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Goals

@ Determine correct scale / statistics to study zeros.
@ Discuss the tools / techniques for proofs.

@ Highlight calculations for Dirichlet L-functions
(simplest case).

@ New records for bounding vanishing at central point,
lowest zero in cuspidal families.
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Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at
b, b, tz,....

Question: What rules govern the spacings between the ;?

Examples:
@ Spacings b/w Energy Levels of Nuclei.
@ Spacings b/w Eigenvalues of Matrices.
@ Spacings b/w Primes.
@ Spacings b/w nfa mod 1.
@ Spacings b/w Zeros of L-functions.

L
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Why study zeros of L-functions?

@ Infinitude of primes, primes in arithmetic progression.
@ Chebyshev’s bias: m34(x) > m1.4(x) ‘most’ of the time.
@ Birch and Swinnerton-Dyer conjecture.

e Goldfeld, Gross-Zagier: bound for h(D) from
L-functions with many central point zeros.

e Better estimate for h(D) if a positive percentage of
zeros of ((s) are at most 1/2 — ¢ of the average
spacing to the next zero.
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Distribution of zeros

@ ((8),L(s,x) # 0 for Re(s) = 1: w(x), maq(X).
e GRH: error terms.
@ GSH: Chebyshev’s bias.

@ Analytic rank, adjacent spacings: h(D).

y
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Sketch of proofs

In studying many statistics, often three key steps:
@ Determine correct scale for events.

@ Develop an explicit formula relating what we want to
study to something we understand.

© Use an averaging formula to analyze the quantities
above.

Finding correct statistic can be hard!




Introduction
L]

Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.
Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into
nucleus, see what comes out.

Fundamental Equation:
Hwn = Enwn
H : matrix, entries depend on system

E, : energy levels
1n . energy eigenfunctions
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Origins of Random Matrix Theory

e Statistical Mechanics: for each configuration,
calculate quantity (say pressure).

@ Average over all configurations — most configurations
close to system average.

@ Nuclear physics: choose matrix at random, calculate
eigenvalues, average over matrices (real Symmetric

A = AT, complex Hermitian A’ = A).

10
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Classical Random Matrix Ensembles

ayy a2 a3 - an
iz dx d23 ' 2N T
A = . . = A , aj = djj.
ainy don asn - ann
Fix p, define
Prob(A) = [ nr(ay)
1<i<j<N
This means
Bij
Prob(A: a; € [, i) =[] / p(x;)ax;.
1<i<j<N T X=%

L Want to understand eigenvalues of A.
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Eigenvalue Distribution

d(x — xo) is a unit point mass at xg:
[ f(x)d(x — xo)dx = f(Xo).
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Eigenvalue Distribution

d(x — xo) is a unit point mass at xp:
[ f(x)d(x — xo)dx = f(Xo).

To each A, attach a probability measure:

panlx) = NZ&( 2¢_))
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Eigenvalue Distribution

d(x — xo) is a unit point mass at xp:
[ f(x)d(x — xo)dx = f(Xo).

To each A, attach a probability measure:

pan(x) = N25< 2\/—))

/b () i {)\, : %il € [a, b]}
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Eigenvalue Distribution

d(x — xo) is a unit point mass at xp:
[ f(x)d(x — xo)dx = f(Xo).

To each A, attach a probability measure:

e = i)

VN
N
k" moment = Zf\lﬂ )‘i(A)k _ Trace(Ak)
OkN3z+1 ok NE+T
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Wigner’s Semi-Circle Law

Not most general case, gives flavor.

Wigner’s Semi-Circle Law

N x N real symmetric matrices, entries i.i.d.r.v. from a
fixed p(x) with mean 0, variance 1, and other moments
finite. Then for almost all A, as N — o

v1—x% if x| <1

2
0 otherwise.

pan(x) — {
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SKETCH OF PROOF: Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but it is the
matrix elements that are chosen randomly and
independently.

Eigenvalue Trace Lemma
Let Abe an N x N matrix with eigenvalues \;(A). Then

Trace(A¥) Z Mi(A,

where

N

Trace(A) = Z 23,1,23,2,3 * jyiy -

i1=1 ix=1
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SKETCH OF PROOF: Correct Scale

Trace(A%) = > \(A)%.

By the Central Limit Theorem:

N N
Tl’ace(AZ) = a,/a/, = Zzai ~ N2

i=1 j=1 i=1 j=1
> XA~ NP

Gives NAve()\;(A)?) ~ N2 or Ave(\i(A)) ~ V/N.
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SKETCH OF PROOF: Averaging Formula

Recall k-th moment of 14 n(X) is Trace(AK) /2K Nk/2+1,

Average k-th moment is
Trace(A¥)
2ka/2+1 p aj)aaj.

