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Invariants / Monovariants

Invariant: a quantity that is unchanged throughout the process /
operations. (Big application: Noether’s theorem).

Monovariant: a quantity that only changes in one direction
throughout the process / operations. See

https://howardhalim.com/math/Invariants%$20and%
20Monovariants.pdf

for a nice collection of problems.

Often a challenge to find a useful monovariant.



https://howardhalim.com/math/Invariants%20and%20Monovariants.pdf
https://howardhalim.com/math/Invariants%20and%20Monovariants.pdf
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Zombie Infection: Rules

@ If share walls with 2 or more infected, become infected.
@ Once infected, always infected.
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@ If share walls with 2 or more infected, become infected.
@ Once infected, always infected.

Initial Configuration One moment later

Two moments later Threemoments later
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Easiest initial state that ensures all eventually infected is...?
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Zombie Infection: Can n — 1 infect all on an n x n board?
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Zombie Infection: Can n — 1 infect all on an n x n board?

Perimeter of infection decreases by 4.
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Zombie Infection: n — 1 cannot infect all

@ If n— 1 infected, maximum perimeter is 4(n— 1) = 4n — 4.

@ Mono-variant: As time passes, perimeter of infection never
increases.

@ Perimeter of n x nsquare is 4n, so at least 1 square safe!
@ How many must be safe?

@ Other questions: Is a row safe? Higher dimensions? Other
regions (torus)?
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Conway’s Soldiers

Figure: John Horton Conway: Image from The Guardian.
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Conway'’s Soldiers / Checker Problem

Problem: Infinite checkerboard, pieces at all (x, y) with y <0

Using horizontal / vertical jumps (jumped piece gone forever),
how high can you move a piece?
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Figure: Left: A subset of the initial configuration. Right: moving a
soldier / checker up 1.




Conway'’s Soldiers
[ ]

Conway'’s Soldiers

Problem: Infinite checkerboard, pieces at all (x, y) with y <O0.

Using horizontal / vertical jumps (jumped piece gone forever),
how high can you move a piece?

. @

Figure: Left: A subset of the initial configuration. Right: moving a
soldier / checker up 2. Can you do 3? 4? 5?7 Any height?
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Conway'’s Soldiers

Problem: Infinite checkerboard, pieces at all (x, y) with y < 0.
Using horizontal / vertical jumps (jumped piece gone forever),
how high can you move a piece?

&
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Figure: Left: A subset of the initial configuration. Right: Also moving

a soldier / checker up 2. Can you do 3?7 4? 5? Any height?
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Conway'’s Soldiers: The Monovariant: |

Problem: Infinite checkerboard, pieces at all (x, y) with y < 0.
Using horizontal / vertical jumps (jumped piece gone forever),
how high can you move a piece?

XL x7)x8 | x5] x4 x3] x3 x3[x4 [x5 | x°[x7| x°
x7| XE| x5 x4 x3| x2| X | x| x3[x¢ [ x5 x°[x7
XG‘XE x4 X? x2| x TIx x2 x3| x4 x5 X8
X7 X8| X3 x4 x3| x2[ x | %2 x3[x8 [ x7
x81 x7| x8f 5] x4| x3| x| x3 X8| x7|x8
X3 | x| x7| x8|x5 | x4 x| x* X7 |x8[x®
) X8| w8l x7 %8| x5 x4 x° x8[x8 [x1
000000 ee 90e®
0000000 e 900
99 9000 900
00000000 000
0000000000000

Figure: Conway’s monovariant: What is it?
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Conway'’s Soldiers: The Monovariant: Il

Choose target T = (0, 5).

Fix x (to be determined later) and attach x/*/ to a point that is i
units horizontally and j units vertically from T.

X°] x7]x8 | x8] x#] x3] x| x3[x [x5 | x°[x7] x°
X7 X8| XS] x*x3 [ x2] X X[ X°]x7
X85 x4 X3 X3 X [T x4|x5] X8
XT X»? XE x4 x? x2| X XE X€ XT
X8| X7 | X8| x5| x4| x3| x2 X2 [x7[x8
X2 [ x8] x7| x8[x5| x4 x3 X7 [ x8]x®
9 %9 %8| x7 [ %8| xE| X* X&|x2 [x17
D000 0A0 90®
000000e 0o
0000000 00
LJL 00 ¢ 000
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Conway'’s Soldiers: The Monovariant: Ill

Choose a target point T; for us it is a point of height 5 above
the checkers: T = (0,5).

