[Intro](#page-1-0) [M&M Game: I](#page-6-0) [Hoops Game](#page-22-0) [M&M Game: II](#page-32-0) [Future Work / Takeaways](#page-62-0)

From M&Ms to Mathematics, or, How I learned to answer questions and help my kids love math.

Steven J. Miller, Williams College SMALL REU Director President, Fibonacci Association sjm1@williams.edu

http://web.williams.edu/Mathematics/sjmiller/public_html/

Topics in Recreational Math and Finite Geometry AMS Eastern Sectional, Albany: 20 October 2024

1

Some Issues for the Future

- World rapidly changing powerful computing cheap & available.
- What skills are we teaching? What should we?
- One of hardest skills: how to think / attack a new problem, how to see connections, what data to gather.

Goals of the Talk: Opportunities Everywhere!

- Ask Questions! Often simple questions lead to good math.
- Gather data: observe, program and simulate.
- Use games to get to mathematics.

3

. Discuss implementation: Please interrupt!

Joint work with Cameron (was 4) and Kayla (was 2) Miller:

The M&M Game: From Morsels to Modern Mathematics (Ivan Badinski, Nathan McCue, Cameron Miller, Kayla Miller, Michael Stone), Math. Magazine **90** (2017), no. 3, 197–207: [https://web.williams.edu/Mathematics/sjmiller/](https://web.williams.edu/Mathematics/sjmiller/public_html/math/papers/MMProblem10.pdf) [public_html/math/papers/MMProblem10.pdf](https://web.williams.edu/Mathematics/sjmiller/public_html/math/papers/MMProblem10.pdf)

The logarithm of *x* base *b* is the power we raise *b* to get *x*; it is the inverse of exponentiation.

$$
x = b^y \text{ if and only if } \log_b(x) = y.
$$

$$
\log_{10}(10^4) = 4, \quad \log_{10}(1/100) = -2.
$$

Properties:

4

- $\log_{10} 1 = 0$.
- \bullet 10^{log₁₀ $^x = x$.}
- \bullet $log_{10}(A \cdot B) = log_{10} A + log_{10} B$.

Pre-requisites: Combinatorics Review

- *n*!: number of ways to order *n* people, order matters.
- $\frac{n!}{k!(n-k)!} = nCk = \binom{n}{k}$ n_{k}^{n} : number of ways to choose *k* from *n*, order doesn't matter.
- Examples: $\binom{n}{1}$ $\binom{n}{1} = n, \binom{4}{2}$ $\binom{4}{2} = 6$, in general $\binom{n}{2}$ $\binom{n}{2} = \frac{n(n-1)}{2}$ $\frac{(-1)}{2}$.

Pre-req: Pascal's Triangle: (4min26sec): Hidden Structure:

https://www.youtube.com/watch?v=_vkGakVt1RA&t=216s

Sierpinski's triangle: Look at Pascal's triangle modulo 2: https://www.youtube.com/watch?v=tt4_4YajqRM.

Sierpinki's Gasket http://www.math.sunvsb.edu/~scott/Book331/Sierpinski_gasket.html

The M&M Game

7

8

M&M Game Rules

9

Cam (4 years): If you're born on the same day, do you die on the same day?

(1) Everyone starts off with *k* M&Ms (we did 5). (2) All toss fair coins, eat an M&M if and only if head.

What are natural questions to ask?

What are natural questions to ask?

Question 1: How likely is a tie (as a function of *k*)?

Question 2: How long until one dies?

Question 3: Generalize the game: More people? Biased coin?

Important to ask questions – curiousity is good and to be encouraged! Value to the journey and not knowing the answer.

Let's gather some data! Let's play!

11

Probability of a tie in the M&M game (2 players)

Prob(tie) \approx 33% (1 M&M), 19% (2 M&Ms), 14% (3 M&Ms), 10% (4 M&Ms).

Probability of a tie in the M&M game (2 players)

Gave at a 110th anniversary talk....

Probability of a tie in the M&M game (2 players)

... asked them: what will the next 110 bring us? Never too early to lay foundations for future classes.

Welcome to Statistics and Inference!

- ⋄ Goal: Gather data, see pattern, extrapolate.
- \diamond Methods: Simulation, analysis of special cases.
- \diamond Presentation: It matters how we show data, and which data we show.

Hard to predict what comes next.

Viewing M&M Plots: Log-Log Plot

Not *just* sadistic teachers: logarithms useful!

