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Overview

Introduce students to higher mathematics and research.
SMALL 2024 SUMMER REU: Strong students, varying backgrounds.
Pre-regs: Calculus, linear algebra.

Springboard to research: combine / extend simple models.
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Classical Predator-Prey Interactions

(Illustration from Premium Vector)

¢ Lotka-Volterra model: Evolution of predator / prey system.
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The Lotka-Volterra Equations

Prey population z(t) and a predator y(t), evolve by

fl—f = ax — Bzy
d
@ = ozy—y.

Reasonable: look at signs, products.
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Typical Dynamics of Lotka-Volterra

Rabbits

Foxes

Rabbit Fopulation
r
<

Fox Population

(=1

(Courtesy of Prof. Mats Vermeeren)

® Solutions often exhibit perpetual oscillations in both populations.
® Interplay inspired extensions and variations, including blending
with Leslie matrices.
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Leslie Matrices

Idea: split population into sub-populations by age.
(1) (2)

Assume die when turn d; a, ' number newborns at time n, a, ' number
of one-year-olds, ....

T
Population vector at time n: p,, := (ag), aq(f), e ,aq(ld_l)> .
Simple model: evolve by
[fi fo o fa]
s 0 .- 0
Pn+1 = Lp, = 0 s2 - 0 Pns
0 0 - sg9]

Leslie matrix:
fi- fertility rates
s; - survival rates
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Example (3 Age Groups)

S3
Leslie Matrix for this Scenario.
0 Fy Fj
L=|S5 0 0
0 Sy Ss
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Research Problem

Research problem: Combine Predator-Prey and Leslie.

Inter-population
dynamics
- Differential —
N (

‘/ Rabbits Equations) ( Foxes B
A / o /
Intra-population
dynamics:
(Leslie matrix
recurrences)

PREDATOR PREY + AGE STRUCTURE

Gather data and conjecture, build simple models, ....
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Student Background at the Start of SMALL

-

Saad: Senior, math and physics major Daniel: Junior, math and physics
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Student Background at the Start of SMALL

Saad: Senior, math and physics major Daniel: Junior, math and physics

Relevant Background Courses.

® Linear Algebra
® Programming in MATLAB and Python

® Quantum Mechanics
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Whales and Plankton

Question

System of Whales and Plankton; Whales consume Plankton for food.
Which parameters affect the population evolution? Is there a closed
form solution?

A blue whale in the eastern North Pacific Ocean ingests

an average of 16 tonnes of krill in a single day of feeding.
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Factors

Factors of Population Evolution.
® f > 0, fertility rate of Whales,
® F > 0, fertility rate of Plankton,
® k > 0, predation rate,
@® m > 0, growth multiplier of the whale induced by the Plankton.
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Overconsumption

Population
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Figure: Plankton goes extinct.




Underconsumption
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Figure: Both population grows exponentially.




Unrealistic Cases

Population
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Figure: Unrealistic model.
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Competitive Model

Definition (Leslie Competitive Predator-Prey Model)

Let a,, En be the population vectors of the predator and prey species
at time n. Define the competitive model as

Opt1 = max(La, — kmﬁn, 6)
/g‘n-ﬁ-l = HlaX(Lgn - kﬁn; 6)5

where k,m € (0,1) are interaction and competitive advantage ratios,
both between 0 and 1.
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The Perron-Frobenius Theorem in Action

Definition (The Perron-Frobenius Theorem (Simplified))

For a nonnegative (and irreducible) square matrix M, there is a
dominant eigenvalue (the Perron root) with a corresponding positive
eigenvector. This eigenvalue governs the long-term behavior in Leslie
recurrence models.

® Why it Helps:
® Population Growth Rate: The largest eigenvalue of the Leslie
(or migration) matrix determines if over or under-consumption
happens.
® Stable Age Distribution: The corresponding eigenvector tells us
the proportion of individuals across age classes in the long run.
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Foundational Reference

Matrix
Population
Models s

Hal Caswell - Senior Scientist in the Matriz Population Models:
Biology Department of the Woods Hole Construction, Analysis, and
Oceanographic Institution Interpretation (Caswell 2001)
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Applying the Competitive Model
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Population evolution of Parnaceum Aurelia and Parnaceum Caudatum (Gause, 1930s).

Challenge.

Conventional methods fail due to the recursive structure of the model.

ALL 2024



Data Fitting
[e]e]e]e] lele]

Supervised Machine Learning to the Rescue

Definition (Error of the fit)

Let @i, 5; be the total population of respective species predicted by the
competitive model, while p(t), ¢(t) represent the real time populations.
Then, we define the residual as

t<T t<T

MACHINE LEARNING SCHEME
@ Evaluate y for random choice of the four parameters. Among the
random tuples, choose the tuple that minimizes the value of x.
® Perform a general gradient descent involving all four parameters,
starting from the point chosen in step 1. Find the admissible value
of k, m first - then use these to optimize for the remaining.
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Admissible Fit

Competitive Coexistence
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Migratory Populations: The Big Picture

® Real populations often occupy multiple regions.

