Introduction First Stages Data Fitting Migration Conclusio

Leslie meets Prey and Predators: From Modeling to Research

Predator-Prey Modelling Group (SMALL 2024) Steven J Miller (Williams College, Fibonacci Association) Email: sjm1@williams.edu https://web.williams.edu/Mathematics/sjmiller/public_html/

AMS Special Session on New Trends in Difference and Differential Equations: Modeling, Analysis, and Applications: Hartford, CT: April 6, 2025.

Introduction ●0000000	First Stages 00000	Data Fitting 0000000	Migration 00000000	Conclusion 0000
Overview				

SMALL 2024 SUMMER REU: Strong students, varying backgrounds.

Pre-reqs: Calculus, linear algebra.

Springboard to research: combine / extend simple models.

Fibonacci Quarterly: Math Bio / Science Section.

Introduction 0000000

First Stage 00000 Data Fitting

Migration 00000000 Conclusion 0000

Classical Predator-Prey Interactions

(Illustration from Premium Vector)

• Lotka-Volterra model: Evolution of predator / prey system.

Introduction 0000000	First Stages	Data Fitting 0000000	Migration 00000000	$\substack{ ext{Conclusion}\\ ext{occo}}$

The Lotka-Volterra Equations

Definition

Prey population x(t) and a predator y(t), evolve by

$$\begin{cases} \frac{dx}{dt} = \alpha x - \beta xy\\ \frac{dy}{dt} = \delta xy - \gamma y. \end{cases}$$

Reasonable: look at signs, products.

Introduction	First Stages	Data Fitting	Migration	Conclusion
0000000	00000	0000000	000000000	0000

Typical Dynamics of Lotka-Volterra

(Courtesy of Prof. Mats Vermeeren)

- Solutions often exhibit perpetual oscillations in both populations.
- Interplay inspired extensions and variations, including blending with Leslie matrices.

Introduction	First Stages	Data Fitting	Migration	Conclusion
00000000	00000	0000000	00000000	0000

Leslie Matrices

Idea: split population into sub-populations by age. Assume die when turn d; $a_n^{(1)}$ number newborns at time n, $a_n^{(2)}$ number of one-year-olds,

Population vector at time n: $\vec{p_n} := \left(a_n^{(1)}, a_n^{(2)}, \dots, a_n^{(d-1)}\right)^T$. Simple model: evolve by

$$\vec{p}_{n+1} := \mathbf{L}\vec{p}_n = \underbrace{\begin{bmatrix} f_1 & f_2 & \cdots & f_{d-1} \\ s_1 & 0 & \cdots & 0 \\ 0 & s_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s_{d-2} \end{bmatrix}}_{\substack{\text{Leslie matrix:} \\ f_i \text{- fertility rates} \\ s_i \text{- survival rates}}} \vec{p}_n,$$

Introduction 000000000	First Stages	Data Fitting	Migration	Conclusion
	00000	0000000	00000000	0000

Example (3 Age Groups)

Leslie Matrix for this Scenario.

$$\mathbf{L} = \begin{bmatrix} 0 & F_2 & F_3 \\ S_1 & 0 & 0 \\ 0 & S_2 & S_3 \end{bmatrix}$$

Research problem: Combine Predator-Prey and Leslie.

Gather data and conjecture, build simple models,

Introduction 0000000● First Stages 00000 Data Fitting

Migration 00000000 Conclusion 0000

Representative Student Background at the Start of SMALL

(a) **Saad**: Senior, math and physics major

(b) Daniel: Junior, math and physics

Relevant Background Courses. • Linear Algebra • Programming in MATLAB and Python • Quantum Mechanics SMALL 2024 Predator-Prey Modeling 9/34

Introduction	First Stages	Data Fitting	Migration	$\underset{0000}{\mathrm{Conclusion}}$
00000000	●0000	0000000	00000000	

Whales and Plankton

Question

System of Whales and Plankton; Whales consume Plankton for food. Which parameters affect the population evolution? Is there a closed form solution?

A blue whale in the eastern North Pacific Ocean ingests an average of 16 tonnes of krill in a single day of feeding.