Fix x (to be determined later) and attach x/*/ to a point that is i
units horizontally and j units vertically from T.

What is the value of the initial board?

@ Zerothrow: ..., x7, x8 x5 x8 x7 ...:sumis
o0
2x8 (1 + x)x°
5 k 5
x> +2 X = x°+ = .
kZG 1—x 1—x
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Conway'’s Soldiers: The Monovariant: Ill

Choose a target point T; for us it is a point of height 5 above
the checkers: T = (0,5).

Fix x (to be determined later) and attach x/*/ to a point that is i
units horizontally and j units vertically from T.

What is the value of the initial board?

@ Zerothrow: ..., x7, x8 x5 x8 x7 ...:sumis
o0
2x8 (1 + x)x°
5 k 5
x> +2 X = x°+ = .
kZS 1—x 1—x

@ Each row is x times previous: Thus initial board value is

(14 x)x° ixn _ (T x)x®

1—x pre (1—x)2"°
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Conway'’s Soldiers: The Monovariant: IV

Two moves: lose 2 pieces and add a piece further from T, or
lose 2 pieces and add a piece closerto T.

First type of move clearly decreases value of board.
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Conway'’s Soldiers: The Monovariant: IV

Two moves: lose 2 pieces and add a piece further from T, or
lose 2 pieces and add a piece closerto T.

X°| x7 5| x4 XB|x7| x®
7| 2y e e I
X8| x5 3 x2 3| x4[x3[ X Xt
X‘ Xf 4| 3 4 XE X8 |x .' x_:
X8| x7| 8] x| x4 x2 ?x[x7]x ®||°
LSl B d X 1X7IX
X! X X1 e
000 00 o (J .
000000 © () &
'...'.;... () (J
0000000000000
eeoeoeeoeooee

Figure: Moving pieces on x® and x° to on x*.
Change is x* — x° — x8 = x*(1 — x — x2), want this to be zero.
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Conway'’s Soldiers: The Monovariant: IV

Two moves: lose 2 pieces and add a piece further from T, or
lose 2 pieces and add a piece closerto T.

Second type replaces x"+2 and x™t1 with an x": change is
x" — x"*t1 — x"*2_Choose x so that this change is zero.

Thus 1 — x — x2 =0 or x = (—1 £ v/5)/2. Take positive root,
(-1 4 v/5)/2 = ¢ — 1 ( the golden mean).

Monovariant: sum of the values of squares with checkers.
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Conway'’s Soldiers: The Monovariant: V

Choose a target point T.

@ Initial board value is

(14+x)x° h X_\/5—1
7(1_)()2 . when = 2

get 1.

@ Target at (0,4) contributes x = @ ~ 0.618034; as less
than 1 possible (and can be done).

@ Target at (0,5), board’s value at least 1. Moves never
increase value: IMPOSSIBLE IN FINITE TIME!!

1
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https://tartarus.org/gareth/maths/stuff/solarmy.pdf

Conway'’s Soldiers
L

New Results

Conway Checkers m-game: Start with m checkers on each
gridpoint (original game is just 1), if jump over it lose one
checker.

Given a Conway Checkers m-game, the maximum row
attainable, ny,, satisfies

llog,,(m) +4.67| < np < [log,(m)+ 5]

a0 q q \/5 1
for sufficiently large m, where ¢ is the golden ratio ¥

A
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Introduction: Summand Minimality

Fibonaccis: F1 =1,F, =2,F3 =3,F4 =5, Fpi2 = Foi1 + Fo.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2024 = 1597 +377+34+13+3 = Fig+ Fi3+ Fg+ Fe+ F3.

A7




Zeckendorf Minimality
[ ]

Introduction: Summand Minimality

Fibonaccis: F1 =1,F, =2,F3 =3,F4 =5, Fpi2 = Foi1 + Fo.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2024 = 1597 +377+34+13+3 = Fig+ Fi3+ Fg+ Fe+ F3.

