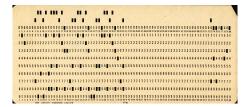
Inrtoduwtion to Erorr Dwtetcion and Erorr Czrrectmon

Setevn .J Mzlwer

sjm1@williams.edu

http://www.williams.edu/Mathematics/sjmiller



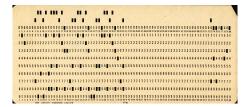
Gzoanga Univrseity, Setpmebre 52, 2025

Introduction to Error Detection and Error Correction

Steven J. Miller

sjm1@williams.edu

http://www.williams.edu/Mathematics/sjmiller



Gonzaga University, September 25, 2025

Use math from classes (number theory, group) theory).

- Discuss challenges in real world applications.
- Creating research questions.

Wason 4 Card Test

000000

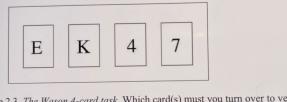
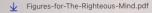


Figure 2.3. The Wason 4-card task. Which card(s) must you turn over to verify the rule that if a card shows a vowel on one face, then it has an even number on the other?



Cryptography Basics

Introduction

Enough to send 0's and 1's:

$$\diamond$$
 A = 00000, B = 00001, C = 00010, ...
Z = 11010, 0 = 11011, 1 = 11100, ...

Two major issues:

- Transmit message so only desired recipient can read.
- Ensure correct message received.

Enough to send 0's and 1's:

$$\diamond$$
 A = 00000, B = 00001, C = 00010, ...
Z = 11010, 0 = 11011, 1 = 11100, ...

Two major issues:

- Transmit message so only desired recipient can read.
- Ensure correct message received.

Bit Error Dangers: RSA

If receive wrong bit in RSA, message completely different.

Secret: p = 15217, q = 17569, d = 80998505.

Bit Error Dangers: RSA

Check Diait

If receive wrong bit in RSA, message completely different.

Secret: p = 15217, q = 17569, d = 80998505. Public: N = pq = 267347473, e = 3141593.

If receive wrong bit in RSA, message completely different.

Secret: p = 15217, q = 17569, d = 80998505.

Public: N = pq = 267347473, e = 3141593.

Note: $ed = 1 \mod (p-1)(q-1)$.

Check Diait

Introduction

If receive wrong bit in RSA, message completely different.

Secret: p = 15217, q = 17569, d = 80998505.

Public: N = pq = 267347473, e = 3141593.

Note: $ed = 1 \mod (p - 1)(q - 1)$.

Message: M = 195632041, send $M^e \mod N$ or

X = 121209473

Decrypt: $X^d \mod N$ or 195632041.

Bit Error Dangers: RSA

If receive wrong bit in RSA, message completely different.

Secret: p = 15217, q = 17569, d = 80998505.

Public: N = pq = 267347473, e = 3141593.

Note: $ed = 1 \mod (p - 1)(q - 1)$.

Message: M = 195632041, send $M^e \mod N$ or

X = 121209473.

Decrypt: $X^d \mod N$ or 195632041.

Imagine receive X = 121209483.

Message 195632041

Decrypts 121141028, only two digits are the same!

Outline

Introduction

Will concentrate on Error Detection and Correction.

- How do you detect an error?
- How do you fix an error?

Check Digit

If easy to read again, just need to detect error.

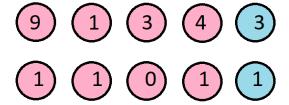
Check Digit

Introduction

If easy to read again, just need to detect error.

Think scanner at a supermarket....

Think scanner at a supermarket....



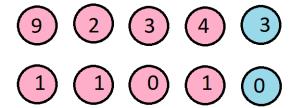
Last digit makes sum 0 mod 10 (or 0 mod 2).

Check Digit

Introduction

If easy to read again, just need to detect error.

Think scanner at a supermarket....



Last digit makes sum 0 mod 10 (or 0 mod 2).