® Individuals move between areas due to resources, climate, or
human influence.

® Understanding spatial structure is crucial: migration can alter
stability, growth, and distribution.
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Incorporating Migration into Leslie Models

® (Classic Leslie matrices model age-structured populations without
spatial movement.
® We extend these models to include migration between regions.

® Two main scenarios:

@ Constant (unidirectional) migration
® Constant proportion (fraction-based) migration.
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Constant Unidirectional Migration: Setup

® Assume a fixed vector mi moves out of population a each step.
® Assume a fixed vector me moves into population b each step.
® System for two populations a(t), b(t):

a(t) = Lya(t — 1) —my, b(t) = Lab(t — 1) + ma.

Closed Form Solutions.

a(t) = Lita(0) — (I —Ly) I - LiY)my.
b(t) = La2'b(0) + (I — L2) (I — La")ma,

where I is the n X n identity matrix.
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Constant Proportion Migration: Motivation

® Constant numbers might not be realistic: migration often depends
on current population size.

e Constant proportion migration: a fixed fraction of each population
moves each step.

® Reflects density-dependent dispersal: more individuals — more
migrants.
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Constant Proportion Migration: Setup

With k1, ko as fractions migrating, for two populations a(t), b(t):

La(t—1) — ki -a(t —1) + ko - b(t — 1)

a(t) =
Lo(t —1) — kg -b(t — 1)+ k1 -a(t —1).

® Migration is now proportional to a(t — 1) and b(t — 1).
® System complexity increases (which is why we assume the same
Leslie matrix L for both populations), but more realistic.

Predator-Prey Modeling
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Constant Proportion Migration: Closed-Form Expressions

Definition (Closed-Form for Two-Population System)

Let X(t) := a(t) + b(t) and A(t) := a(t) — b(t), with migration rates
ki,ko and k = k1 + ko, A = ko — k1. Then:

»(t) = L'%(0),
A(t) = L (“2(0)) + (L—ﬁx)t(A(oHﬂz(O)).

K KR
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Constant Proportion Migration: Closed-Form Expressions

Definition (Closed-Form for Two-Population System)

Let X(t) := a(t) + b(t) and A(t) := a(t) — b(t), with migration rates
ki,ko and k = k1 + ko, A = ko — k1. Then:

»(t) = L'%(0),

A(t) = L (?2(0)) + (L—ﬁx)t(A(oHﬂz(O)).

K

Sketch of Proof (Generating Functions):
@ Define X(2) = Yo 502()2" and Y(2) = Y50 A1)

® From the proportion-migration recurrences, derive functional
equations for X(z) and Y (z).

® Solve X(z) = (I—Lz)"'2(0) and invert the generating function
(via series expansion) to obtain closed form.
SMALL 2024

Predator-Prey Modeling



Migration
[e]e]e]e]e] lelele)

The Inspiration Behind Our Proof

Challenges.

® Analytical solutions not feasible in arbitrary case — Simplified
problem by fixing 2 populations and solving for arbitrary ages.

® Solution for the 1 age only is trivial - solve coupled recurrence
using generating functions — Inspiration for our proof.

pemographic [0

Research s
Monographs | == =

Sensitivity
Analysis: Matrix
Methods in
Demography and
Ecology
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Convergent Behavior

o If \pax(L — xkI) < 1, populations tend to die out or stabilize at a
consistent level.

® This scenario can be interpreted as sub-critical growth rates
dominated by mortality.

IL-2k] <1

.
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Tllustration of convergent behavior(in the case when k1 = ko =k = k = 2k).
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Divergent / Exponential Behavior

o If \pax(L — xkI) > 1, each population can grow exponentially in
isolation.

® Populations may explode unless factors like limited resources or
predator pressure are included.

W=2k|>1
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Tllustration of divergent behavior(in the case when k1 = ko = k).
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Oscillatory Behavior

e Complex eigenvalues (Apax(L — kI) &~ 1) can induce sustained
oscillations or cycles.

® This manifests in a repeating boom-bust population cycle (similar
to predator-prey) in each region.
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Tllustration of harmonic behavior(in the case when k1 = ko = k).
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Conclusions

Key Takeaways.

¢ Population Modeling with Predator Prey/Migration:

® Extensions of classic Leslie models capture spatial flow.
® Analytical solutions help clarify how migration affects stability.

e Applications and Practical Use:

® Empirical data + Machine Learning = parameter estimation.
® Results inform conservation strategies and resource management.
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Potential Applications

Modeling marine Conservation efforts for

ecosystems migratory birds Epidemic control




Future Directions

Open Challenges.

Conclusion
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® Multi-region and non-linear effects demand numerical approaches.

® (Quantum-inspired methods offer potential new perspectives.

Energy level transitions in 208 Pb and its analogy to predator-prey
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