Conversely, we can construct the Fibonacci sequence using
this property:

1




Zeckendorf Minimality
[ ]

Introduction: Summand Minimality

Fibonaccis: F1 =1,F, =2,F3 =3,F4 =5, Fpi2 = Foi1 + Fo.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2024 = 1597 +377+34+13+3 = Fig+ Fi3+ Fg+ Fe+ F3.

Conversely, we can construct the Fibonacci sequence using
this property:

1,2




Zeckendorf Minimality
[ ]

Introduction: Summand Minimality

Fibonaccis: F1 =1,F, =2,F3 =3,F4 =5, Fpi2 = Foi1 + Fo.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2024 = 1597 +377+34+13+3 = Fig+ Fi3+ Fg+ Fe+ F3.

Conversely, we can construct the Fibonacci sequence using
this property:

1,2,3

BO)




Zeckendorf Minimality
[ ]

Introduction: Summand Minimality
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Introduction: Summand Minimality

Fibonaccis: F1 =1,F, =2,F3 =3,F4 =5, Fpi2 = Foi1 + Fo.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2024 = 1597 +377+34+13+3 = Fig+ Fi3+ Fg+ Fe+ F3.

Conversely, we can construct the Fibonacci sequence using
this property:

1,2,3,5,8
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Introduction: Summand Minimality

Fibonaccis: F1 =1,F, =2,F3 =3,F4 =5, Fpi2 = Foi1 + Fo.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2024 = 1597 +377+34+13+3 = Fig+ Fi3+ Fg+ Fe+ F3.

Conversely, we can construct the Fibonacci sequence using
this property:

1,2,3,5,8,13...

eSS -
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Summand Minimality

@ 18 = 13 + 5= F5 + F4, legal decomposition, two
summands.

@18 = 13 + 3 + 2=Fg + F3+ F,, non-legal
decomposition, three summands.

The Zeckendorf decomposition is summand minimal.
Overall Question
What other recurrences are summand minimal?

;
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Zeckendorf Decomposition is Minimal

The Zeckendorf decomposition is summand minimal: no
decomposition as a sum of Fibonacci numbers (1, 2, 3, 5, ...)
has fewer summands than it.
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Zeckendorf Decomposition is Minimal

The Zeckendorf decomposition is summand minimal: no
decomposition as a sum of Fibonacci numbers (1, 2, 3, 5, ...)
has fewer summands than it.

If n =7, axFx (with ax non-negative integers), define the
weighted index attached to this decomposition D to be

Index(D) = 3", akVk.

More natural )", axk but square-root makes strictly decreasing.

;
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Zeckendorf Decomposition is Minimal

The Zeckendorf decomposition is summand minimal: no
decomposition as a sum of Fibonacci numbers (1, 2, 3, 5, ...)
has fewer summands than it.

If n =7, axFx (with ax non-negative integers), define the
weighted index attached to this decomposition D to be
Index(D) = 3", akVk.

More natural )", axk but square-root makes strictly decreasing.

Bounded process: For fixed n, only indices up to certain point
used, and a, < n.

L




Zeckendorf Minimality
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Zeckendorf Decomposition is Minimal: Proof

Show Index(D) is a mono-variant, end in the Zeckendorf
decomposition, number summands never increased.

~-UTSTSTSTSTSTSTSSSSSSSSS




Zeckendorf Minimality
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Zeckendorf Decomposition is Minimal: Proof

Show Index(D) is a mono-variant, end in the Zeckendorf
decomposition, number summands never increased.

If D is not the Zeckendorf, have 2F or Fx A Fy. 1.
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Zeckendorf Decomposition is Minimal: Proof

Show Index(D) is a mono-variant, end in the Zeckendorf
decomposition, number summands never increased.

If D is not the Zeckendorf, have 2F or Fx A Fy. 1.

Fi N Frpy — Frye:
o Vk+vk+1>vk+2.

2Fk — Fr_o+ Friq:
@ k>3:2vVk>vk—2+Vk+1
e k=2:2v/2>V1+3
@ k=1:2V/1>+2

Only finitely many values, each move lowers, continue till hit
m Zeckendorfi number of summands never increased.
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Positive Linear Recurrence Sequences

Definition
A positive linear recurrence sequence (PLRS) is a sequence
given by a recurrence {a} with

an = Ciap-1 + -+ Cran—t

and each ¢; > 0 and c¢q, ¢; > 0. We use ideal initial conditions
a_(n-1)=0,...,a1=0,a =1andcall (¢,...,c) the
signature of the sequence.