Viewing M&M Plots: Log-Log Plot

Best fit line:

log (Prob(tie)) = -1.42022 - 0.545568 log (#M&Ms) or $\text{Prob}(k) \approx 0.2412/k^{.5456}.$

Viewing M&M Plots: Log-Log Plot

Best fit line:

 $\log(Prob(tie)) = -1.42022 - 0.545568 \log(\#M\&Ms)$ or $\text{Prob}(k) \approx 0.2412/k^{.5456}.$

Predicts probability of a tie when $k = 220$ is 0.01274, but answer is 0.01347. **What gives?**

Statistical Inference: Too Much Data Is Bad!

Small values can mislead / distort. Let's go from $k = 50$ to 110.

Statistical Inference: Too Much Data Is Bad!

Small values can mislead / distort. Let's go from $k = 50$ to 110.

Best fit line:

 $log (Prob (tie)) = -1.58261 - 0.50553 log (\#M\&Ms)$ or $\mathrm{Prob}(k)\approx 0.205437/k^{.50553}$ (had 0.241662/ $k^{.5456}).$

Statistical Inference: Too Much Data Is Bad!

Small values can mislead / distort. Let's go from $k = 50$ to 110.

Best fit line:

 $log (Prob (tie)) = -1.58261 - 0.50553 log (\#M\&Ms)$ or $\mathrm{Prob}(k)\approx 0.205437/k^{.50553}$ (had 0.241662/ $k^{.5456}).$

Get 0.01344 for *k* = 220 (answer 0.01347); **much better!**

From Shooting Hoops to the Geometric Series Formula

Game of hoops: first basket wins, alternate shooting.

Simpler Game: Hoops: Mathematical Formulation

Bird and **Magic** (I'm old!) alternate shooting; first basket wins.

- **Bird** always gets basket with probability *p*.
- **Magic** always gets basket with probability *q*.

Let *x* be the probability **Bird** wins – what is x ?

Solving the Hoop Game

Classic solution involves the geometric series.

Break into cases:

Solving the Hoop Game

Classic solution involves the geometric series.

Break into cases:

- **b** Bird wins on 1st shot: *p*.
- **Bird** wins on 2^{nd} shot: $(1 p)(1 q) \cdot p$.
- **Bird** wins on 3rd shot: $(1 p)(1 q) \cdot (1 p)(1 q) \cdot p$.

Bird wins on nth shot:

$$
(1-p)(1-q) \cdot (1-p)(1-q) \cdots (1-p)(1-q) \cdot p.
$$

Let $r = (1 - p)(1 - q)$. Then

$$
x = Prob(Bird wins)
$$

= $p + rp + r^2p + r^3p + \cdots$
= $p(1 + r + r^2 + r^3 + \cdots),$

the geometric series.

27

Showed

$$
x = Prob(Bird wins) = p(1 + r + r^2 + r^3 + \cdots);
$$

will solve without the geometric series formula.

Showed

$$
x = Prob(Bird wins) = p(1 + r + r^2 + r^3 + \cdots);
$$

will solve without the geometric series formula.

Have

$$
x = Prob(Bird wins) = p + (1 - p)(1 - q)
$$

Showed

$$
x = Prob(Bird wins) = p(1 + r + r^2 + r^3 + \cdots);
$$

will solve without the geometric series formula.

Have

$$
x = \text{Prob}(\text{Bird wins}) = p + (1 - p)(1 - q)x
$$

Showed

$$
x = Prob(Bird wins) = p(1 + r + r^2 + r^3 + \cdots);
$$

will solve without the geometric series formula.

Have

$$
x = Prob(Bird wins) = p + (1 - p)(1 - q)x = p + rx.
$$

Thus

31

$$
(1-r)x = p \quad \text{or} \quad x = \frac{p}{1-r}.
$$

As
$$
x = p(1 + r + r^2 + r^3 + \cdots)
$$
, find

$$
1 + r + r^2 + r^3 + \cdots = \frac{1}{1 - r}.
$$

Lessons from Hoop Problem

- ⋄ Power of Perspective: Memoryless process.
- \circ Can circumvent algebra with deeper understanding! (Hard)
- \diamond Depth of a problem not always what expect.
- ⋄ Importance of knowing more than the minimum: connections.
- ⋄ Math is fun!

The M&M Game

Solving the M&M Game

Overpower with algebra: Assume *k* M&Ms, two people, fair coins:

$$
\text{Prob}(\text{tie}) \ = \ \sum_{n=k}^{\infty} {n-1 \choose k-1} \left(\frac{1}{2}\right)^{n-1} \frac{1}{2} \ \cdot \ \binom{n-1}{k-1} \left(\frac{1}{2}\right)^{n-1} \frac{1}{2},
$$

where as always binomial coefficient

$$
\binom{n}{r} = \frac{n!}{r!(n-r)!}.
$$

"Simplifies" to 4−*^k* ²*F*1(*k*, *k*, 1, 1/4), a special value of a hypergeometric function! If *k* = 100, 000 about .063% (predict .061%).