Introduction	First Stages	Data Fitting	Migration	$\begin{array}{c} { m Conclusion} \\ { m oooo} \end{array}$
00000000	0●000	0000000	00000000	

Factors

Factors of Population Evolution.

- 1 f > 0, fertility rate of Whales,
- 2 F > 0, fertility rate of Plankton,
- **3** k > 0, predation rate,
- (a) m > 0, growth multiplier of the whale induced by the Plankton.

Introduction	First Stages	Data Fitting	Migration	Conclusion
00000000	00●00	0000000	00000000	0000

Overconsumption

Introduction	First Stages	Data Fitting	Migration	Conclusion
00000000	000●0	0000000	00000000	0000

Underconsumption

Figure: Both population grows exponentially.

Introduction	First Stages	Data Fitting	Migration	Conclusion
00000000	0000●	0000000	00000000	0000

Unrealistic Cases

Introduction	First Stages	Data Fitting	Migration	$\begin{array}{c} { m Conclusion} \\ { m oooo} \end{array}$
00000000	00000	•000000	00000000	

Competitive Model

Definition (Leslie Competitive Predator-Prey Model)

Let $\vec{\alpha}_n$, $\vec{\beta}_n$ be the population vectors of the predator and prey species at time *n*. Define the competitive model as

$$\vec{\alpha}_{n+1} = \max(L\vec{\alpha}_n - km\vec{\beta}_n, \vec{0}) \vec{\beta}_{n+1} = \max(L\vec{\beta}_n - k\vec{\alpha}_n, \vec{0}),$$

where $k, m \in (0, 1)$ are interaction and competitive advantage ratios, both between 0 and 1. First Stages 00000 Data Fitting

Migration 000000000 $\underset{0000}{\mathrm{Conclusion}}$

The Perron-Frobenius Theorem in Action

Definition (The Perron-Frobenius Theorem (Simplified))

For a nonnegative (and irreducible) square matrix M, there is a *dominant eigenvalue* (the Perron root) with a corresponding positive eigenvector. This eigenvalue governs the long-term behavior in Leslie recurrence models.

- Why it Helps:
 - **Population Growth Rate:** The largest eigenvalue of the Leslie (or migration) matrix determines if over or under-consumption happens.
 - **Stable Age Distribution:** The corresponding eigenvector tells us the proportion of individuals across age classes in the long run.

First Stage 00000 Data Fitting

Migration 000000000 Conclusion 0000

Foundational Reference

Hal Caswell - Senior Scientist in the Biology Department of the Woods Hole Oceanographic Institution

Matrix Population Models: Construction, Analysis, and Interpretation (Caswell 2001)

Introduction	First Stages	Data Fitting	Migration	$\begin{array}{c} { m Conclusion} \\ { m oooo} \end{array}$
00000000	00000	000●000	000000000	

Applying the Competitive Model

Population evolution of Parnaceum Aurelia and Parnaceum Caudatum (Gause, 1930s).

Challenge.

Conventional methods fail due to the recursive structure of the model.

SMALL 2024

Predator-Prey Modeling

18/34

First Stages 00000 Data Fitting 0000€00 Migration 000000000 $\underset{0000}{\mathrm{Conclusion}}$

Supervised Machine Learning to the Rescue

Definition (Error of the fit)

Let $\overline{\alpha}_t, \overline{\beta}_t$ be the total population of respective species predicted by the competitive model, while p(t), q(t) represent the real time populations. Then, we define the residual as

$$\chi(f,k,\beta_0,m) := \left(\sum_{t \leq T} \left(\frac{\overline{\alpha}_t - p(t)}{p(t)}\right)^2 + \sum_{t \leq T} \left(\frac{\overline{\beta}_t - q(t)}{q(t)}\right)^2\right).$$

Machine Learning Scheme

- Evaluate χ for random choice of the four parameters. Among the random tuples, choose the tuple that minimizes the value of χ .
- 2 Perform a general gradient descent involving all four parameters, starting from the point chosen in step 1. Find the admissible value of k, m first then use these to optimize for the remaining.