Next Steps

Introduction

More involved methods detecting more: The Verhoeff algorithm catches single digit errors and flipping adjacent digits: https:

```
//en.wikipedia.org/wiki/Verhoeff algorithm.
```

Want to detect where the error is:

Check Diait

Introduction

More involved methods detecting more: The Verhoeff algorithm catches single digit errors and flipping adjacent digits: https:

//en.wikipedia.org/wiki/Verhoeff algorithm.

Want to detect where the error is: Tell me twice!

Tell Me Three Times

Tell Me Three Times detects and *probably* corrects (need probability of an error small).

Tell Me Three Times

Tell Me Three Times detects and *probably* corrects (need probability of an error small).



```
Crucially uses binary outcome: https:
//www.youtube.com/watch?v=RerJWv5vwxc and
https:
//www.youtube.com/watch?v=vWCGs27_xPI.
```

What is the problem with this method?

Tell Me Three Times

Introduction

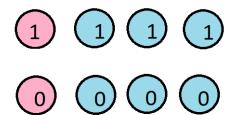
```
Crucially uses binary outcome: https:
//www.youtube.com/watch?v=RerJWv5vwxc and
https:
//www.youtube.com/watch?v=vWCGs27_xPI.
```

What is the problem with this method? Only one-third is information, if two errors is wrong!

What else can we do? Is it better? With respect to what metric?

Tell Me n Times

Introduction



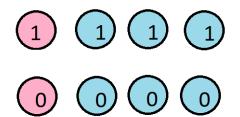
Tell Me Four Times: only 25% of message is data (general case just 1/n).

Want to correct errors but still send a lot of information.

What's a success?

Tell Me n Times

Introduction



Tell Me Four Times: only 25% of message is data (general case just 1/n).

Want to correct errors but still send a lot of information.

What's a success? Greater than 50% is data.

Tell Me Three Times (revisited)

Introduction

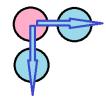
Let's revisit Tell Me Three Times:

How should we do two data points? How many check digits do you expect?

Tell Me Three Times (revisited)

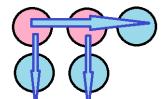
Introduction

Let's revisit Tell Me Three Times:



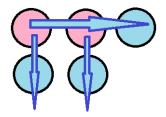
Appendix

How should we do two data points? How many check digits do you expect?



Two of Five

This is better: 2 of 5 or 40% of message is data!

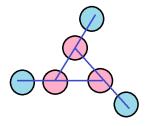


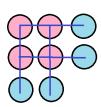
Unfortunately still below 50%.

How many data points should we try next: 3, 4, 5, ...? Suggestions?

Three and Four Bits of Data

Introduction

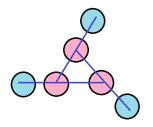


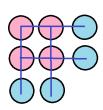


Which is better?

Three and Four Bits of Data

Introduction



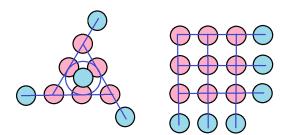


Which is better? Both 50% but fewer needed with triangle.

What should we do next: 5, 6, 7, 8, 9, ...?

Triangle and Square Numbers

$$T_n = n(n+1)/2$$
 and $S_n = n^2$.

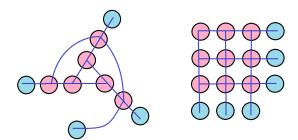


Both give 60% of the message is data. Can we continue?

Data on exactly two lines, check bits on one.

Triangle and Square Numbers

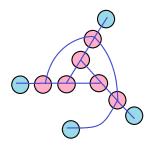
$$T_n = n(n+1)/2$$
 and $S_n = n^2$.



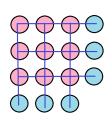
Both give 60% of the message is data. Can we continue?

Data on exactly two lines, check bits on one.

Triangle and Square Systems



Majority Rules



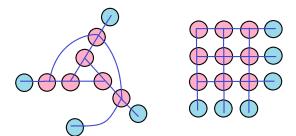
Triangle: $T_n = n(n+1)/2$ data, n+1 check, so (n+2)(n+1)/2 bits total and n/(n+2) information.