Proof by method of moments: Two steps

@ Show average of k-th moments converge to moments
of semi-circle as N — oc;

e Control variance (show it tends to zero as N — o).
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Introduction
to L-Functions
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Riemann Zeta Function

Functional Equation:
§(s) = T(3)nic(s) = €1 ).
Riemann Hypothesis (RH):
All non-trivial zeros have Re(s) = %; can write zeros as %+i’y.

Observation: Spacings b/w zeros appear same as b/w

. . . —T
elgenvalues of Complex Hermitian matrices A° = A.
21
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General L-functions

L(s,f) = ia’rsf) — I Lo(sf)™", Re(s)>1.
n=1 p prime

Functional Equation:
A(s, f) = No(s,f)L(s,f) = N1 —s,1).

Generalized Riemann Hypothesis (RH):

- 1 : 1.
All non-trivial zeros have Re(s) = i can write zeros as §+w.

Observation: Spacings b/w zeros appear same as b/w
: . =T
eigenvalues of Complex Hermitian matrices A = A.
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Zeros of ((s) vs GUE

1.0 15 2.0 2.5 3.0

70 million spacings b/w adjacent zeros of ((s), starting at
the 102°'" zero (from Odlyzko).
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Explicit Formula (Contour Integration)




L-Functions
@0

Explicit Formula (Contour Integration)

¢'(s) d
— = —d—logC = ——IogH 1— -

_d _ p=S
= ﬁzpzlogﬁ p

logp - p~° log p
- %:1_—'05:%: e + Good(s).

May the Fourier transform be ¢ = [T o(x)e ™ dx,
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Explicit Formula (Contour Integration)

d 1
(s) = dslog( = ——IogH 1—
d -s
p

logp - p~° |og/0

Contour Integration:

[~ s e ()5
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Explicit Formula (Contour Integration)

logp - p~° log p
_ %:1_—105:2 e + Good(s).

Contour Integration:

_d(s) o s
) o(s)ds vs ;I gp/gb(s)p ds.
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Explicit Formula (Contour Integration)

logp - p~° log p
P P

Contour Integration (see Fourier Transform arising):

C s)ds Vs Zlogp/gzs e 7 'oePgitloer g

Knowledge of zeros glves info on coefficients.
|
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Explicit Formula: Examples

Riemann Zeta Function: Let 3 denote the sum over the
zeros of ((s) in the critical strip, g an even Schwartz

function of compact support and ¢(r f g(u)e™du.
Then
i = 2logp
Z o(7,) = 2¢ (5) - ; ; Wg (klogp)
p =
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Explicit Formula: Examples

Dirichlet L-functions: Let h be an even Schwartz function
and L(s,x) = >_,x(n)/n® a Dirichlet L-function from a
non-trivial character x with conductor m and zeros

p = + iv; if the Generalized Riemann Hypothesis is

true then v € R. Then

Zh( log m/w)) _ /_Zh(y)dy

logp [ logp "\ x(p)
22 iog(m/m)” (ogtory) 57

ogp - o 2 1
) oL
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Explicit Formula: Examples

Cuspidal Newforms: Let F be a family of cupsidal
newforms (say weight k, prime level N and possibly split

by sign) L(s, f) = Zn)\f( )/n°. Then

log R o~ 1 1 .
FOXo(E ) = 00+ o0) - o S P(e)

feF

~( lo 2lo
P(fio) = zA,<p>¢(logg) et
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Measures of Spacings: n-Level Correlations

{a;} increasing sequence, box B  R".

n-level correlation

# (ozh — Q. O — ozjn> € B, ji # jk

[im
N—oco N

(Instead of using a box, can use a smooth test function.)
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Measures of Spacings: n-Level Correlations

{a;} increasing sequence, box B C R".

@ Normalized spacings of ((s) starting at 102°
(Odlyzko).

@ 2 and 3-correlations of ((s) (Montgomery, Hejhal).

© n-level correlations for all automorphic cupsidal
L-functions (Rudnick-Sarnak).

©Q n-level correlations for the classical compact groups
(Katz-Sarnak).

@ Insensitive to any finite set of zeros.
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Measures of Spacings: n-Level Density and Families

o(x) =11, ¢i(x;), ¢i even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

J1se-esdn

distinct
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Measures of Spacings: n-Level Density and Families

o(x) =11, ¢i(x;), ¢i even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Js---dn

distinct

@ Individual zeros contribute in limit.
© Most of contribution is from low zeros.
© Average over similar curves (family).

‘.
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Measures of Spacings: n-Level Density and Families

o(x) =11, ¢i(x;), ¢i even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

J1se-esdn
distinct

@ Individual zeros contribute in limit.
© Most of contribution is from low zeros.
© Average over similar curves (family).

