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General Advice: What are your tools and how can they be used?

Law of the Hammer:

@ Abraham Kaplan: | call it the law of the instrument, and it
may be formulated as follows: Give a small boy a hammer,
and he will find that everything he encounters needs
pounding.

@ Abraham Maslow: | suppose it is tempting, if the only tool
you have is a hammer, to treat everything as if it were a
nail.

@ Bernard Baruch: If all you have is a hammer, everything
looks like a nail.
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Zombie Infection: Rules

@ If share walls with 2 or more infected, become infected.
@ Once infected, always infected.
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Zombie Infection: Rules

@ If share walls with 2 or more infected, become infected.
@ Once infected, always infected.

Initial Configuration One moment later

Two moments later Threemoments later
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Zombie Infection: Conquering The World

Easiest initial state that ensures all eventually infected is...?
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Zombie Infection: Conquering The World

Easiest initial state that ensures all eventually infected is...?
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Zombie Infection: Conquering The World

Next simplest initial state ensuring all eventually infected...?
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Fewest number of initial infections needed to get all...?
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Zombie Infection: Can n — 1 infect all?
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Zombie Infection: Can n — 1 infect all?

Perimeter of infection unchanged.
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Zombie Infection: Can n — 1 infect all?

Perimeter of infection unchanged.
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Zombie Infection: Can n — 1 infect all?

Perimeter of infection decreases by 2.




Zombies
L ]

Zombie Infection: Can n — 1 infect all?

Perimeter of infection decreases by 4.
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Zombie Infection: n — 1 cannot infect all

@ If n— 1 infected, maximum perimeter is 4(n — 1) = 4n — 4.
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@ If n— 1 infected, maximum perimeter is 4(n — 1) = 4n — 4.

@ Mono-variant: As time passes, perimeter of infection never
increases.
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Zombie Infection: n — 1 cannot infect all

@ If n— 1 infected, maximum perimeter is 4(n — 1) = 4n — 4.

@ Mono-variant: As time passes, perimeter of infection never
increases.

@ Perimeter of n x nsquare is 4n, so at least 1 square safe!
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Rules for Triangle Game

Take an equilateral triangle, label corners 0, 1 and 2.
Subdivide however you wish into triangles.

Add labels, if a sub-triangle labeled 0—1-2 then Player 1 wins,
else Player 2.

Take turns adding labels, subject to:
On 0—1 boundary must use 0 or 1
On 1-2 boundary must use 1 or 2
On 0-2 boundary must use 0 or 2

Who has the winning strategy? What is it?
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Rules for Triangle Game

Do

(V]

0 0 1
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The Line Game

Consider one-dimensional analogue: if have a 0—1 segment
Player 1 wins, else Player 2 wins.

0 1
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The Line Game

Consider one-dimensional analogue: if have a 0—1 segment
Player 1 wins, else Player 2 wins.

*—o—0 00— *—0—0—0

0 1
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The Line Game

Consider one-dimensional analogue: if have a 0—1 segment
Player 1 wins, else Player 2 wins.

*—o—00—0—0—0-9&

o °
0 0 0= <=111

Cannot prevent at least one 0—1 segment.
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The Line Game (cont)

Mono-variant: as add labels, number of 0—1 segments stays
the same or increases by 2.

0 0 0 1 1 1
— | |
0 0 0 0 o 1 1

1 1 | 1 1 I

) ] 1 ! !

[N

—
- O
P e—

0 0 0 1 1 1
Figure 3. The various cases from the 1-dimensional Sperner proof. Notice

in each of the six cases, the change in the number of 0-1 segments is even.

Can also view this as a parity argument.
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Zeckendorf Games
with Cordwell, Epstein, Flynt, Hlavacek, Huynh, Peterson, Vu
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Zeckendorf’s Theorem

Fibonacci Numbers: Fpi1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89, .. ..
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Zeckendorf’s Theorem

Fibonacci Numbers: F,.1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89,....

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Fibonacci Numbers: F,.1 = Fn+ Fp_1;
First few: 1,2,3,5,8,13,21,34,55,89, ....

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =7
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Zeckendorf’s Theorem

Fibonacci Numbers: F,.1 = Fn+ Fp_1;
First few: 1,2,3,5,8,13,21,34,55,89, ....

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +17 = Fg + 17.
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Zeckendorf’s Theorem

Fibonacci Numbers: F,.1 = Fn+ Fp_1;
First few: 1,2,3,5,8,13,21,34,55,89, ...

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13+4 = Fg + Fs + 4.
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Zeckendorf’s Theorem

Fibonacci Numbers: F,.1 = Fn+ Fp_1;
First few: 1,2,3,5,8,13,21,34,55,89, ....