A look at your future classes, but is there a better way?

Where did formula come from? Each turn one of four equally likely events happens:

- Both eat an M&M.
- Cam eats and M&M but Kayla does not.
- Kayla eats an M&M but Cam does not.
- **O** Neither eat.

Probability of each event is 1/4 or 25%.

Where did formula come from? Each turn one of four equally likely events happens:

- Both eat an M&M.
- Cam eats and M&M but Kayla does not.
- Kayla eats an M&M but Cam does not.
- **O** Neither eat.

Probability of each event is 1/4 or 25%.

Each person has exactly $k - 1$ heads in first $n - 1$ tosses, then ends with a head.

$$
\text{Prob}(\text{tie}) \ = \ \sum_{n=k}^{\infty} {n-1 \choose k-1} \left(\frac{1}{2}\right)^{n-1} \frac{1}{2} \ \cdot \ \binom{n-1}{k-1} \left(\frac{1}{2}\right)^{n-1} \frac{1}{2}.
$$

Use the lesson from the Hoops Game: Memoryless process!

If neither eat, as if toss didn't happen. Now game is finite.

Use the lesson from the Hoops Game: Memoryless process!

If neither eat, as if toss didn't happen. Now game is finite.

Much better perspective: each "turn" one of three equally likely events happens:

- Both eat an M&M.
- Cam eats and M&M but Kayla does not.

• Kayla eats an M&M but Cam does not. Probability of each event is 1/3 or about 33%

$$
\sum_{n=0}^{k-1} {2k-n-2 \choose n} \left(\frac{1}{3}\right)^n {2k-2n-2 \choose k-n-1} \left(\frac{1}{3}\right)^{k-n-1} \left(\frac{1}{3}\right)^{k-n-1} {1 \choose 1} \frac{1}{3}.
$$

Interpretation: Let Cam have *c* M&Ms and Kayla have *k*; write as (*c*, *k*).

Then each of the following happens 1/3 of the time after a 'turn':

\n- $$
(c, k) \rightarrow (c - 1, k - 1)
$$
.
\n- $(c, k) \rightarrow (c - 1, k)$.
\n

$$
\bullet (c,k) \longrightarrow (c,k-1).
$$

Figure: The M&M game when $k = 4$. Count the paths! Answer $1/3$ of probability hit (1,1).

Figure: The M&M game when $k = 4$, going down one level.

Figure: The M&M game when $k = 4$, removing probability from the second level.

Figure: Removing probability from two outer on third level.

Figure: Removing probability from the (3,2) and (2,3) vertices.

 $(2,1)$

9/81

∩

 $(1,1)$

()

 $(1, 2)$

 $9/81$

 $(1,3)$

12/81

 $(1,4)$

 $1/27$

⊖

 $(4,1)$

 $1/27$

 $(3,1)$

12/81

Figure: Removing probability from the (2,2) vertex.

Figure: Removing probability from the (4,1) and (1,4) vertices.

Figure: Removing probability from the (3,1) and (1,3) vertices.

Figure: Removing probability from (2,1) and (1,2) vertices. Answer is 1/3 of (1,1) vertex, or 245/2187 (about 11%).

Interpreting Proof: Connections to the Fibonacci Numbers!

Fibonacci:
$$
F_{n+2} = F_{n+1} + F_n
$$
 with $F_0 = 0, F_1 = 1$.

Starts 0, 1, 1, 2, 3, 5, 8, 13, 21, ... <http://www.youtube.com/watch?v=kkGeOWYOFoA>.

Binet's Formula (can prove via 'generating functions'):

$$
F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n.
$$

Interpreting Proof: Connections to the Fibonacci Numbers!

Fibonacci:
$$
F_{n+2} = F_{n+1} + F_n
$$
 with $F_0 = 0, F_1 = 1$.

Starts 0, 1, 1, 2, 3, 5, 8, 13, 21, ... <http://www.youtube.com/watch?v=kkGeOWYOFoA>.

Binet's Formula (can prove via 'generating functions'):

$$
F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n.
$$

M&Ms: For $c, k \geq 1$: $x_{c,0} = x_{0,k} = 0$; $x_{0,0} = 1$, and if $c, k \geq 1$:

$$
x_{c,k} = \frac{1}{3}x_{c-1,k-1} + \frac{1}{3}x_{c-1,k} + \frac{1}{3}x_{c,k-1}.
$$

Reproduces the tree but a lot 'cleaner'.