Katz-Sarnak Conjecture

For a ‘nice’ family of L-functions, the n-level density
depends only on a symmetry group attached to the family.
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Normalization of Zeros

Local (hard, use Cs) vs Global (easier, use log C =
| Fnl™" Yo re s, log Cr). Hope: ¢ a good even test function
with compact support, as |F| — oo,

ETPILICI PIPS H¢’<Iong UI)

feFn feFn /1 ,,,,, /n i

— / /¢ Wi.g(7)(X)adx

Katz-Sarnak Conjecture

As C; — oo the behavior of zeros near 1/2 agrees with
N — oo limit of eigenvalues of a classical compact group.

e
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Correspondences

Similarities between L-Functions and Nuclei:

Zeros <+— Energy Levels
Schwartz test function ——  Neutron

Support of test function «+—  Neutron Energy.
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Main Tools

@ Control of conductors: Usually monotone, gives scale
to study low-lying zeros.

@ Explicit Formula: Relates sums over zeros to sums
over primes.

© Averaging Formulas: Orthogonality of characters for
Dirichlet L-functions, Petersson formula for cusp
forms.
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Applications of n-level density

Bounding the order of vanishing at the central point:
Average rank - ¢(0) < [ ¢(x)Wg(r)(x)dx if ¢ non-negative.
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Applications of n-level density

Bounding the order of vanishing at the central point:
Average rank - ¢(0) < [ ¢(x)Wg(r)(x)dx if ¢ non-negative.
Can also use to bound the percentage that vanish to
order r for any r.

Theorem (Miller, Hughes-Miller)

Using n-level arguments, for the family of cuspidal
newforms of prime level N — oo (split or not split by sign),
for any r there is a ¢, such that probability of at least r
zeros at the central point is at most c,/r".

Better results using 2-level than Iwaniec-Luo-Sarnak
using the 1-level for r > 5.
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Example:
Dirichlet L-functions
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Dirichlet Characters (m prime)

(Z/mZ)* is cyclic of order m — 1 with generator g. Let
Cm1 = €¥™/(m=1)_The principal character y, is given by

1 (k,m)=1
X"(k)_{o (k,m) > 1.

The m — 2 primitive characters are determined (by
multiplicativity) by action on g.

As each x : (Z/mZ)* — C*, for each y there exists an ¢
such that x(g) = ¢/ ;. Hence foreach ¢,1 </ < m-2:

(k) = { K

i
Q
PR
3
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Dirichlet L-Functions

Let x be a primitive character mod m. Gauss sum

m—1
c(m, X) — Z X(k)e2”’k/"’,
k=0

L(s.x) = J](1=x(p)p )™
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Explicit Formula

Let ¢ be an even Schwartz function with compact support
(—o,0), let x be a non-trivial primitive Dirichlet character
of conductor m.

o (%)

=

- Z st (g ) x(P) + XNl

it (2t ) (P) + Pl

A




Dirichlet L-fns
[ ]

Expansion

A

1A

{xo0} U {x¢}1<e<m—2 are all the characters mod m.
Consider the family of primitive characters mod a prime m
(m — 2 characters):

/_ " o)y
1 logp ~/ logp 1
- — 2;02 s /W)Gb(log(m /W))[ (0) + (p)]p 2

1 logp - log p 2 2 —1
- = ; > ogm /W)¢(2log(m /W)) [(p) + 2(p)IP

* O<|0g1m>'

Note can pass Character Sum through Test Function.
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Character Sums

) m—=1 k=1(m)
%:X(k) N {0 otherwise.

A7
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Character Sums

) m—=1 k=1(m)
XX: x(k) = {0 otherwise.
For any prime p # m

S (o) - {—1+m—1 p=1(m)

1 otherwise.
XFX0
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Character Sums

jg: -1 k=1(m)
X otherwise.
For any prime p # m

> xp) = {jt”"—t p=1(m)

otherwise.
XFX0

Substitute into

|ng A |ogp _ -
-2 2 2 iog(m/) 9 (iagtmmy IX(R) + X(E)P

Nl =
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First Sum: no contribution if 0 < 2

2 = logp ~/ logp 1
m—2 Z |og(m/7r)¢<|og(m/7r)>p i

2m—1 il log p A( log p >7
m—2 2 log(m/r)" \log(m/r) P

=

BO)




Dirichlet L-fns
[ ]

First Sum: no contribution if 0 < 2

2 = logp ~/ logp 1
m—2 zp: |og(m/7r)¢<|og(m/7r)>p i

2m—1 il log p A( log p >7
m—2 2 log(m/r)" \log(m/r) P

=

;
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First Sum: no contribution if 0 < 2

2 = logp ~/ logp 1
m—2 zp: |og(m/7r)¢<|og(m/7r)>p i

i log p A log p _1
m 2 Z Iog m/m) (Iog(m/ﬂ)p i

< Zp5+ Z p2<<—Zk—1/2+ Zk”z

k=1(m)
p= 1(m k>m-+1

;
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First Sum: no contribution if 0 < 2

2 = logp ~/ logp 1

m—2 zp: |og(m/7r)¢<|og(m/7r)>p i
o~ logp 3 log p _

m 2 Z Iog m/m) (Iog(m/ﬂ)p

< Zp5+ Z p%<<—2k—1/2+ Zk”z

p= 1(m k=1(m)

k>m+1
m? m?
lzk_w N le‘1/2<<lm"/2.
m< m< m

=

;
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;

Second Sum

logp ~/, logp \x%(P)+ X*(p)
m-2 Z Z log(m/) gz5(2|0g(m/7r)> p '

> DEP) + ()] = {Q(m -2) p=+1 (m).