Theorem (Cordwell, Hlavacek, Huynh, M., Peterson, Vu)

For a PLRS with signature (¢4, Co, . . ., Ct), the Generalized
Zeckendorf Decompositions are summand minimal if and only if

Ci>C>:-- 2> Cy.
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Fibonacci Game: Rules

@ Two player game, alternate turns, last to move wins.
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@ Bins F4, F», F3, ..., start with N pieces in Fy and others
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Fibonacci Game: Rules

@ Two player game, alternate turns, last to move wins.

@ Bins F4, F», F3, ..., start with N pieces in Fy and others
empty.

@ Aturn is one of the following moves:
o If have two pieces on F, can remove and put one
piece at Fx.1 and one at Fx_»
(if Kk =1 then 2F; becomes 1F,)
o If pieces at Fx and F,1 remove and add one at Fg_.».
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Fibonacci Game: Rules

@ Two player game, alternate turns, last to move wins.

@ Bins F4, F», F3, ..., start with N pieces in Fy and others
empty.

@ Aturn is one of the following moves:
o If have two pieces on F, can remove and put one
piece at Fx.1 and one at Fx_»
(if Kk =1 then 2F; becomes 1F,)
o If pieces at Fx and F,1 remove and add one at Fg_.».

Questions:
@ Does the game end? How long?
@ For each N who has the winning strategy?
@ What is the winning strategy?
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Sample Game

Start with 10 pieces at Fy, rest empty.

10 0 0 0 0
[F1 =1] [Fo = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 1: F1 + F1 = F»
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Sample Game

Start with 10 pieces at Fy, rest empty.

8 1 0 0 0
[F1 =1] [Fo = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 2: F1 + F1 = F»
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Sample Game

Start with 10 pieces at Fy, rest empty.

6 2 0 0 0
[F1 =1] [Fo = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 1: 2F, = F3 + F4




Zeckendorf Games
[ ]

y

Sample Game

Start with 10 pieces at Fy, rest empty.

7 0 1 0 0
[F1 =1] [Fo = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 2: F1 + F1 = F»
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y

Sample Game

Start with 10 pieces at Fy, rest empty.

5 1 1 0 0
[F1 =1] [Fo = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 1: Fo + F3 = F4.
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Sample Game

Start with 10 pieces at Fy, rest empty.

5 0 0 1 0
[F1 =1] [Fo = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 2: F; + F = Fo.

D
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y

Sample Game

Start with 10 pieces at Fy, rest empty.

3 1 0 1 0
[F1 =1] [Fo = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 1: F; + F = Fo.
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y

Sample Game

Start with 10 pieces at Fy, rest empty.

1 2 0 1 0
[F1 =1] [Fo = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 2: F; + F> = F3.
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y

Sample Game

Start with 10 pieces at Fy, rest empty.

0 1 1 1 0
[F1 =1] [Fo = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 1: F3 + F4 = Fs.
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Sample Game

Start with 10 pieces at F4, rest empty.

0 1 0 0 1
[Fr=11 [Fo=2] [FR=3] [FR=5 [F=8

No moves left, Player One wins.

TR
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Player One won in 9 moves.
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[Fs = 8]

[Fa = 5]

[Fs = 3]

[F2 = 2]

[Fi = 1]
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Player Two won in 10 moves.

N~ o~~~ o~

~— ' ' ~— ~—

[Fs = 8]

[Fe = 5]

[Fs = 3]

[F2 = 2]

[Fr = 1]
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Games end

All games end in finitely many moves.

Proof: The sum of the square roots of the indices is a strict
monovariant.

@ Adding consecutive: (\/RwL vk + 1) ~Vvk+2>0.
@ Splitting: 2vk — (Vk+1+ vk +1) > 0.

@ Spitting 1’s: 2v/1 —v2 > 0.

o Splitting 2's: 2v/2 — (\/§+ \ﬁ) > 0.

y
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Games Lengths: |

Upper bound: At most 3n— 3Z(n) — I(n) + 1 moves
@ Z(n) is the number of terms in the Zeckendorf
decomposition,
@ /(n) is the sum of the indices.

