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Fibonacci sequence

Theorem (Zeckendorf’s Theorem)

Every positive integer can be written uniquely as the sum
of non-consecutive Fibonacci numbers where

Fn = Fn−1 + Fn−2

and F1 = 1, F2 = 2.

Thus, if we create an increasing sequence of positive
integers such that any positive number can be written
uniquely as a sum of non-consecutive terms, we construct
the sequence

1, 2, 3, 5, 8, 13, 21, 34, . . .
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Expanding to a 2-Dimensional Construction

Beginning in the center with the 1 by 1 square and
spiraling out counter clockwise, we construct an increasing
sequence of positive integers where every positive integer
can be expressed as a sum of terms that do not share an
edge in the Fibonacci Quilt.
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The Fibonacci Quilt Sequence

Theorem (Fibonacci Quilt Numbers)

The terms of the Fibonacci Quilt Sequence {an} satisfy the
recurrence relation

an+1 = an−1 + an−2

for n ≥ 4 and ai = i otherwise.
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The Fibonacci Quilt Sequence

Lemma (Recurrence Relation)

The terms of the Fibonacci Quilt Sequence {an} satisfy the
recurrence relation

an+1 = an + an−4

for n ≥ 6 and ai = i for i ≤ 5 and a6 = 7.
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Proof of Lemma: an+1 = an + an−4 for n ≥ 6

Proof.

We can verify the recurrence for 6 ≤ n ≤ 10.

If an+1 is an element of the FQ Sequence where n ≥ 10,
then an+1 cannot be legally decomposed from any previous
elements of the FQ Sequence. Thus, an+1 − 1 is the largest
positive integer that can be legally decomposed using the
elements from the set {a1 < a2 < · · · < an}.

Then (an+1 − 1)− (an) must be the largest number that
can be legally decomposed using elements from the set
{a1 < a2 < · · · < an−5}, which equals an−4 − 1 for n ≥ 10
by construction. Thus an+1 = an + an−4 for n ≥ 6.
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Proof of Theorem: an+1 = an−1 + an−2 for
n ≥ 4

Proof.

Using the lemma and an inductive strategy, we first confirm
that the recursive rule is satisfied for n = 4 and n = 5.

Then

an+1 = an + an−4

= (an−1 + an−5) + an−4

= an−1 + (an−4 + an−5)

= an−1 + an−2.
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Not a Positive Linear Recurrence

an+1 = an−1 + an−2 for n ≥ 4 is not a Positive Linear
Recurrence as the leading coefficient in the recurrence
relation is zero.

an+1 = an + an−4 for n ≥ 6 is also not a Positive Linear
Recurrence because the initial conditions are not met
(would have had to have a6 = 7, but we actually have
a6 = 7).

This leads to new complications and questions we can ask.
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Non-Unique Decompositions

We find that we no-longer have unique decompositions. In
particular, 11 = 9+2 and 11=7+4 are both legal
decompositions.
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Non-Unique Decompositions

Let d(m) be the number of FQ-legal decompositions of m.
By construction of our sequence, d(ai) = 1.

Let dave be the average number of FQ-legal
decompositions of the integers in In := [0, an+1). Then

dave(n) :=
1

an+1

an+1−1∑
m=0

d(m).

Theorem (Growth Rate of Number of Decompositions)

There is computable λ > 1 and a C > 0 such that
dave(n) ∼ Cλn. Thus the average number of
decompositions of integers in [0, an+1) tends to infinity
exponentially fast.
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Number of Legal Decompositions

We define the following:

dn: the number of FQ-legal decompositions using only
elements of {a1, a2, . . . , an}.

dn =

an+1−1∑
m=0

d(m)

dave(n) =
dn
an+1

Similarly we define cn and bn where

cn counts decompositions where an is a summand, and
bn counts decompositions where an and an−2 are both
summands.
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Number of Legal Decompositions

Using brute force we can compute the first few values of
the sequences.

n an dn cn bn

0 1 1 0
1 1 2 1 0
2 2 3 1 0
3 3 4 1 0
4 4 6 2 1
5 5 8 2 1
6 7 11 3 1
7 9 15 4 1
8 12 21 6 2
9 16 30 9 3

10 21 42 12 4
11 28 59 17 6

Table: First few terms.
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Lemma

For n ≥ 7 we have

dn = cn + dn−1, (1)

cn = dn−5 + cn−2 − bn−2, and (2)

bn = dn−7. (3)

Thus dn = dn−1 + dn−2 − dn−3 + dn−5 − dn−9, implying
dave(n) ≈ C(1.05459)n.
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Greedy Algorithm

The Greedy Algorithm for decompositions typically leads to
unique representations by iteratively selecting the largest
available summands.

For the FQ Sequence we do
not have unique decomposi-
tions and the greedy algorithm
does not always successfully
terminate with a legal decom-
position.

We have 6 > a5, but 6 = a4 + a2 is the only legal
decomposition.

If N = an + 6 < an+1, then N does not have a legal
decomposition by applying the Greedy Algorithm.
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Greedy Algorithm

In fact, if N = an + x and N < an+1, then N and x either
both have a successful legal decomposition by applying the
Greedy Algorithm, or neither has one.

The “Greedy Fails” less than a18 = 200 are 6, 27, 34, 43,
55, 71, 92, 113, 120, 141, 148, 157, 178, 185, 194.

hn: number of integers in the interval [1, an+1) where the
greedy algorithm successfully terminates in a legal
decomposition.
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Greedy Algorithm for Decompositions

n an hn ρn

1 1 1 100.0000
2 2 2 100.0000
3 3 3 100.0000
4 4 4 100.0000
5 5 5 83.3333
6 7 7 87.5000
7 9 10 90.9091
8 12 14 93.3333
9 16 19 95.0000

10 21 25 92.5926
11 28 33 91.6667

Table: First few terms, yields hn = hn−1 + hn−5 + 1.
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Greedy Algorithm for Decompositions

Now we have hn = hn−1 + hn−5 + 1 and ρn ∼ hn
an+1

.

Using the Generalized Binet Formula, we find the Greedy
Algorithm for Decompositions yields a legal decomposition
for about 92.627% of the integers.
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Thank You

Pari Ford

fordpl@unk.edu
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