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13 +3+1=Fg + Fg + F3 + 1.
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Zeckendorf’s Theorem

Fibonacci Numbers: F,.1 = Fn+ Fp_1;
First few: 1,2,3,5,8,13,21,34,55,89, ...

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13+3+1=Fg+ Fg + F3 + F4.
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Zeckendorf’s Theorem

Fibonacci Numbers: F,.1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89, .. ..

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13+3+1 = F8+F6+F3—|-F1.
Example: 83=55+21+5+2=Fy+ F7 + F4 + F>.
Observe: 51 miles ~ 82.1 kilometers.
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Introduction: Summand Minimality

Fibonaccis: F4 :1,F2:2,F3:3,F4:5,Fn+2:F,H_1+Fn.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2018 = 1597+ 377 +34+8+2 = Fig+ F13+ Fg + F5 + Fo.

A7
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Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
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Conversely, we can construct the Fibonacci sequence using
this property:
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Introduction: Summand Minimality

Fibonaccis: F4 :1,F2:2,F3:3,F4:5,Fn+2:F,H_1+Fn.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2018 = 1597+ 377 +34+8+2 = Fig+ F13+ Fg + F5 + Fo.

Conversely, we can construct the Fibonacci sequence using
this property:

1,2




Zeckendorf Games
[ ]

Introduction: Summand Minimality

Fibonaccis: F4 :1,F2:2,F3:3,F4:5,Fn+2:F,H_1+Fn.
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Introduction: Summand Minimality

Fibonaccis: F4 :1,F2:2,F3:3,F4:5,Fn+2:F,H_1+Fn.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2018 = 1597+ 377 +34+8+2 = Fig+ F13+ Fg + F5 + Fo.

Conversely, we can construct the Fibonacci sequence using
this property:

1,2,3,5
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Introduction: Summand Minimality

Fibonaccis: F4 :1,F2:2,F3:3,F4:5,Fn+2:F,H_1+Fn.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2018 = 1597+ 377 +34+8+2 = Fig+ F13+ Fg + F5 + Fo.

Conversely, we can construct the Fibonacci sequence using
this property:

1,2,3,5,8
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Introduction: Summand Minimality

Fibonaccis: F4 :1,F2:2,F3:3,F4:5,Fn+2:F,H_1+Fn.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2018 = 1597+ 377 +34+8+2 = Fig+ F13+ Fg + F5 + Fo.

Conversely, we can construct the Fibonacci sequence using
this property:

1,2,3,5,8,13...

eSS -
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Summand Minimality

@ 18 = 13 + 5= Fg + F4, legal decomposition, two
summands.

@18 = 18 + 83 + 2= F + F3+ F», non-legal
decomposition, three summands.

The Zeckendorf decomposition is summand minimal.
Overall Question
What other recurrences are summand minimal?

;
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Positive Linear Recurrence Sequences

A positive linear recurrence sequence (PLRS) is the
sequence given by a recurrence {an} with

an = C1ap—1 + -+ Cta@n—t

and each ¢; > 0 and ¢4, ¢; > 0. We use ideal initial conditions
a_(n-1)=0,...,a1=0,a =1andcall (¢,...,c) the
signature of the sequence.

Theorem (Cordwell, Hlavacek, Huynh, M., Peterson, Vu)

For a PLRS with signature (¢4, Co, . . ., Ct), the Generalized
Zeckendorf Decompositions are summand minimal if and only if

C{>C > - > Ct.

SN OSOSGSLSSSS




Zeckendorf Games
L]

Proof for Fibonacci Case

Idea of proof:

@ D = byFi + -+ bpF, decomposition of N, set
Ind(’D):b1 A4+ by-n

@ Move to D’ by
0 2Fk = Fxi 1+ Fx_2 (and 2F, = F3 + F4).
o Fi + Fk+1 = Fk+2 (and F1 + F1 = F).

@ Monovariant: Note Ind(D’) < Ind(D).
o 2F = Fk+1 + Fi_o: 2k vs 2k — 1.
o Fx+ Fxi1 = Fao: 2k +1vs k4 2.

@ If not at Zeckendorf decomposition can continue, if at
Zeckendorf cannot. Better: Ind'(D) = byv/1 + - -+ + byy/n.

[
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@ Two player game, alternate turns, last to move wins.
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@ Two player game, alternate turns, last to move wins.

@ Bins F4, Fo, F3, ..., start with N pieces in Fy and others
empty.

~N- TS
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@ Two player game, alternate turns, last to move wins.

@ Bins F4, Fo, F3, ..., start with N pieces in Fy and others
empty.

@ Aturnis one of the following moves:
o If have two pieces on F, can remove and put one
piece at Fx.1 and one at Fx_»
(if Kk =1 then 2F; becomes 1F5)
o If pieces at Fx and F,1 remove and add one at Fi_».