X7X0

Up to o( ) we find that

mo’/2 mcr/2

2m2
m2 > p!

p=+1(m)

me /2 me/2 —

—2Zk1+zk_+2k1 Iogm

k=1(m) k=—1(m)
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Cuspidal Newforms J
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Results from Iwaniec-Luo-Sarnak

@ Orthogonal: Iwaniec-Luo-Sarnak: 1-level density for
holomorphic even weight k cuspidal newforms of
square-free level N (SO(even) and SO(odd) if split by
sign) in (—2,2).

@ Symplectic: lwaniec-Luo-Sarnak: 1-level density for
sym?(f), f holomorphic cuspidal newform.

Will review Orthogonal case and talk about extensions
(joint with Chris Hughes, then much further with SMALL
REUSs).

;
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Modular Form Preliminaries

a b\ ad-bc = 1
o ={(83) “ostw )
f is a weight k holomorphic cuspform of level N if

vy € To(N), f(72) = (cz+ d)f(2).

e Fourier Expansion: f(z) = >, a;(n)e?™=,

L(s,f) = 0" an=.
o Petersson Norm: (f,g) = [i vy f(2)9(2)y* 2dxdy.
e Normalized coefficients:

ve(n) = %ﬁaf(n).

L
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Modular Form Preliminaries: Petersson Formula

Bk(N) an orthonormal basis for weight k level N. Define

Agn(m,n) = Z br(m)e(n).

feBk(N)

Petersson Formula

;
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Modular Form Preliminaries: Explicit Formula

Let F be a family of cupsidal newforms (say weight k,
prime level N and possibly split by sign)
L(s,f)=>_,(n)/n°. Then

1 log R ~ 1 1 _
Yo (E ) +500) — 5 2 P(fio)

feF

I
-
—

o
N—r
N

~( lo 2lo
P(fio) = zA,<p>¢(logg) et

;
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Modular Form Preliminaries:Fourier Coefficient Review

A(n) = af(n)n%
Mmnn) = Y N(%).
d|(m,n)
(d,M)=1

For a newform of level N, A\¢(N) is trivially related to the
sign of the form:

e = *u(N)X(N)VN.

The above will allow us to split into even and odd families:
1+ €.
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Key Kloosterman-Bessel integral from ILS

Ramanujan sum:
R(n.q) = > elan/q) = > u(a/d)a.
amod q d|(n,q)

where x restricts the summation to be over all a relatively
prime to g.

Let W be an even Schwartz function with supp(V) C (—2,2). Then

R(m?, b)R(1,b) [oo iy byv/N/4x
1 > (m )b(1 )/ Jk71(y)w<2log( y VN /4 m)> dy
) y=0

2l
m<ne ™ (biN)=1 o log R log R

1 oo sin 27X 1
S / ) X gy — Jw)| + 0
2 |/— 27X 2

( k log log kN)
log kN ’

where R = k2N and ¢ is Euler’s totient function. )

A1
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Limited Support (o < 1): Sketch of proof

e Estimate Kloosterman-Bessel terms trivially.
o Kloosterman sum: dd = 1 mod q, 7(q) is the
number of divisors of g,

o [ma
S(m,nmq) = > e<q +q)

d mod q

S(m,n;q) < (m,n,q) \/min{i d }T<q).

(m,q)" (n.q)
o Bessel function: integer k > 2,
Ji1(x) < min (x, x*=1, x71/2),

e Use Fourier Coefficients to split by sign: N fixed:

£ Ar(N) * ().
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Increasing Support (¢ < 2): Sketch of the proof

@ Using Dirichlet Characters, handle Kloosterman
terms.

@ Have terms like

/OO Jk—1 <47r X mCQyN> a(logy) L4
0

logR) /Y

with arithmetic factors to sum outside.

@ Works for support up to (-2, 2).
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Increasing Support (o < 2): Kloosterman-Bessel details

Stating in greater generality for later use.

Gauss sum: x a character modulo q: |G, (n)| < ,/q with

G(n) = Y x(a)exp(2rian/q).

amod g
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Increasing Support (o < 2): Kloosterman-Bessel details

Kloosterman expansion:

S(m?, py - - - paN; Nb)

= Y ANGIG (NP i)

( )X(modb)
Lemma: Assuming GRH for Dirichlet L-functions,
supp(¢) C (—2, 2), non-principal characters negligible.

