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Overview

@ Introduction to the Lattice Walks

@ Overview of Main Results and Simulations

@ Technical Lemmas

@ Proof of Main Results

@ Future Work
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Fibonacci Number Definition

Definition (Fibonacci Numbers)

The Fibonacci Numbers are a sequence defined recursively
with F,.y = Fp+ Fp_1Vn > 2where F{ = 1and F, = 2.

Beginning of sequence: 1,2,3,5,8,13,21,34,55, ...
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What are Zeckendorf Decompositions?

Definition (Zeckendorf Decompositions)

A Zeckendorf Decomposition is a way to write a natural
number as the sum of non-adjacent Fibonacci Numbers. They
also give an alternative definition for the Fibonacci Numbers.

Theorem (Zeckendorf’s Theorem)

Every natural number has a unique Zeckendorf Decomposition.

Example (Greedy Algorithm):
@ 335
@ 335=233+102
@ 335=233+89+ 13
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Simple Jump Paths

Definition (Simple Jump Paths (in 2D))

A simple jump path is a path on the lattice grid where each
movement on the lattice grid consists of at least one unit
movement to the left and one unit movement downward.

Examples of simple jump paths (from (7,7) to (0, 0))
1 1
2 2
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Simple Jump Paths

@ We count simple jump paths from (a, b) to (0,0), where
a,be Nt

@ Let the number of simple jump paths from (a, b) to (0, 0)
be denoted s, p; always include (a, b) and (0, 0)

@ Let the number of simple jump paths from (a, b) to (0, 0)
with k steps be denoted t, p «

@ Analogue in d = 1 resembles base-2 expansion
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Theorem (E. Chen, R. Chen, L. Guo, C. Jiang, S.M., J.S.,

PY.)

Simple Path Gaussianity on d-dimensional Lattice: Let n be
a positive integer, and consider the distribution of the number of
summands among all simple jump paths with starting point
(p1,p2,...,Pg) Wwhere1 < pq,po,...,pq < n, and each path
represents a (not necessarily unique) decomposition of some
positive number. This distribution converges to a Gaussian as

. 1 . 4. vn
n — oo with mean ;n + 1 and standard deviation 37
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Simulations and Explanation of Main Result Statements
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@ Easiest to visualize what is going on when d = 2

@ Simple jump paths over a square lattice for n = 10, starting
point (10, 10)

@ Plotted points represent {tg 10,4} 1, with best-fit
Gaussian
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Simulations and Explanation of Main Result Statements

@ Simple jump paths over a rectangular lattice with starting
point (70, 30)

@ Plotted points represent {ts0 70« }3° ,, with best-fit
Gaussian
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Counting Simple Jump Paths

Lemma (Simple Jump Path Partition Lemma)

If s4(n) denotes the number of d-dimensional paths from
(n,n,...,n) to the origin and ty(n, k) denotes the number of
such paths with k steps, then sq(n) = > k_; ts(n, k).

@ Here ty(n, k) denotes the number of simple jump paths of
k steps starting from point (n, n, ..., n) in d-dimensions
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Counting Simple Jump Paths

Lemma (The Cookie Problem)

The number of ways of dividing C identical cookies among P

distinct people is (°5F71).

Lemma (Enumerating Simple Jump Paths in d-dimensions)

WneN,1<k<n ty(nk) = (021)°.

@ Every (Zj) is the number of ways to group k objects into n
nonempty groups

@ Groupings are independently determined, use Cookie
Problem lemma
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Mean and Standard Deviation

Useful formulas and notation:

@ p(xx): probability of event xx occurring, one of finitely many
values (events)

md
® Density function: fy(k, n) := 21D — ((2)+1)
@ Mean (discrete): u = > xkp(Xk)

@ Variance (discrete): 02 = > (xn — u)?p(xn)

@ Gaussian (continuous): Density
(270%) 12 exp(—(x — p)?/20%)
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Mean and Standard Deviation

Lemma (Mean on d-dimensional Lattice)

vne Nt pg(n+1) = In+1 ~ 2.

@ The mean is independent of d

Lemma (Standard Deviation on Square Lattice)

VneNt, o1(n+1) = Y, oo(n+1) = ﬁ”nq) ~ %

@ Calculate using definition of first moment (mean) and
second moment (standard deviation)

@ Use index shift: S°pt} becomes S°7_,, (") becomes (f)

@ Use binomial expansion and standard techniques for
evaluating binomial coefficients
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Mean and Standard Deviation

Lemma (Standard Deviation on d-dimensional Lattice)

Vd>2,neNt, og(n+1)<oi(n+1) < Y

@ We weren't able to find closed-form expression for o in
higher dimensions

@ For example, the evaluation of >7_o k9(7)¢ cannot be
generalized for d > 2

@ The variance decreases as d increases, and it is largest
when d = 1, proven using symmetry of binomial
coefficients

® In fact, it holds that og(n + 1) ~ /2



Lemmas
oooe

Mean and Standard Deviation

Lemma (Bounding the random variable)

Consider all simple jump paths from (n+1,n+1,...n+1) fo
the origin in d-dimensions. If K is the random variable denoting
the number of steps in each path, then the probability that K is
at least ”Ezﬁ from the mean is at most n—2¢.