Square: $S_n = n^2$ data, 2n check, so $n^2 + 2n$ bits total and n/(n+2) information.

Appendix

Triangle and Square Systems

Introduction



Can get as high a percentage information as desire, at a cost of longer string (and thus more likely to have two errors).

Introduction

What is a better geometry to use?

 $2\times2\times2$: 8 data points, 6 check bits (for planes): info is $8/14\approx57\%.$

 $3\times3\times3$: 27 data points, 9 check bits (for planes): info is 27/36=75%.

For 6×6 data square info is 36/48 = 75%, for T_7 is $28/36 \approx 77.78\%$.

 $4\times4\times4$: 64 data points, 12 check bits: info is $64/76\approx84.21\%.$

For 9×9 data square info is $81/99 \approx 81.82\%$.

For T_{11} triangle: 66 data points, info is $66/79 \approx 83.54\%$.

Introduction

 $n \times n \times n$: n^3 data points, 3n check bits: info is $n^2/(n^2+3)$.

Better percentage is information for large n; how should we generalize?

Introduction

What is a better geometry to use?

Other Approaches

Introduction

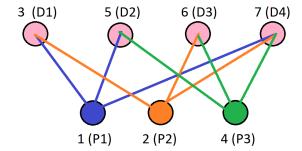
Hamming Codes: Can send a message with 7 bits, 4 are data, and can correct one error:

https://en.wikipedia.org/wiki/Hamming code.

Extended binary Golay code: Can send a message with 24 bits, 12 are data, can correct any 3-bit errors and can detect some other errors: https:

//en.wikipedia.org/wiki/Binary Golay code.

Introduction



- If no errors, all correct.
- If only one color error, is P1, P2 or P3.
- If just blue and orange is D1.
- If just blue and green is D2.
- If just orange and green is D3
- If all wrong is D4.

Introduction

Say want to transmit around $2^{12} = 4096$ bits of data.

Can do a square and cube; the Hamming code will do $2^{12} - 1 - 12$.

- Square: 4096 out of 4224 data: 96.9697%.
- Cube: 4096 out of 4144 data: 98.8417%.
- Hamming: 4083 out of 4095 data: 99.707%.

All converge to 100%, difference narrows as size increases.

Challenge Problems

Introduction

Even if these are known, value in trying to solve yourself.

- For a given n, what is the fewest number of check digits one needs to successfully transmit *n* data digits and be able to correct up to one error?
- Now assume there can be up to two errors....
- Now assume there can be up to k errors....

Happy to chat: sim1@williams.edu.

Interleaving

Introduction

Say transmit

but a localized burst of noise, receive

Interleaving

Introduction

Transmit every fourth:

- \bullet 01000000001 \mapsto 0000000001
- 10111111111 \mapsto 11111111111
- 11000000001 → 11000000001
- 10111111110 \mapsto 11111111110

Steganography

Introduction

Can you see the cat in the tree?

Introduction

Transmitting Images

Introduction

How to transmit an image?

- Have an $L \times W$ grid with LW pixels.
- Each pixel a triple, maybe (Red, Green, Blue).
- Often each value in $\{0, 1, 2, 3, ..., 2^n 1\}$.
- n = 8 gives 256 choices for each, or 16,777,216 possibilities.

Steganography

Introduction

Steganography: Concealing a message in another message: https:

//en.wikipedia.org/wiki/Steganography.

Steganography

Steganography: Concealing a message in another message: https:

//en.wikipedia.org/wiki/Steganography.

Take one of the colors, say red, a number from 0 to 255.

Write in binary: $r_7 2^7 + r_6 2^6 + \cdots + r_1 2 + r_0$.

If change just the last or last two digits, very minor change to image.

Can hide an image in another.

If just do last, can hide a black and white image easily....

Can you see the cat in the tree?

Introduction

Can you see the cat in the tree?