Proof: use Jx_1(x ) < X and see

S DI SRS SN

m<Ne (b,N)=1 X(modb
b< N2006 X#XQ
1~ (logp;
X(pj) log p; - ¢ < :
b\/ 111 g&;\l ! " logR" \log R
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2-Level Density

R |Og Xq |Og Xo \/ m2X1 X2N dX1 dX2
/ / Jik_1 | 4m

log R log R

Change of variables and Jacobian:

c

v/ X1 Xo

Uz

U = XiXo Xo i

Left with

/ |Og U4 |Og (L%) 1 J 4 \/ m2u2N dU1 dUg
/ log R log R N S c U
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2-Level Density

Changing variables, u;-integral is

7 ~ ~ (log u.
/W - U¢(W1)¢<|Zgg/:§—w1)dw1-

1:IogF?_

Support conditions imply

| P
wz(liiﬁ) :/ ¢(W1)¢(|Zgglg_w1) aw.

Wi=—0o0

Substituting gives
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n-Level Density: Sketch of proof

Expand Bessel-Kloosterman piece, use GRH to drop
non-principal characters, change variables, main term is

J 2log(bxv/N/4rm)\ dx
/ kel log R log R

27Tm

with ®,(x) = ¢(x)".

Main Idea

Difficulty in comparison with classical RMT is that instead
of having an n-dimensional integral of ¢1(x1) - - - &n(X,) We
have a 1-dimensional integral of a new test function. This
leads to harder combinatorics but allows us to appeal to
the result from ILS.
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Bounding Vanishing
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Approaches for Bounding Vanishing

@ Increasing the support for the 1-level.
@ Optimizing the test function.

@ Using n-level densities.

T0)
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Previous Work

Optimizing:

@ Determining Optimal Test Functions for Bounding the Average Rank in
Families of L-Functions (Jesse Freeman, Steven J. Miller), in
SCHOLAR - a Scientific Celebration Highlighting Open Lines of
Arithmetic Research, Conference in Honour of M. Ram Murty’s
Mathematical Legacy on his 60th Birthday (A. C. Cojocaru, C. David
and F. Pappaardi, editors), Contemporary Mathematics 655, AMS and
CRM, 2015. https://arxiv.org/pdf/1507.03598.pdf

@ Determining optimal test functions for 2-level densities (Elzbieta
Botdyriew, Fangu Chen, Charles Devlin VI, Steven J. Miller, Jason
Zhao), Research in Number Theory 9 (2023), article number 32,
https://doi.org/10.1007/s40993-022-00367-0.

Increasing support:

@ Extending support for the centered moments of the low lying zeroes of
cuspidal newforms (Peter Cohen, Justine Dell, Oscar E. Gonzalez,
Geoffrey lyer, Simran Khunger, Chung-Hang Kwan, Steven J. Miller,
Alexander Shashkov, Alicia Smith Reina, Carsten Sprunger, Nicholas
Triantafillou, Nhi Truong, Roger Van Peski, Stephen Willis, and Yingzi

- Y3ana) o appearin Algebra & Numberdheory
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https://arxiv.org/pdf/2208.02625v1.pdf
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New Work

o Bounding Vanishing at the Central Point of Cuspidal
Newforms (with Jiahui (Stella) Li), Journal of Number
Theory (Computational Section) 244 (2023), 279-307.

o Bounding Excess Rank of Cuspidal Newforms via
Centered Moments (Sohom Dutta, Steven J. Miller),
Research in Number Theory 10 (2024), no. 76,
https://doi.org/10.1007/s40993-024-00567—w.
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Test Functions

y

Naive Test Function

The naive test functions are the Fourier test function pair

Buae(X) = (M)z  Fantt) = (-4

(TVnX) vy

for |y| < v, where v, is the support.
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Test Functions

Naive close but not optimal; optimal for 1-level is

(goptimal(y) = (fO * f_O)(.y)

for
hx) = cos (% -%) 0< x| <1
° V2sin (1) +sin (1)
for G = SO(even) and
cos <|21| + %)
fo(x) = , 0< |x] <1

for G = SO(odd).

y
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1-Level Bound

Di(Fn,9) = ﬁ Z Z¢ (;—; |0ng> :

feFn it

OGS
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1-Level Bound

Di(Fn, ¢) = |]__ | Z %:gb (— log C,«)

feFn

From [ILS]: Let ¢ be a non-negative, even Schwartz
function with supp($) C (—o, o) for some finite o. Let G be
the group associated to the family Fy (i.e., Unitary,
Symplectic, Orthogonal SO(even), SO(odd)). Set

/ o(y) Wo(r)(y)dy

As N — oo the percent of forms in the family Fy that
vanish to order exactly (or at least) r is bounded by

pr < 1(ar()

y
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Naive vs Optimal for 1-Level (1 is 100%)

eSS

Comparison of Bounds for the 1-level density for G = SO(even)

Rank Bound From | Bound From op-
naive test func- | timal test func-
tion tion

2 0.43750000 0.43231300

4 0.21875000 0.21615700

6 0.14583333 0.14410400

8 0.10937500 0.10807800

10 0.08750000 0.08646260

12 0.07291670 0.07205220

14 0.06250000 0.06175900

16 0.05468750 0.05403910

18 0.04861110 0.04803848

20 0.04375000 0.04323130
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4-Level Bounds

Joint with Jiahui (Stella) Li, combinatorics from
generalizing Hughes-Miller.