BQ
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@ Two player game, alternate turns, last to move wins.

@ Bins F4, Fo, F3, ..., start with N pieces in Fy and others
empty.

@ Aturnis one of the following moves:
o If have two pieces on F, can remove and put one
piece at Fx,1 and one at Fx_»
(if Kk =1 then 2F; becomes 1F5)
o If pieces at Fx and F,1 remove and add one at Fi_».

Questions:
@ Does the game end? How long?
@ For each N who has the winning strategy?
@ What is the winning strategy?
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Sample Game

Start with 10 pieces at F4, rest empty.

10 0 0 0 0
[Fi=1 [Fo=2] [FR=3] [F=5 [Fs=8]

Next move: Player 1: F1 + F1 = F»
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Sample Game

Start with 10 pieces at F4, rest empty.

8 1 0 0 0
[Fi=1 [Fo=2] [FR=3] [Fa=5 [Fs=8]

Next move: Player2: F1 + F1 = F»
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Sample Game

Start with 10 pieces at F4, rest empty.

6 2 0 0 0
[Fi=1 [Fo=2] [FR=3] [Fa=5 [Fs=8]

Next move: Player 1: 2F, = F3 + F;
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Sample Game

Start with 10 pieces at F4, rest empty.

7 0 1 0 0
[F1 =1] [F2 = 2] [Fs = 3] [Fa=19] [Fs = 8]

Next move: Player2: F1 + F1 = F»
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Sample Game

Start with 10 pieces at F4, rest empty.

5 1 1 0 0
[F1 =1] [F2 = 2] [Fs = 3] [Fa=19] [Fs = 8]

Next move: Player 1: Fo + F3 = F4.
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Sample Game

Start with 10 pieces at F4, rest empty.

5 0 0 1 0
[Fi=1 [Fo=2] [FR=3] [Fa=5 [Fs=8]

Next move: Player 2: F; + F; = Fo.
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Sample Game

Start with 10 pieces at F4, rest empty.

3 1 0 1 0
[Fi=1 [Fo=2] [FR=3] [Fa=5 [Fs=8]

Next move: Player 1: F; + F; = Fo.
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Sample Game

Start with 10 pieces at F4, rest empty.

1 2 0 1 0
[F1 =1] [F2 = 2] [Fs = 3] [Fa=19] [Fs = 8]

Next move: Player 2: F; + Fo = Fs.
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Sample Game

Start with 10 pieces at F4, rest empty.

0 1 1 1 0
[Fi=1 [Fo=2] [FR=3] [Fa=5 [Fs=8]

Next move: Player 1: F3 + F4 = Fs.
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Sample Game

Start with 10 pieces at F4, rest empty.

0 1 0 0 1
[F =1] [F2=2] [F3 = 3] [Fa=9] [F5 = 8]

No moves left, Player One wins.
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Sample Game

Player One won in 9 moves.

10 0 0 0 0
8 1 0 0 0
6 2 0 0 0
7 0 1 0 0
5 1 1 0 0
5 0 0 1 0
3 1 0 1 0
1 2 0 1 0
0 1 1 1 0
0 1 0 0 1
[Fi=1 [R=21 [R=3 [R=5 [Fk=8

2SS
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Sample Game

Player Two won in 10 moves.

10

[F5 = 8]

[Fa=9]

[F3 = 3]

[F2=2]

[Fr = 1]

y
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Games end

All games end in finitely many moves.

Proof: The sum of the square roots of the indices is a strict
monovariant.

@ Adding consecutive terms: (\/F+ \/R) ~vVk+2<0.
e Splitting: 2vk — (Vk+1+vk+1) <0.

@ Adding 1’s: 2v/1 — V2 < 0.

o Splitting 2's: 2v2 — (V3+ /1) < 0.

y
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Games Lengths: |

Upper bound: At most nlog,, (nv/5 + 1/2) moves.

Fastest game: n — Z(n) moves (Z(n) is the number of
summands in n's Zeckendorf decomposition).
From always moving on the largest summand possible
(deterministic).

TA
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Games Lengths: I

Frequency
0.12
0.10
04085
0406%
0A04f
OAOZi

0.00

e e o 4 o Moves
70

Figure: Frequency graph of the number of moves in 9,999
simulations of the Zeckendorf Game with random moves when
n =60 vs a Gaussian. Natural conjecture....
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Winning Strategy

Payer Two Has a Winning Strategy

Idea is to show if not, Player Two could steal Player One’s
strategy.

Non-constructive!

Will highlight idea with a simpler game.

y
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Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i, j) and
coloring every dot (m, n) with i < mandj < n.

Once all dots colored game ends; whomever goes last loses.

Prove Player 1 has a winning strategy!
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Two players, alternate. Turn is choosing a dot at (i, j) and
coloring every dot (m, n) with i < mandj < n.

