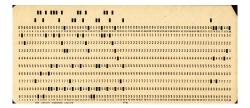
# Inrtoduwtion to Erorr Dwtetcion and Erorr Czrrectmon

#### Setevn .J Mzlwer

Introduction

sjm1@williams.edu

http://www.williams.edu/Mathematics/sjmiller



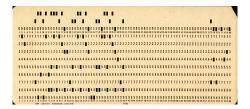
MothCulb, Univrseity of Mihciagn, Otcober 1, 2012

## Introduction to Error Detection and Error Correction

#### Steven J. Miller

sjm1@williams.edu

http://www.williams.edu/Mathematics/sjmiller



Mathclub, University of Michigan, October 1, 2021

## Enough to send 0's and 1's:

$$\diamond$$
 A = 00000, B = 00001, C = 00010, ...  
Z = 11010, 0 = 11011, 1 = 11100, ...

## Two major issues:

- Transmit message so only desired recipient can read.
- Ensure correct message received.

## Enough to send 0's and 1's:

$$\diamond$$
 A = 00000, B = 00001, C = 00010, ...  
Z = 11010, 0 = 11011, 1 = 11100, ...

## Two major issues:

- Transmit message so only desired recipient can read.
- Ensure correct message received.

If receive wrong bit in RSA, message completely different.

## Bit Error Dangers: RSA

Introduction

If receive wrong bit in RSA, message completely different.

Secret: p = 15217, q = 17569, d = 80998505.

Public: N = pq = 267347473, e = 3141593.

Note:  $ed = 1 \mod (p-1)(q-1)$ .

Message: M = 195632041, send  $M^e \mod N$  or

X = 121209473

Decrypt:  $X^d \mod N$  or 195632041.

## Bit Error Dangers: RSA

If receive wrong bit in RSA, message completely different.

Secret: p = 15217, q = 17569, d = 80998505.

Public: N = pq = 267347473, e = 3141593.

Note:  $ed = 1 \mod (p - 1)(q - 1)$ .

Message: M = 195632041, send  $M^e \mod N$  or

X = 121209473

Decrypt: X<sup>d</sup> mod N or 195632041.

Imagine receive X = 121209483.

Message 195632041

Decrypts 121141028, only two digits are the same!

#### **Outline**

Introduction

Will concentrate on Error Detection and Correction.

- Detection: Check Digit
- Correction: Majority Rules and Generalization

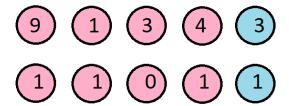
If easy to read again, just need to detect error.

If easy to read again, just need to detect error.

Think scanner at a supermarket....

If easy to read again, just need to detect error.

Think scanner at a supermarket....

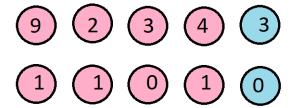


Last digit makes sum 0 mod 10 (or 0 mod 2).

Introduction

If easy to read again, just need to detect error.

Think scanner at a supermarket....



Last digit makes sum 0 mod 10 (or 0 mod 2).

More involved methods detecting more: The Verhoeff algorithm catches single digit errors and flipping adjacent digits: https:

//en.wikipedia.org/wiki/Verhoeff\_algorithm.

Want to detect where the error is:

## **Next Steps**

More involved methods detecting more: The Verhoeff algorithm catches single digit errors and flipping adjacent digits: https:

//en.wikipedia.org/wiki/Verhoeff algorithm.

Want to detect where the error is: Tell me twice!



Steganography

Majority Rules

#### **Tell Me Three Times**

Introduction

Tell Me Three Times detects and probably corrects (need probability of an error small).









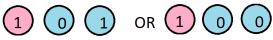




Tell Me Three Times detects and *probably* corrects (need probability of an error small).













#### **Tell Me Three Times**

```
Crucially uses binary outcome: https:
//www.youtube.com/watch?v=RerJWv5vwxc and
https:
//www.youtube.com/watch?v=vWCGs27_xPI.
```

What is the problem with this method?

#### **Tell Me Three Times**

Introduction

```
Crucially uses binary outcome: https:
//www.youtube.com/watch?v=RerJWv5vwxc and
https:
//www.youtube.com/watch?v=vWCGs27 xPI.
```

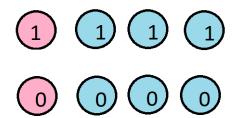
What is the problem with this method? Only one-third is information.

How can we do better?

Steganography

#### Tell Me n Times

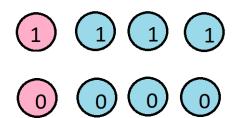
Introduction



Tell Me Four Times: only 25% of message is data (general case just 1/n).

Want to correct errors but still send a lot of information.

What's a success?



Tell Me Four Times: only 25% of message is data (general case just 1/n).

Want to correct errors but still send a lot of information.

What's a success? Greater than 50% is data.

## **Tell Me Three Times (revisited)**

Introduction

Let's revisit Tell Me Three Times:





How should we do two data points? How many check digits do you expect?

## **Tell Me Three Times (revisited)**

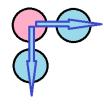
Introduction

Let's revisit Tell Me Three Times:

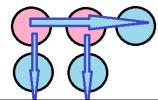






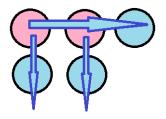


How should we do two data points? How many check digits do you expect?



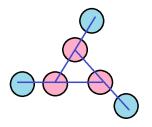
#### Two of Five

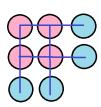
This is better: 2 of 5 or 40% of message is data!