Order vanish | 1-level 2-level 4™ centered moment”
6 0.144090 | 0.01576870 | 0.00853841

8 0.108067 | 0.00788434 | 0.00081336

10 0.086454 | 0.00473060 | 0.00018684

20 0.043227 | 0.00105125 | 4.49988-10—°

50 0.017290 | 0.00015768 | 7.13387-10°

TABLE 2. Comparison of order of vanishing bounds from various approaches.
These are upper bounds for vanishing at least  (number in order vanishing column).
For the 1-level column, we calculated the bound using the optimal 1-level bound from
[ILS]. The support of the Fourier transform of the test function used is (—2,2).
For the 2-level column, we calculated the bound using the optimal 2-level bound
from [BCDMZ]. The support of the Fourier transform of the test functions used is
(=1,1).

For the 4™ centered moment” column, the * signifies that we used the 4 copies of the
naive test functions Ynaive. The support of the Fourier transform of the test function
used is (—1/3,1/3).

v/ EEEOOSOSGSSSSSS L
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Bounds from n-Level: Preliminaries: From Cohen et. al.

Let n > 2 and supp(¢) C (-2, 2). Define

= 2 WPy
R(m,/,d)) — 2m1 m+1z < >

<¢m / / d(x2) - D(Xir1)

_ 2rx1(1 + |Xo| + - - + | X
[m om /(X1)5|n( X1 (1 |272T|X1 | /+1|))O,X1 ~-~dx/+1>
L127) nl o2\’
S(n,a,¢) = Z ——_R(n—2l,a-2l,¢) <,¢j’> then

(n=2n

AAI/'ET’OO <(D(f;¢)—<D(f;¢)>i)">i — (N=1)1071 p even £ S(N, 2 B).
prime

y
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Key Expansion

Using binomial theorem and Cauchy-Schwartz, can
replace the mean from finite N with the limit

n

li —

,\/,VT.]oo [Fnl N| Z (Z¢ 1Cn) % )>
prime feFn

=1, even(n - 1)IIU¢ + S(n7 & gb),

and main term of the mean of the 1-level density of F is

(o, F) /¢
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Bound from n-Level for r Sufficiently Large

Theorem (Dutta-Miller)
For an even nwith r > u(¢, F)/¢(0),

(n— 1ol £ S(n, 3; ¢)

PP < 050y — ulo, By
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Sketch of Proof: r > u(¢, F)/$(0)

For even-level densities, contributions always positive,
drop forms with fewer than r zeros:

Have (r¢(0) + Bi(¢) — (¢, Fn))"; dropping Bs(¢) can
increase sum if first two terms are less than the third.

By assumption on r, sum with and without B(¢) is
positive; dropping gives bound

lim |f1—N| > (ré(0) = (¢, F))" < 1neven(n—1)1105£5(n, a; ¢)

N— oo
N prime fEFN,r
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Comparison of different n from Dutta-Miller (1 is 100

Using support up to 2/n:

1-level 2-level 4-th centered moment 6-th centered moment 8-th centered moment 10-th centered moment

Wean | 1.5 2. 3. a. 5. 6.

2 0.4375 Invalid Bound Invalid Bound Invalid Bound Invalid Bound Invalid Bound
4 0.21875 0.0666667 0.0733686 Invalid Bound Invalid Bound Invalid Bound
6 ©0.145833 0.0205761 0.00247516 0.00234651 0.0509282 Invalid Bound
8 0.109375 0.00986193 0.000405905 0.0000689901 0.0000579621 0.000408389
10 0.0875 0.00576701 0.00011739 7.59594 x10°¢ 1.55879x10°° 1.1438x10°°
12 0.0729167  0.00377929 0.0000456017 1.51897x10°© 1.30376x107 2.89295x10°°
14 0.0625 0.00266667 0.0000212365 4.2749x10°7 1.96743x10°8 1.97827x10°°
16 0.0546875  0.00198177 0.0000111825 1.50176 x10°7 4.26683x10°7 2.39101x10°°
18 0.0486111  0.00153046 6.435x10°° 6.16387x10°° 1.18309x10°° 4.18191x 101
20 0.04375 0.00121743 3.96025x10°° 2.83895x10°° 3.91773x10°1° 9.47969x10 2

Ficure 1. Approximate Bounds for the Percent of Vanishing to exact order r for
the case G=SO(even) with support v = 2 for the 1-level and v = 2/n for the n-level
with 1 going from 1 to 10 and r from 2 through 20 obtained using the naive test
function.
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Comparison of different n from Dutta-Miller (1 is 100