Bonus: 0's, 1's and Cookie Monster

Introduction

Pre-requisites: Combinatorics Review

- n!: number of ways to order n people, order matters.
- $\frac{n!}{k!(n-k)!} = nCk = \binom{n}{k}$: number of ways to choose kfrom *n*, order doesn't matter.
- Stirling's Formula: $n! \approx n^n e^{-n} \sqrt{2\pi n}$.

Introduction

Introduction

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$;

First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Introduction

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$;

First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Introduction

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: 51 = ?

Introduction

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51 = 34 + 17 = F_8 + 17$.

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51 = 34 + 13 + 4 = F_8 + F_6 + 4$.

Introduction

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:
$$51 = 34 + 13 + 3 + 1 = F_8 + F_6 + F_3 + 1$$
.

Introduction

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:
$$51 = 34 + 13 + 3 + 1 = F_8 + F_6 + F_3 + F_1$$
.

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51 = 34 + 13 + 3 + 1 = F_8 + F_6 + F_3 + F_1$. Example: $83 = 55 + 21 + 5 + 2 = F_9 + F_7 + F_4 + F_2$.

Observe: 51 miles \approx 82.1 kilometers. Observe: Write 51 as 101001010 $_{\text{Fib}}$.

Introduction

Central Limit Type Theorem

As $n \to \infty$ distribution of number of summands in Zeckendorf decomposition for $m \in [F_n, F_{n+1})$ is Gaussian (normal).

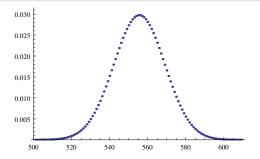


Figure: Number of summands in $[F_{2010}, F_{2011})$; $F_{2010} \approx 10^{420}$.

Appendix

Introduction

$$m = \sum_{j=1}^{k(m)=n} F_{i_j}, \quad \nu_{m;n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta(x-(i_j-i_{j-1})).$$

Theorem (Zeckendorf Gap Distribution)

Gap measures $\nu_{m,n}$ converge almost surely to average gap measure where $P(k) = 1/\phi^k$ for k > 2.

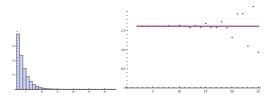


Figure: Distribution of gaps in [F_{1000} , F_{1001}); $F_{2010} \approx 10^{208}$

New Results: Longest Gap

Introduction

Theorem (Longest Gap)

As $n \to \infty$, the probability that $m \in [F_n, F_{n+1})$ has longest gap less than or equal to f(n) converges to

$$\operatorname{Prob}\left(L_n(m) \leq f(n)\right) \; \approx \; e^{-e^{\log n - f(n)/\log \phi}}$$

Immediate Corollary: If f(n) grows **slower** or **faster** than $\log n / \log \phi$, then $\text{Prob}(L_n(m) < f(n))$ goes to **0** or **1**, respectively.

Preliminaries: The Cookie Problem

The Cookie Problem

Introduction

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

The Cookie Problem

Introduction

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into P sets.

Bonus: 0's, 1's and CM

Preliminaries: The Cookie Problem

The Cookie Problem

Introduction

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into *P* sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

Appendix

Preliminaries: The Cookie Problem

The Cookie Problem

Introduction

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into *P* sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

Preliminaries: The Cookie Problem

The Cookie Problem

Introduction

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{p-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into P sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i > 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{the Zeckendorf} \}$ decomposition of *N* has exactly *k* summands}.

Bonus: 0's, 1's and CM

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i > 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf } \}$ decomposition of *N* has exactly *k* summands}.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n . $N = F_{i_1} + F_{i_2} + \cdots + F_{i_{k-1}} + F_{i_k}$ $1 < i_1 < i_2 < \cdots < i_{k-1} < i_k = n, i_i - i_{i-1} > 2.$

Introduction

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i > 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf } \}$ decomposition of *N* has exactly *k* summands}.