Once all dots colored game ends; whomever goes last loses.

Proof Player 1 has a winning strategy. If have, play; if not, steal.
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Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i, j) and
coloring every dot (m, n) with i < mandj < n.

Once all dots colored game ends; whomever goes last loses.

Proof Player 1 has a winning strategy. If have, play; if not, steal.
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Sketch of Proof for Player Two’s Winning Strategy

l(n—ﬂ A 3
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Sketch of Proof for Player Two’s Winning Strategy
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Sketch of Proof for Player Two’s Winning Strategy
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Sketch of Proof for Player Two’s Winning Strategy

19723
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Sketch of Proof for Player Two’s Winning Strategy
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Sketch of Proof for Player Two’s Winning Strategy

1= A2 A3 1(=6) A 23

[9A5T 1PA22A3 [1IOA2[  109x243  [10922°]
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Sketch of Proof for Player Two’s Winning Strategy
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Sketch of Proof for Player Two’s Winning Strategy

1" A2A3
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Sketch of Proof for Player Two’s Winning Strategy
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Sketch of Proof for Player Two’s Winning Strategy

1(n-3) 3 I(n—4) A 22
(140 22]

PGSR EDAZAS ESRSE 19243 [17942¢]
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Future Work

@ What if p > 3 people play the Fibonacci game?

@ Does the number of moves in random games converge to
a Gaussian?

@ Define k-nacci numbersby S; 1 = Si+ Sj_ 1+ -+ Sj_x;
game terminates but who has the winning strategy?
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Games




Games: Coins on a line

You have 2N coins of varying denominations (each is a
non-negative real number) in a line. Players A and B take turns
choosing one coin from either end. Does Player A or B have a
winning strategy (i.e., a way to ensure they get at least as much
as the other?) If yes, who has it and find it if possible!




Games: Devilish Coins

You die and the devil comes out to meet you. In the middle of
the room is a giant circular table and next to the walls are many
sacks of coins. The devil speaks. We'll take turns putting coins
down flat on the table. I'll put down a coin and then you’ll put
down a coin, and so on. The coins cannot overlap and they
cannot hang over the edge of the table. The last person to put
down a coin wins, or equivalently, the last person who can no

longer put a coin down on the table loses. You decide if you
want to go first.

Do you have a winning strategy for the game? If yes, what?




Games: Prime Heaps

Alice and Bob play a game in which they take turns removing
stones from a heap that initially has n stones. The number of
stones removed at each turn must be one less than a prime
number. The winner is the player who takes the last stone.
Alice plays first. Prove that there are infinitely many such n
such that Bob has a winning strategy. (For example, if n =17,
then Alice might take 6 leaving 11; then Bob might take 1
leaving 10; then Alice can take the remaining stones to win.)







V2 Is Irrational

Standard Proof: Assume v/2 = a/b.

WLOG, assume b is the smallest denominator among all
fractions that equal v/2.

2b? = &% thus a=2mis even.
Then 2b% = 4m? so b2 = 2m? so b = 2n is even.
Thus v2 = a/b = 2m/2n = m/n, contradicts minimality of n.

(Could also do by contradiction from a, b relatively prime.)




Tennenbaum’s Proof

Assume V2 = a/b with b minimal.

a-b b
Figure: 26° = & so (2b—a)f’=2(a—b)* and V2=22.

AsO<a—b<b(ifnot,a—b>bsoa>2band
V2 = a/b > 2), contradicts minimality of b.




Challenge

WHAT OTHER NUMBERS HAVE GEOMETRIC
IRRATIONALITY PROOFS?
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a

Figure: Geometric proof of the irrationality of v/3. The white
equilateral triangle in the middle has sides of length 2a — 3b.

Have 3(2b — a)? = (2a — 3b)? so /3 = (2a— 3b)/(2b — a),
note 2b — a < b (else b > a), violates minimality.




More Irrational
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_b

Figure: Geometric proof of the irrationality of v/5.




More Irrational
.
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.

A straightforward analysis shows that the five doubly covered
pentagons are all regular, with side length a — 2b, and the
middle pentagon is also regular, with side length
b—2(a—2b)=5b-2a.

We now have a smaller solution, with the five doubly counted
regular pentagons having the same area as the omitted
pentagon in the middle. Specifically, we have

5(a—2b)?> = (5b —2a)?;as a= byv/5and 2 < /5 < 3, note
that a — 2b < b and thus we have our contradiction.
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| a |

Figure: Geometric proof of the irrationality of v/6.
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Closing Thoughts

Could try to do v/10 but eventually must break down. Note
3,6, 10 are triangular numbers (T, = n(n+1)/2).

Tg = 36 and thus /Tg is an integer!
Can you get a cube-root?

What other numbers?
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