Using support up to 2/n:

1-level 2-level 4-th centered moment  6-th centered moment  8-th centered moment  10-th centered moment

Mean | 1.01055 1.5211 2.54219 3.56329 4.58439 5.60548

2 0.432313 1.90775 Invalid Bound Invalid Bound Invalid Bound Invalid Bound
4 0.216157 0.0712029 0.0857764 84,2903 Invalid Bound Invalid Bound
6 0.144104 0.0218109 0.00270998 0.0027933 0.0818933 43045.8

8 ©.108078 0.0104235 0.000436612 0.0000766611 0.0000712948 0.000634483
10 0.0864626  0.00608608  ©0.000125234 8.22163x10°° 1.78495x10°° 1.46382x10°°
12 0.0720522  0.0039846 0.000048418 1.62145x10°° 1.44421x1077 3.43972x10°°
14 0.061759 0.00280973  0.0000224782 4.52439x10°7 2.13806x10°° 2.26279x10°°
16 ©.0540391  ©.00208711  ©.0000118106 1.58019x 107 4.57946x10°° 2.67029x10°1°
18 0.0480385  0.00161124  6.78542x10°° 6.45851x10°° 1.25871x10°° 4.59521x 1011
20 0.0432313  0.00128134  4.17071x10° 2.96519x10° % 4.14116x10° 0 1.02951x10°1*

Ficure 5. Approximate Bounds for the Percent of Vanishing to exact order r for
the case G=SO(even) with support v = 2 for the 1-level and v = 2/n for the n-level
with 1 going from 1 to 10 and r from 2 through 20 obtained using the optimal test
function.
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Lowest Bounds for Each Rank for G=SO(even)
Rank Level Used Bound
2 1 0.43231300
4 2 0.066666667
6 6 0.003346510
8 8 0.000579210
10 10 1.14380 x 10
12 12 1.85901 x 108
14 14 2.59310x 101
16 16 3.09185 x 1012
18 18 3.26332 x 10~
20 20 3.08920 x 1016
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Best Results (1 is 100%)

Lowest Bounds for Each Rank for G=SO(odd)
Rank Level Used Bound
1 N/A 1.0000000
3 2 0111111111
5 2 0.020408300
7 6 0.000292790
9 8 7.65596 x 1076
11 10 1.53302 x 107
13 12 2.50956 x 10~°
15 16 3.03362 x 10~
17 18 3.10549 x 1013
19 20 4.18402 x 107
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Bounds on Lowest Zero
in Cuspidal Families
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Previous Results

Assuming the GRH, how far up must we go on the critical
line before we are assured that we will see the first zero?

Previous work mostly on first (lowest) zero of an
L-function. Assume GRH, zeros of the form 1 + ir.
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Previous Results

Assuming the GRH, how far up must we go on the critical
line before we are assured that we will see the first zero?

Previous work mostly on first (lowest) zero of an
L-function. Assume GRH, zeros of the form 1 + ir.

e S. D. Miller: L-functions of real archimedian type has
v < 1413.

e J. Bober, J. B. Conrey, D. W. Farmer, A. Fujii, S.
Koutsoliotas, S. Lemurell, M. Rubinstein, H. Yoshida:
General L-function has v < 22.661.




Lowest Zero
L]

Previous Results

Assuming the GRH, how far up must we go on the critical
line before we are assured that we will see the first zero?

Previous work mostly on first (lowest) zero of an
L-function. Assume GRH, zeros of the form ] + ir.

e J. Mestre: Elliptic curves: first zero occurs by

O(1/ loglog Ng), where N is the conductor (expect
order 1/ log NE).

@ J. Goes and S. J. Miller: One-Parameter Family of
Elliptic Curves of rank r: r + % normalized zeros on
average within the band ~ (— 2391329 /0551329

o ’ o
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New Results: M- and Tang; Arora, Bruda, Fang, Marquez, M-
Prapashtica, Sharan, Son, Tang and Waheed

Upper Bound Lowest 1st Zero in Even Cusp Families

Let ¢, be non-negative and non-increasing for |x| < w and non-positive for
|x| > w, n=2m+ 1, if w satisfies

at least one form with at least one normalized zero in (—w, w). Can take

a/n __ n
¢w(y)dy> < lneven(n— 1oy, + S(n, & ¢u),

—o/n

71' B

1

(0.h) > o i hu?du+ % 1, [ h(u)h(v — u) dv du °
Wmin\ T,

1f0 uh(u)du+ 1 1. [2/7 h(u)h(v — u) dv du

Only know for o < 2 (under GRH).
If h even, twice cont diff, monotonically decreasing and supported on [—1,1]

1(y) == h(2yn/o), a(y) = (F* N(¥), bu(x) = (1 - (x/wP)g(x) then 6,

satisfies above requirements.