For
$$N \in [F_n, F_{n+1})$$
, the largest summand is F_n .

$$N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n,$$

$$1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2.$$

$$d_1 := i_1 - 1, d_j := i_j - i_{j-1} - 2 (j > 1).$$

$$d_1 + d_2 + \dots + d_k = n - 2k + 1, d_j \ge 0.$$

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i > 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{the Zeckendorf} \}$ decomposition of *N* has exactly *k* summands}.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n . $N = F_{i_1} + F_{i_2} + \cdots + F_{i_{k-1}} + F_{i_k}$ $1 < i_1 < i_2 < \cdots < i_{k-1} < i_k = n, i_i - i_{i-1} > 2.$ $d_1 := i_1 - 1, d_i := i_i - i_{i-1} - 2 (i > 1).$ $d_1 + d_2 + \cdots + d_k = n - 2k + 1, d_i > 0.$ Cookie counting $\Rightarrow p_{n,k} = \binom{n-2k+1+k-1}{k-1} = \binom{n-k}{k-1}$.

Thank You! sjm1@williams.edu

Introduction

Thank you!

Appendix: Gaussian Behavior

Introduction

Generalizing Lekkerkerker: Erdos-Kac type result

Theorem (KKMW 2010)

As $n \to \infty$, the distribution of the number of summands in Zeckendorf's Theorem is a Gaussian.

Sketch of proof: Use Stirling's formula,

$$n! \approx n^n e^{-n} \sqrt{2\pi n}$$

to approximates binomial coefficients, after a few pages of algebra find the probabilities are approximately Gaussian.

The probability density for the number of Fibonacci numbers that add up to an integer in $[F_n, F_{n+1})$ is $f_n(k) = \binom{n-1-k}{k}/F_{n-1}$. Consider the density for the n+1 case. Then we have, by Stirling

$$f_{n+1}(k) = {n-k \choose k} \frac{1}{F_n}$$

$$= \frac{(n-k)!}{(n-2k)!k!} \frac{1}{F_n} = \frac{1}{\sqrt{2\pi}} \frac{(n-k)^{n-k+\frac{1}{2}}}{k^{(k+\frac{1}{2})}(n-2k)^{n-2k+\frac{1}{2}}} \frac{1}{F_n}$$

plus a lower order correction term.

Also we can write $F_n = \frac{1}{\sqrt{5}}\phi^{n+1} = \frac{\phi}{\sqrt{5}}\phi^n$ for large n, where ϕ is the golden ratio (we are using relabeled Fibonacci numbers where $1 = F_1$ occurs once to help dealing with uniqueness and $F_2 = 2$). We can now split the

terms that exponentially depend on n.

$$f_{n+1}(k) = \left(\frac{1}{\sqrt{2\pi}}\sqrt{\frac{(n-k)}{k(n-2k)}}\frac{\sqrt{5}}{\phi}\right)\left(\phi^{-n}\frac{(n-k)^{n-k}}{k^k(n-2k)^{n-2k}}\right).$$

Define

$$N_n = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{(n-k)}{k(n-2k)}} \frac{\sqrt{5}}{\phi}, \quad S_n = \phi^{-n} \frac{(n-k)^{n-k}}{k^k(n-2k)^{n-2k}}.$$

Thus, write the density function as

$$f_{n+1}(k) = N_n S_n$$

where N_n is the first term that is of order $n^{-1/2}$ and S_n is the second term with exponential dependence on n.

Model the distribution as centered around the mean by the change of variable $k=\mu+x\sigma$ where μ and σ are the mean and the standard deviation, and depend on n. The discrete weights of $f_n(k)$ will become continuous. This requires us to use the change of variable formula to compensate for the change of scales:

$$f_n(k)dk = f_n(\mu + \sigma x)\sigma dx.$$

Using the change of variable, we can write N_n as

$$\begin{split} N_{n} &= \frac{1}{\sqrt{2\pi}} \sqrt{\frac{n-k}{k(n-2k)}} \frac{\phi}{\sqrt{5}} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-k/n}{(k/n)(1-2k/n)}} \frac{\sqrt{5}}{\phi} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-(\mu+\sigma x)/n}{((\mu+\sigma x)/n)(1-2(\mu+\sigma x)/n)}} \frac{\sqrt{5}}{\phi} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-C-y}{(C+y)(1-2C-2y)}} \frac{\sqrt{5}}{\phi} \end{split}$$