Unfortunately still below 50%.

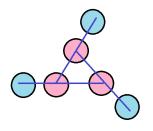
How many data points should we try next: 3, 4, 5, ...?

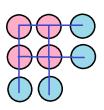




Which is better?

#### Three and Four Bits of Data





Majority Rules

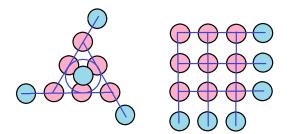
Which is better? Both 50% but fewer needed with triangle.

What should we do next: 5, 6, 7, 8, 9, ...?

## **Triangle and Square Numbers**

Introduction

$$T_n = n(n+1)/2$$
 and  $S_n = n^2$ .



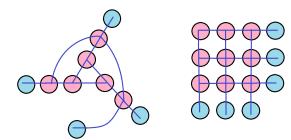
Both give 60% of the message is data. Can we continue?

Data on exactly two lines, check bits on one.

## **Triangle and Square Numbers**

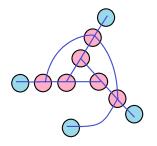
Introduction

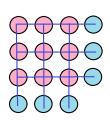
$$T_n = n(n+1)/2$$
 and  $S_n = n^2$ .



Both give 60% of the message is data. Can we continue?

Data on exactly two lines, check bits on one.



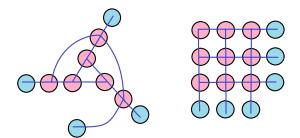


Triangle:  $T_n = n(n+1)/2$  data, n+1 check, so (n+2)(n+1)/2 bits total and n/(n+2) information.

Square:  $S_n = n^2$  data, 2n check, so  $n^2 + 2n$  bits total and n/(n+2) information.

## **Triangle and Square Systems**

Introduction



Can get as high a percentage information as desire, at a cost of longer string (and thus more likely to have two errors).

Majority Rules

### Generalizations

What is a better geometry to use?

#### Generalizations

Introduction



 $2 \times 2 \times 2$ : 8 data points, 6 check bits (for planes): info is  $8/14 \approx 57\%$ .

 $3 \times 3 \times 3$ : 27 data points, 9 check bits (for planes): info is 27/36 = 75%.

For  $6 \times 6$  data square info is 36/48 = 75%, for  $T_7$  is  $28/36 \approx 77.78\%$ .

#### Generalizations

Introduction



 $4 \times 4 \times 4$ : 64 data points, 12 check bits: info is  $64/76 \approx 84.21\%$ .

For  $9 \times 9$  data square info is  $81/99 \approx 81.82\%$ .

For  $T_{11}$  triangle: 66 data points, info is  $66/79 \approx 83.54\%$ .

#### Generalizations



 $n \times n \times n$ :  $n^3$  data points, 3n check bits: info is  $n^2/(n^2+3)$ .

Better percentage is information for large *n*; how should we generalize?

#### Generalizations

# What is a better geometry to use?





#### Other Approaches

Hamming Codes: Can send a message with 7 bits, 4 are data, and can correct one error:

Majority Rules

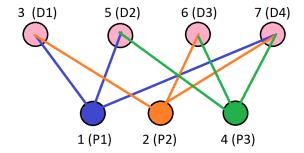
https://en.wikipedia.org/wiki/Hamming code.

Extended binary Golay code: Can send a message with 24 bits, 12 are data, can correct any 3-bit errors and can detect some other errors: https:

//en.wikipedia.org/wiki/Binary Golay code.

### **Manhamming**

Introduction



- If no errors, all correct.
- If only one color error, is P1, P2 or P3.
- If just blue and orange is D1.
- If just blue and green is D2.
- If just orange and green is D3
- If all wrong is D4.

#### Comparison

Introduction

Say want to transmit around  $2^{12} = 4096$  bits of data.

Can do a square and cube; the Hamming code will do  $2^{12} - 1 - 12$ 

- Square: 4096 out of 4224 data: 96.9697%.
- Cube: 4096 out of 4144 data: 98.8417%.
- Hamming: 4083 out of 4095 data: 99.707%.

All converge to 100%, difference narrows as size increases.

#### Interleaving

Say transmit

Majority Rules

but a localized burst of noise, receive

### Transmit every fourth:

- $\bullet$  01000000001  $\mapsto$  00000000001
- 10111111111  $\mapsto$  11111111111
- $11000000001 \mapsto 11000000001$
- 10111111110  $\mapsto$  1111111110

Steganography

Majority Rules

### Can you see the cat in the tree?



#### Transmitting Images

Introduction

#### How to transmit an image?

- Have an  $L \times W$  grid with LW pixels.
- Each pixel a triple, maybe (Red, Green, Blue).
- Often each value in  $\{0, 1, 2, 3, ..., 2^n 1\}$ .
- n = 8 gives 256 choices for each, or 16,777,216 possibilities.

Steganography: Concealing a message in another

message: https:

//en.wikipedia.org/wiki/Steganography.

## Steganography

Introduction

Steganography: Concealing a message in another message: https:

//en.wikipedia.org/wiki/Steganography.

Take one of the colors, say red, a number from 0 to 255.

Write in binary:  $r_7 2^7 + r_6 2^6 + \cdots + r_1 2 + r_0$ .

If change just the last or last two digits, very minor change to image.

Can hide an image in another.

If just do last, can hide a black and white image easily....

## Can you see the cat in the tree?



## Can you see the cat in the tree?