@ By Chebyshev’s Inequality,
Prob(|K — p1g| > nfog(n+1)) < %

@ Asoy < @ by the previous lemma, we only decrease the
probability on the left if we replace o4(n+ 1) with @

@ If we write K as ug(n+1)+1- @ then with probability
tending to 1 we may assume |/| < n*
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Reminder of Main Result 1

Theorem (Simple Path Gaussianity on d-dimensional

Lattice)

Let n be a positive integer, and consider the distribution of the
number of summands among all simple jump paths with
starting point (p1, p2, ..., Pg) where 1 < py,po,...,pg < n, and
each distribution represents a (not necessarily unique)
decomposition of some positive number. This distribution
converges to a Gaussian as n — oo with mean zn+ 1 and

intion V1
standard deviation 2"
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Stirling Formula Expansion

@ Write k as pg(n+1) +1/- @ | is the number of standard
deviations from the mean

md
o Density function: fy(n+ 1,k + 1) := etk _ ()

@ Use Stirling’s Approximation on each factor:

m ~ mTe""/2mm
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Approximation using Taylor expansion

@ End result of Stirling expansioniis fy(n+1,k+ 1) =
d
odnpd/2 n" 1
sq(n+1) <2”kk(n—k)nk\/27rk(n—k)) ’ (1 + O(ﬁ))

@ Since k, n— k are close to n/2, the main term becomes

nn

fmain ==
TANT angk(n — k)"*\/2rk(n — k)
1

1
7 n—ly/ntt ERYNGIE]
V2 (1—ﬁ) ? (1+ﬁ) ?

@ Denote the denominator of the second
fraction as g1, approximate it
using Taylor expansion
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Result

(k=ng(n+1)?

@ Eventually we get gp.q =€ 2 .0/

@ Then, for |/] < n'/°,
(1))
f(n 1,k 1) = ——20m9 =St o 1/9)

sq(n+1)(mn?/2)9/2
@ The second exponential is negligible as n — oo; the first
exponential is Gaussian with mean pq(n+ 1) and variance
ad(n + 1)2 = %

@ The normalization cgpdstaqt is
sg(n+1) ~29(Z0) 2 d~2
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Reminder of Main Result

Definition (Generalized Jump Paths (in 2D))

A generalized jump path is a path on the lattice grid where
each movement on the lattice grid consists of either at least
one unit movement to the left or one unit movement downward.

Examples of generalized jump paths (from (7,7) to (0,0))
1 2 1

2

(6]
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Reminder of Main Result

Theorem (E. Fang, J.J., Z. Lee, D. Li, E. Lu, S.M., D.S. J.S.)

Generalized Path Gaussianity on 2-dimensional Lattice:
Let g9((p, q), k) denote the number of generalized jump paths
from the point (p, q) using exactly k moves. As p,q — oo,
a((p, q), k) is Gaussian with respect to k.
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Counting Lemma Statements

@ g(p, k) is Generalized Jump Paths from p with kK moves

@ u(p, k) counts paths that don’t necessarily end at (0,0).

® u(p,k)=9g(p.k)+9(p.k+1)
In 2 dimensions,
U((p,Q),k) = U((p,q— 1),k)+U((p,q— 1)7k_ 1)

+u((p—1,9),k)+u((p—1,9),k—1)
—U((p—'l,q—1),k)—U((p—1,q—1),k—1)
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Counting Lemma Statements

@ Let Fpq(x) = u((p, q), k)x*
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Counting Lemma Statements

Combinatorics Method

@ Let r(p, n) be defined identically to g(p, n) but allowing
stationary points

@ Let s(p, n, k) correspond to r(p, n) where there are at least
k stationary points

By Stars and Bars,

o177

i=1
@ Observe s(p,n, k) = (})r(p,n— k)
Then by inclusion-exclusion,

n—1

op.r) = Y (1) (0)rtpn k)

k=0
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Counting Lemma Statements

Combinatorics Method

Current Result

In 2-D,

O N /((p=1)+n—i\/(g=1)+n—i
st =3 () (5 5 7 ) (s )
where WLOG p < g
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Counting Lemma Statements

Simplification

Inner term counts (S, T, U) such that
@ SCn, TCp+n—1\S,UC[g+n—1\S
® S|+ [T|=|S|+|Ul=n-1
Define f where f toggles minimum term of SU(UNT)

@ fisit’s own involution

o f flips parity of | S|

@ Ordered pairs defined on f sumto 0

@ Only need to sum if f not well-defined
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Counting Lemma Statements

Combinatorics Method

Let the set where f is not well-defined be E. Then, we can
conclude

S () (V) (G ) -

f is not well-defined if and only if
@ S=0
e TnUN[n=o
Basic combinatorial arguments then yield

-5 )E 5 )

i=0
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Counting Lemma Statements

Combinatorics Method

@ Use u((p,q),n) = g((p,q),n) +9((p,q),n+1)

u((p,q), n) = g (l,)) (p ZQ" i) <nci i>

@ Plugging into Fp 4(x):

o)~ (103 (9) (1)

k=0



2-D Gaussianity
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@ X 4 is random variable counting length of path

@ A, Brandom variables,
P(A= k) o (), P(B = k) > () (%)

@ Xp.q = Ap,q + Bp,q by previous result
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Ais Gaussian with mean §, standard dev £

o

. . . = 2
Bis Gaussian with mean 9=PTVP +60d+q

N

The proofs are routine calculations.



2-D Gaussianity
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Outline

@ Use Stirling’s Approximation

@ Set k = an + tv/n where ais mean and standard deviation
is O(v/n).
i t
@ Taylor Expansion about 7

@ Show probability || > n®" — 0asn— oo
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Final Results

@ The number of generalized jump paths is Gaussian with
respect to the number of jumps.

. ptq | VP*+6pg+g?
@ Mean: /= + Y¥=—,———

. 2
@ Variance: 259 + — p+qF

84/ P%+6pq+q?
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Future Work

@ Work out expected Gaussianity result for compound paths
in higher dimensions

@ Investigate rates of convergence to Gaussian

@ What happens if we allow points on lattice to be visited
more than once?
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