where $C=\mu/n\approx 1/(\phi+2)$ (note that $\phi^2=\phi+1$) and $y=\sigma x/n$. But for large n, the y term vanishes since $\sigma\sim\sqrt{n}$ and thus $y\sim n^{-1/2}$. Thus

$$N_n \approx \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-C}{C(1-2C)}} \frac{\sqrt{5}}{\phi} = \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{(\phi+1)(\phi+2)}{\phi}} \frac{\sqrt{5}}{\phi} = \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{5(\phi+2)}{\phi}} = \frac{1}{\sqrt{2\pi\sigma^2}} \sqrt{\frac{1-C}{\phi}} = \frac{1-C}{\phi} =$$

since $\sigma^2 = n \frac{\phi}{5(\phi+2)}$.

For the second term S_0 , take the logarithm and once again change variables by $k = \mu + x\sigma$,

$$\log(S_n) = \log\left(\phi^{-n} \frac{(n-k)^{(n-k)}}{k^k(n-2k)^{(n-2k)}}\right)$$

$$= -n\log(\phi) + (n-k)\log(n-k) - (k)\log(k)$$

$$- (n-2k)\log(n-2k)$$

$$= -n\log(\phi) + (n-(\mu+x\sigma))\log(n-(\mu+x\sigma))$$

$$- (\mu+x\sigma)\log(\mu+x\sigma)$$

$$- (n-2(\mu+x\sigma))\log(n-2(\mu+x\sigma))$$

$$= -n\log(\phi)$$

$$+ (n-(\mu+x\sigma))\left(\log(n-\mu) + \log\left(1-\frac{x\sigma}{n-\mu}\right)\right)$$

$$- (\mu+x\sigma)\left(\log(\mu) + \log\left(1+\frac{x\sigma}{\mu}\right)\right)$$

$$- (n-2(\mu+x\sigma))\left(\log(n-2\mu) + \log\left(1-\frac{x\sigma}{n-2\mu}\right)\right)$$

$$= -n\log(\phi)$$

$$+ (n-(\mu+x\sigma))\left(\log\left(\frac{n}{\mu}-1\right) + \log\left(1-\frac{x\sigma}{n-\mu}\right)\right)$$

$$- (\mu+x\sigma)\log\left(1+\frac{x\sigma}{\mu}\right)$$

$$- (\mu+x\sigma)\log\left(1+\frac{x\sigma}{\mu}\right)$$

$$- (\mu+x\sigma)\log\left(1+\frac{x\sigma}{\mu}\right)$$

$$- (n-2(\mu+x\sigma))\left(\log\left(\frac{n}{\mu}-1\right) + \log\left(1-\frac{x\sigma}{n-\mu}\right)\right)$$

Note that, since $n/\mu = \phi + 2$ for large n, the constant terms vanish. We have $\log(S_n)$

$$= -n\log(\phi) + (n-k)\log\left(\frac{n}{\mu} - 1\right) - (n-2k)\log\left(\frac{n}{\mu} - 2\right) + (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right)$$

$$- (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-2\mu}\right)$$

$$= -n\log(\phi) + (n-k)\log(\phi+1) - (n-2k)\log(\phi) + (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right)$$

$$- (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-2\mu}\right)$$

$$= n(-\log(\phi) + \log\left(\phi^2\right) - \log(\phi)) + k(\log(\phi^2) + 2\log(\phi)) + (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right)$$

$$- (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1 - 2\frac{x\sigma}{n-2\mu}\right)$$

$$= (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right) - (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right)$$

$$- (n-2(\mu+x\sigma))\log\left(1 - 2\frac{x\sigma}{n-2\mu}\right) .$$

Finally, we expand the logarithms and collect powers of $x\sigma/n$.

