn ≈
1

√
2πn

√
1 − C

C(1 − 2C)

√
5

ϕ
=

1
√

2πn

√
(ϕ + 1)(ϕ + 2)

ϕ

√
5

ϕ
=

1
√

2πn

√
5(ϕ + 2)

ϕ
=

1
√

2πσ2

since σ2 = n ϕ
5(ϕ+2) .
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(Sketch of the) Proof of Gaussianity

For the second term Sn , take the logarithm and once again change variables by k = µ + xσ,

log(Sn) = log

(
ϕ
−n (n − k)(n−k)

kk (n − 2k)(n−2k)

)
= −n log(ϕ) + (n − k) log(n − k) − (k) log(k)

− (n − 2k) log(n − 2k)

= −n log(ϕ) + (n − (µ + xσ)) log(n − (µ + xσ))

− (µ + xσ) log(µ + xσ)

− (n − 2(µ + xσ)) log(n − 2(µ + xσ))

= −n log(ϕ)

+ (n − (µ + xσ))

(
log(n − µ) + log

(
1 −

xσ

n − µ

))
− (µ + xσ)

(
log(µ) + log

(
1 +

xσ

µ

))
− (n − 2(µ + xσ))

(
log(n − 2µ) + log

(
1 −

xσ

n − 2µ

))
= −n log(ϕ)

+ (n − (µ + xσ))

(
log

( n

µ
− 1
)

+ log

(
1 −

xσ

n − µ

))
− (µ + xσ) log

(
1 +

xσ

µ

)
− (n − 2(µ + xσ))

(
log

( n

µ
− 2
)

+ log

(
1 −

xσ

n − 2µ

))
.
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(Sketch of the) Proof of Gaussianity

Note that, since n/µ = ϕ + 2 for large n, the constant terms vanish. We have log(Sn)

= −n log(ϕ) + (n − k) log
( n

µ
− 1
)

− (n − 2k) log
( n

µ
− 2
)

+ (n − (µ + xσ)) log

(
1 −

xσ

n − µ

)
− (µ + xσ) log

(
1 +

xσ

µ

)
− (n − 2(µ + xσ)) log

(
1 −

xσ

n − 2µ

)
= −n log(ϕ) + (n − k) log (ϕ + 1) − (n − 2k) log (ϕ) + (n − (µ + xσ)) log

(
1 −

xσ

n − µ

)
− (µ + xσ) log

(
1 +

xσ

µ

)
− (n − 2(µ + xσ)) log

(
1 −

xσ

n − 2µ

)
= n(− log(ϕ) + log

(
ϕ

2
)
− log (ϕ)) + k(log(ϕ2) + 2 log(ϕ)) + (n − (µ + xσ)) log

(
1 −

xσ

n − µ

)
− (µ + xσ) log

(
1 +

xσ

µ

)
− (n − 2(µ + xσ)) log

(
1 − 2

xσ

n − 2µ

)
= (n − (µ + xσ)) log

(
1 −

xσ

n − µ

)
− (µ + xσ) log

(
1 +

xσ

µ

)
− (n − 2(µ + xσ)) log

(
1 − 2

xσ

n − 2µ

)
.
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(Sketch of the) Proof of Gaussianity

Finally, we expand the logarithms and collect powers of xσ/n.

log(Sn) = (n − (µ + xσ))

(
−

xσ

n − µ
−

1

2

( xσ

n − µ

)2
+ . . .

)

− (µ + xσ)

(
xσ

µ
−

1

2

( xσ

µ

)2
+ . . .

)

− (n − 2(µ + xσ))

(
−2

xσ

n − 2µ
−

1

2

(
2

xσ

n − 2µ

)2
+ . . .

)

= (n − (µ + xσ))

−
xσ

n (ϕ+1)
(ϕ+2)

−
1

2

 xσ

n (ϕ+1)
(ϕ+2)

2

+ . . .



− (µ + xσ)

 xσ
n

ϕ+2

−
1

2

 xσ
n

ϕ+2

2

+ . . .


− (n − 2(µ + xσ))

−
2xσ

n ϕ
ϕ+2

−
1

2

 2xσ

n ϕ
ϕ+2

2

+ . . .


=

xσ

n
n

(
−
(

1 −
1

ϕ + 2

)
(ϕ + 2)

(ϕ + 1)
− 1 + 2

(
1 −

2

ϕ + 2

)
ϕ + 2

ϕ

)

−
1

2

( xσ

n

)2
n
(
−2

ϕ + 2

ϕ + 1
+

ϕ + 2

ϕ + 1
+ 2(ϕ + 2) − (ϕ + 2) + 4

ϕ + 2

ϕ

)
+O

(
n (xσ/n)3

)
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(Sketch of the) Proof of Gaussianity

log(Sn) =
xσ

n
n
(
−

ϕ + 1

ϕ + 2

ϕ + 2

ϕ + 1
− 1 + 2

ϕ

ϕ + 2

ϕ + 2

ϕ

)

−
1

2

( xσ

n

)2
n(ϕ + 2)

(
−

1

ϕ + 1
+ 1 +

4

ϕ

)

+O

(
n
( xσ

n

)3
)

= −
1

2

(xσ)2

n
(ϕ + 2)

(
3ϕ + 4

ϕ(ϕ + 1)
+ 1

)
+ O

(
n
( xσ

n

)3
)

= −
1

2

(xσ)2

n
(ϕ + 2)

(
3ϕ + 4 + 2ϕ + 1

ϕ(ϕ + 1)

)
+ O

(
n
( xσ

n

)3
)

= −
1

2
x2

σ
2
( 5(ϕ + 2)

ϕn

)
+ O

(
n (xσ/n)3

)
.
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(Sketch of the) Proof of Gaussianity

But recall that

σ
2 =

ϕn

5(ϕ + 2)
.

Also, since σ ∼ n−1/2, n
(

xσ
n

)3
∼ n−1/2. So for large n, the O

(
n
(

xσ
n

)3
)

term vanishes. Thus we are left

with

log Sn = −
1

2
x2

Sn = e−
1
2 x2

.

Hence, as n gets large, the density converges to the normal distribution:

fn(k)dk = NnSndk

=
1

√
2πσ2

e−
1
2 x2

σdx

=
1

√
2π

e−
1
2 x2

dx.

□
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