SMALL 2024

Predator-Prey Modeling

19/34

Introduction	First Stages	Data Fitting	Migration	Conclusion
00000000	00000	00000€0	000000000	0000

Admissible Fit

Competitive Coexistence

Migratory Populations: The Big Picture

- Real populations often occupy multiple regions.
- Individuals move between areas due to resources, climate, or human influence.
- Understanding spatial structure is crucial: migration can alter stability, growth, and distribution.

Introduction	First Stages	Data Fitting	Migration	Conclusion
00000000	00000	0000000	●00000000	0000

Incorporating Migration into Leslie Models

- Classic Leslie matrices model age-structured populations without spatial movement.
- We extend these models to include migration between regions.
- Two main scenarios:
 - 1 Constant (unidirectional) migration
 - **2** Constant proportion (fraction-based) migration.

MALL 2024	Predator-Prey Modeling	22/34
-----------	------------------------	-------

Constant Unidirectional Migration: Setup

- Assume a fixed vector m_1 moves out of population a each step.
- Assume a fixed vector m_2 moves into population b each step.
- System of two populations a(t), b(t):

 $a(t) = \mathbf{L}_1 a(t-1) - m_1, \quad b(t) = \mathbf{L}_2 b(t-1) + m_2.$

Closed Form Solutions.

$$a(t) = \mathbf{L_1}^t a(0) - (\mathbf{I} - \mathbf{L_1})^{-1} (\mathbf{I} - \mathbf{L_1}^t) m_1.$$

$$b(t) = \mathbf{L_2}^t b(0) + (\mathbf{I} - \mathbf{L_2})^{-1} (\mathbf{I} - \mathbf{L_2}^t) m_2,$$

where **I** is the $n \times n$ identity matrix.

Constant Proportion Migration: Motivation

- Constant numbers might not be realistic: migration often depends on current population size.
- Constant proportion migration: a fixed fraction of each population moves each step.
- Reflects density-dependent dispersal: more individuals \rightarrow more migrants.

MALL 2024	Predator-Prey Modeling	24 /	/ 34
-----------	------------------------	------	------

First Stages 00000 Data Fitting

Migration 0000000

 $\underset{0000}{\mathrm{Conclusion}}$

Constant Proportion Migration: Setup

Definition

With k_1, k_2 as fractions migrating, for two populations a(t), b(t):

$$a(t) = \mathbf{L}a(t-1) - k_1 \cdot a(t-1) + k_2 \cdot b(t-1)$$

$$b(t) = \mathbf{L}b(t-1) - k_2 \cdot b(t-1) + k_1 \cdot a(t-1).$$

- Migration is now proportional to a(t-1) and b(t-1).
- System complexity increases (which is why we assume the same Leslie matrix **L** for both populations), but more realistic.

Introduction 00000000 First Stages 00000 Data Fitting

Migration 0000000

 $\underset{0000}{\mathrm{Conclusion}}$

Constant Proportion Migration: Closed-Form Expressions

Definition (Closed-Form for Two-Population System)

Let $\Sigma(t) := a(t) + b(t)$ and $\Delta(t) := a(t) - b(t)$, with migration rates k_1, k_2 and $\kappa = k_1 + k_2, \Delta_k = k_2 - k_1$. Then:

$$\Sigma(t) = \mathbf{L}^{t} \Sigma(0),$$

$$\Delta(t) = \mathbf{L}^{t} \left(\frac{\Delta_{k}}{\kappa} \Sigma(0) \right) + (\mathbf{L} - \kappa \mathbf{I})^{t} \left(\Delta(0) + \frac{\Delta_{k}}{\kappa} \Sigma(0) \right).$$

Introduction 00000000 First Stages 00000 Data Fitting 0000000 Migration 0000000

 $\underset{0000}{\mathrm{Conclusion}}$

Constant Proportion Migration: Closed-Form Expressions

Definition (Closed-Form for Two-Population System)