$$\log(S_n) = (n - (\mu + x\sigma)) \left(-\frac{x\sigma}{n - \mu} - \frac{1}{2} \left(\frac{x\sigma}{n - \mu} \right)^2 + \dots \right) \\ - (\mu + x\sigma) \left(\frac{x\sigma}{\mu} - \frac{1}{2} \left(\frac{x\sigma}{\mu} \right)^2 + \dots \right) \\ - (n - 2(\mu + x\sigma)) \left(-2 \frac{x\sigma}{n - 2\mu} - \frac{1}{2} \left(2 \frac{x\sigma}{n - 2\mu} \right)^2 + \dots \right) \\ = (n - (\mu + x\sigma)) \left(-\frac{x\sigma}{n \frac{(\phi+1)}{(\phi+2)}} - \frac{1}{2} \left(\frac{x\sigma}{n \frac{(\phi+1)}{(\phi+2)}} \right)^2 + \dots \right) \\ - (\mu + x\sigma) \left(\frac{x\sigma}{\frac{n}{\phi+2}} - \frac{1}{2} \left(\frac{x\sigma}{\frac{n}{\phi+2}} \right)^2 + \dots \right) \\ - (n - 2(\mu + x\sigma)) \left(-\frac{2x\sigma}{n \frac{\phi}{\phi+2}} - \frac{1}{2} \left(\frac{2x\sigma}{n \frac{\phi}{\phi+2}} \right)^2 + \dots \right) \\ = \frac{x\sigma}{n} n \left(-\left(1 - \frac{1}{\phi+2} \right) \frac{(\phi+2)}{(\phi+1)} - 1 + 2\left(1 - \frac{2}{\phi+2} \right) \frac{\phi+2}{\phi} \right) \\ - \frac{1}{2} \left(\frac{x\sigma}{n} \right)^2 n \left(-2 \frac{\phi+2}{\phi+1} + \frac{\phi+2}{\phi+1} + 2(\phi+2) - (\phi+2) + 4 \frac{\phi+2}{\phi} \right) \\ + O\left(n(x\sigma/n)^3 \right)$$

$$\log(S_n) = \frac{x\sigma}{n} n \left(-\frac{\phi+1}{\phi+2} \frac{\phi+2}{\phi+1} - 1 + 2 \frac{\phi}{\phi+2} \frac{\phi+2}{\phi} \right)$$

$$-\frac{1}{2} \left(\frac{x\sigma}{n} \right)^2 n(\phi+2) \left(-\frac{1}{\phi+1} + 1 + \frac{4}{\phi} \right)$$

$$+ O\left(n \left(\frac{x\sigma}{n} \right)^3 \right)$$

$$= -\frac{1}{2} \frac{(x\sigma)^2}{n} (\phi+2) \left(\frac{3\phi+4}{\phi(\phi+1)} + 1 \right) + O\left(n \left(\frac{x\sigma}{n} \right)^3 \right)$$

$$= -\frac{1}{2} \frac{(x\sigma)^2}{n} (\phi+2) \left(\frac{3\phi+4+2\phi+1}{\phi(\phi+1)} \right) + O\left(n \left(\frac{x\sigma}{n} \right)^3 \right)$$

$$= -\frac{1}{2} x^2 \sigma^2 \left(\frac{5(\phi+2)}{\phi n} \right) + O\left(n(x\sigma/n)^3 \right).$$

But recall that

Introduction

٩7

$$\sigma^2 = \frac{\phi n}{5(\phi + 2)}.$$

Also, since $\sigma \sim n^{-1/2}$, $n\left(\frac{x\sigma}{n}\right)^3 \sim n^{-1/2}$. So for large n, the $O\left(n\left(\frac{x\sigma}{n}\right)^3\right)$ term vanishes. Thus we are left with

$$\log S_n = -\frac{1}{2}x^2$$

$$S_n = e^{-\frac{1}{2}x^2}.$$

Hence, as *n* gets large, the density converges to the normal distribution:

$$f_n(k)dk = N_n S_n dk$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}x^2} \sigma dx$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx.$$