50

Interpreting Proof: Finding the Recurrence

What if we didn't see the 'simple' recurrence?

$$
x_{c,k} = \frac{1}{3}x_{c-1,k-1} + \frac{1}{3}x_{c-1,k} + \frac{1}{3}x_{c,k-1}.
$$

The following recurrence is 'natural':

$$
x_{c,k} = \frac{1}{4}x_{c,k} + \frac{1}{4}x_{c-1,k-1} + \frac{1}{4}x_{c-1,k} + \frac{1}{4}x_{c,k-1}.
$$

Obtain 'simple' recurrence by algebra: subtract $\frac{1}{4}x_{c,k}$:

$$
\frac{3}{4}x_{c,k} = \frac{1}{4}x_{c-1,k-1} + \frac{1}{4}x_{c-1,k} + \frac{1}{4}x_{c,k-1}
$$
\ntherefore $x_{c,k} = \frac{1}{3}x_{c-1,k-1} + \frac{1}{3}x_{c-1,k} + \frac{1}{3}x_{c,k-1}$.

Solving the Recurrence

 \bullet

$$
x_{c,k} = \frac{1}{3}x_{c-1,k-1} + \frac{1}{3}x_{c-1,k} + \frac{1}{3}x_{c,k-1}.
$$

$$
x_{0,0} = 1.
$$

•
$$
x_{1,0} = x_{0,1} = 0
$$
.
\n• $x_{1,1} = \frac{1}{3}x_{0,0} + \frac{1}{3}x_{0,1} + \frac{1}{3}x_{1,0} = \frac{1}{3} \approx 33.3\%.$

\n- $$
x_{2,0} = x_{0,2} = 0.
$$
\n- $x_{2,1} = \frac{1}{3}x_{1,0} + \frac{1}{3}x_{1,1} + \frac{1}{3}x_{2,0} = \frac{1}{9} = x_{1,2}.$
\n- $x_{2,2} = \frac{1}{3}x_{1,1} + \frac{1}{3}x_{1,2} + \frac{1}{3}x_{2,1} = \frac{1}{9} + \frac{1}{27} + \frac{1}{27} = \frac{5}{27} \approx 18.5\%$
\n

Walking from $(0,0)$ to (k, k) with allowable steps $(1,0)$, $(0,1)$ and (1,1), hit (*k*, *k*) before hit top or right sides.

Walking from (0,0) to (*k*, *k*) with allowable steps (1,0), (0,1) and (1,1), hit (*k*, *k*) before hit top or right sides.

Generalization of the Catalan problem. There don't have (1,1) and stay on or below the main diagonal.

Walking from (0,0) to (*k*, *k*) with allowable steps (1,0), (0,1) and $(1,1)$, hit (k, k) before hit top or right sides.

Generalization of the Catalan problem. There don't have (1,1) and stay on or below the main diagonal.

Interpretation: Catalan numbers are valid placings of (and).

Examining Probabilities of a Tie

When $k = 1$, Prob(tie) = $1/3$.

```
When k = 2, Prob(tie) = 5/27.
```
When $k = 3$, Prob(tie) = 11/81.

When $k = 4$, Prob(tie) = 245/2187.

When $k = 5$, Prob(tie) = 1921/19683.

When $k = 6$, Prob(tie) = 575/6561.

When $k = 7$, Prob(tie) = 42635/531441.

When $k = 8$, Prob(tie) = 355975/4782969.

Examining Ties: Multiply by 3 2*k*−1 **to clear denominators.**

When $k = 1$, get 1.

When $k = 2$, get 5.

When *k* = 3, get 33.

When $k = 4$, get 245.

When *k* = 5, get 1921.

When $k = 6$, get 15525.

When *k* = 7, get 127905.

When *k* = 8, get 1067925.

Get sequence of integers: 1, 5, 33, 245, 1921, 15525,

Get sequence of integers: 1, 5, 33, 245, 1921, 15525,

```
OEIS: http://oeis.org/.
```


Get sequence of integers: 1, 5, 33, 245, 1921, 15525,

```
OEIS: http://oeis.org/.
```
Our sequence: <http://oeis.org/A084771>.

The web exists! Use it to build conjectures, suggest proofs....

OEIS (continued)

Future Work and Takeaways

Current and Future Work

Current and Future Projects (inspired by conversations at Texas State with April Yang), done in 2024 Polymath Jr REU¹:

- What if each person tosses several fair coins simultaneously of different denominations (some positive, some negative, sum perhaps is zero)?
- What if probability of a head tends to 1 as the number of M&M's left decreases?

¹<https://geometrynyc.wixsite.com/polymathreu>

- \diamond Always ask questions.
- \diamond Many ways to solve a problem.
- \diamond Experience is useful and a great guide.
- \diamond Need to look at the data the right way.
- \Diamond Often don't know where the math will take you.
- \Diamond Value of continuing education: more math is better.

⋄ Connections: My favorite quote: If all you have is a hammer, pretty soon every problem looks like a nail.