Let $\Sigma(t) := a(t) + b(t)$ and $\Delta(t) := a(t) - b(t)$, with migration rates k_1, k_2 and $\kappa = k_1 + k_2$, $\Delta_k = k_2 - k_1$. Then:

$$\Sigma(t) = \mathbf{L}^{t} \Sigma(0),$$

$$\Delta(t) = \mathbf{L}^{t} \left(\frac{\Delta_{k}}{\kappa} \Sigma(0)\right) + (\mathbf{L} - \kappa \mathbf{I})^{t} \left(\Delta(0) + \frac{\Delta_{k}}{\kappa} \Sigma(0)\right).$$

Sketch of Proof (Generating Functions):

- **1** Define $X(z) = \sum_{t\geq 0} \Sigma(t) z^t$ and $Y(z) = \sum_{t\geq 0} \Delta(t) z^t$.
- **2** From the proportion-migration recurrences, derive functional equations for X(z) and Y(z).
- **3** Solve $X(z) = (\mathbf{I} \mathbf{L}z)^{-1}\Sigma(0)$ and invert the generating function (via series expansion) to obtain closed form.

troduction	First Stages	Data Fitting 0000000	Migration 000000000	Conclusion 0000

The Inspiration Behind Our Proof

Challenges.

- Analytical solutions not feasible in arbitrary case → Simplified problem by fixing 2 populations and solving for arbitrary ages.
- Solution for the 1 age only is trivial solve coupled recurrence using generating functions → Inspiration for our proof.

Sensitivity Analysis (Caswell, 2019)

SMALL 2024	Predator-Prey Modeling	27 / 34

- If $\lambda_{\max}(\mathbf{L} \kappa \mathbf{I}) < 1$, populations tend to die out or stabilize at a consistent level.
- This scenario can be interpreted as sub-critical growth rates dominated by mortality.

Illustration of convergent behavior (in the case when $k_1 = k_2 = k \implies \kappa = 2k$).

Introduction	First Stages	Data Fitting	Migration	Conclusion
00000000	00000	0000000	0000000●0	0000

Divergent / Exponential Behavior

- If $\lambda_{\max}(\mathbf{L} \kappa \mathbf{I}) > 1$, each population can grow exponentially in isolation.
- Populations may explode unless factors like limited resources or predator pressure are included.

Illustration of divergent behavior (in the case when $k_1 = k_2 = k$).

Introduction 00000000	First Stages 00000	Data Fitting 0000000	Migration 0000000●	Conclusion 0000			
Occillatory	Robertion						
Uscillatory	Jscillatory Behavior						

- Complex eigenvalues $(\lambda_{\max}(\mathbf{L} \kappa \mathbf{I}) \approx 1)$ can induce sustained oscillations or cycles.
- This manifests in a repeating boom-bust population cycle (similar to predator-prey) in each region.

Illustration of harmonic behavior (in the case when $k_1 = k_2 = k$).

Intro	duc		
0000	000	00	

Conclusions

Key Takeaways.

• Population Modeling with Predator Prey/Migration:

- Extensions of classic Leslie models capture spatial flow.
- Analytical solutions help clarify how migration affects stability.

• Applications and Practical Use:

- Empirical data + Machine Learning = parameter estimation.
- Results inform conservation strategies and resource management.

First Stage: 00000 Data Fitting 0000000 Migration 000000000 $\underset{0 \bullet 00}{\operatorname{Conclusion}}$

Potential Applications

(a) Modeling marine ecosystems

(b) Conservation efforts for migratory birds

(c) Epidemic control

Introduction 00000000	First Stages 00000	Data Fitting 0000000	Migration 00000000	$\begin{array}{c} Conclusion \\ 0000 \end{array}$

Future Directions

Open Challenges.

- Multi-region and non-linear effects demand numerical approaches.
- Quantum-inspired methods offer potential new perspectives.

Energy level transitions in ²⁰⁸Pb and its analogy to predator-prey and aging.

Introduction	First Stages	Data Fitting	Migration	Conclusion
00000000	00000	0000000	00000000	

Acknowledgements

Thank you – Questions?

This work was funded in part by the **National Science Foundation** (Grant *DMS-2241623*), **Williams College** and the Finnerty Fund; we thank them for their support.