TS SSEEEEEEESS
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New Results: S. J. Miller and Tang

Theorem: Normalized Zeros Near the Central Point
P: ,(F): percent of forms with at least r normalized zeros
in (—p, p).

Foreven nand r > u(¢, F)/o(p):

< 1n even(n — 1)”0-2 + S(n7 & (b)
= (ré(p) — w(@. F))"




Explicit Bounds
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Number of zeros 2-level 4-level 6-level

6 N/A 10.849910 48.154279

16 N/A 0.004235 2.83230-10~%
26 N/A 3.541901-10~% | 6.716802-10—°
28 420.045063 | 2.486819-10~% | 3.943864-10°°
30 20.991406 | 1.796948-10~% | 2.418466-10~°
32 6.651738 | 1.330555-10—% | 1.538761-10~°
34 3.220871 1.006126-10~% | 1.010576-10°°

Table: Upper bound on probability of forms with at least r normalized
zeros within 0.8 average spacing from central point, using naive test

function with support 2/n.
“N/A” means restriction in our theorem not met.

QR
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Preliminaries for Constructions and Proofs

@ Convolution:

(Ax B)(x) = /OO A(t)B(x — t)dt.

@ Fourier Transform:
Aly) = / A(x)e™#™ dx
Ally) = —(2my)?Ay).

e Lemma: (A/@)(y)/\(y) §%

);
in particular, (A= A)(y) = A(y)? > 0 if Ais even.
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Construction of Test Function

Create compactly supported ¢(y).
@ Choose h(y) even, twice continuously differentiable, supported on (—1, 1),
monotonically decreasing.

® i(y)=h(2).
@ g(y):==(T+Ny), 9(x) =1(x)? > 0.
@ ¢u(y) = 9g(y) + (2mw) 20" (y) thus ¢u(x) = g(x) - (1 — (x/w)?).

0.5+

< <

Plot of ¢, (x) = g(x) - (1 — (x/w)?), for h=cos (F¥), 0 =2,w =.5,and n = 1.
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Sketch of Proof: Key Expansion

Replace mean from finite N with the limit:

I\,me Z(Zgb 'ijCn - ¢~7:)>
anme feF

=1, even(n o 1)||g¢ + S(n’ & qb)j

and main term of the mean of the 1-level density of F is

o, 7) = 50+ 5 [ Gy
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Key Observation

im 2 (Z"“’Y“C" e, >>

Nprime feFn
— 1 qen(n = 1)ll07 + S(n, &; ¢).

~

du(x) = 9(x)- (1 = (x/w)?).
@ ¢,(x) > 0when |x| <w, and ¢,(x) < 0 when |x| > w.
e Contribution of zeroes for |x| > w is non-positive.

@ As nodd, doesn’t decrease if drop these non-positive
contributions: why we restrict to odd n.

Q77
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Sketch of Proof: Proof by Contradiction

Dropping negative contributions:

) 1
Nllen;o ﬁ E E ¢w(’7f,jcn) - M(¢w7 f) > S(n, a, wa)
Nprime N feFn \ I jl<w
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Sketch of Proof: Proof by Contradiction

Dropping negative contributions:

n

) 1
Nllen;o ﬁ E E ¢w(’7f,jcn) - M(¢w7 f) > S(n, a, wa)
Nprime N feFn \ I jl<w

Assume no forms have a zero on the interval (—w, w):

im 2 3 (il P > S(n.@i0),

N—oo
Nprime feF
no 1
J— - > . .
(=p(dw, F))" Jim F > 1> 8(na¢.)

Nprime feFn
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Sketch of Proof: Proof by Contradiction

Dropping negative contributions:
n

) 1
Nllen;o ﬁ E E ¢w(’7f,jcn) - M(¢w7 f) > S(n, a, wa)
Nprime N feFn \ I jl<w

Assume no forms have a zero on the interval (—w, w):

im 2 3 (il P > S(n.@i0),

Nprime feF
n o 1
J— - > .
(=90 F))" fim rz=s D> 1 = S(n.aidu).
Nprime feFn

- 1 _
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Sketch of Proof: Continued

Because of the compact support of b,

R 1 o/n R n
- (¢w(0>+§ » m(y)dy) > S(n.a6.)

Thus, if w satisfies the following inequality
. 1 o/n N n
“(@g [ aba] < snao)
—o/n

we get a contradiction, so at least one form has a
normalized zero in (—w, w).
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Quadratic vs Sextic

Upper Bound for Lowest Largest Normalized Zero in
Family:

Degree of test function:

Quadratic 0.21864.
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Quadratic vs Sextic

Upper Bound for Lowest Largest Normalized Zero in
Family:

Degree of test function:

Quadratic 0.21864.
Sextic 0.21850.
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Current / Future Work

@ Bounds on next few zeros, percentages with low
zeros (ongoing).

@ Optimize test function.
@ Increase support of test function.

@ Recent studies increased the support to 4 (Baluyot,
Chandee, and Li) for a certain group of L-functions....
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