Fastest game: n— Z(n) moves (Z(n) is the number of
summands in n's Zeckendorf decomposition).
From always moving on the largest summand possible
(deterministic).
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Games Lengths: II

Frequency
0A125
0.10
o.oaf
0.0Gi
0‘045

0‘02:

0.007

e o o 4 4 Moves
70

Figure: Frequency graph of the number of moves in 9,999
simulations of the Zeckendorf Game with random moves when
n = 60 vs a Gaussian. Natural conjecture....
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Winning Strategy

Player Two Has a Winning Strategy

Idea is to show if not, Player Two could steal Player One’s
strategy.

Non-constructive!

Will highlight idea with a simpler game.




Zeckendorf Games
[ ]

Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i, j) and
coloring every dot (m,n) with i < mandj < n.

Once all dots colored game ends; whomever goes last loses.

Prove Player 1 has a winning strategy!
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Sketch of Proof for Player Two’s Winning Strategy
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The Bergman Game

Definition

The Bergman Game is played with the standard split/‘combine
moves from the Zeckendorf game, but on a two-sided infinite
tape instead of a one-sided infinite tape.

It produces base-¢ decompositions (¢ = (1 +/5)/2).
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The Bergman Game

Theorem (Baily, Dell, Durmi¢, Fleischmann, Jackson,
Mijares, M., Pesikoff, Reifenberg, Reina, Yang)

The longest Bergman Game with n summands terminates in
O(n?) time regardless of where the summands are placed. The
shortest possible Bergman Game terminates in ©(n) time.

Natural Question: Who has the winning strategy?
@ Not currently known.
@ Game tree explodes, escaping a strategy steal.
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The Frodnekcez Game (Reverse Zeckendorf Game): Rules

@ The Zeckendorf game in reverse, last to move wins.

@ Bins F4, F», F3, ..., for some natural number N, start with
one piece in bin Fy if Fy is in the Zeckendorf
decomposition of N, and have other bins empty.

@ Aturn is one of the following moves:
o If one piece at Fx¢ and one at Fx_», can
remove and add two pieces on Fy.
o If piece at Fy 2, remove and add one piece at
both Fi and Fy4.
(Fy and F3 becomes 2F,, and F, becomes 2F;)

Problem created and analyzed by PANTHers 2023 from the
2023 SMALL REU: Zoe Batterman, Aditya Jambhale, Akash

. Narazanan, Kishan Sharma, Andrew Yang, Chris Yao.
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Winning Strategy?

o percent of games won by player 2 up to size n vs. n

)

s
=

percent won
w
o

n
=]

n

Figure: In the forward Zeckendorf game, Player 2 wins for all N > 2.
The reverse game is more interesting. Natural conjecture...
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Current / Future Work

@ What if p > 3 people play the Fibonacci game? Some
multi-player results.

@ Does the number of moves in random games converge to
a Gaussian? Evidence....

@ How long do games take? Proved closed interval.
@ Accelerated games: do as many of one move as wish....
@ What of other recurrences?

$500 Prize: Determine the winning strategy.
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Black Hole Zeckendorf Game (Ongoing Work: SMALL 2024)

How can we simplify the game?

Fr, Black Hole Variation

Any pieces placed in a column F; for i > m are permanently
removed from gameplay.

For the F4 case, this allows for the following moves:

P2.1
(a,b,c)
W Azw S3
(a—2,b+1,¢c)(a—1,b—1,c+1)(ab—1,c—1)(a+1,b-2,c+1)(a+1,b,c—2)
P1.1.M P1.1.A4 P1.1.A2 P1.1.S; P1.1.S3
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The Cookie Problem

The number of ways of dividing C identical cookies
among P distinct people is (57 1).

Proof: Consider C + P — 1 cookies in a line.

Cookie Monster eats P — 1 cookies: (“57;") ways to do.
Divides the cookies into P sets.

Example 8 cookles and 5 people (C 8, P= 5)
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

Tgepnumber of solutionsto xy +---+xp = Cwith x; > 0 is
i)
P—1 J*

Let pox = # {N € [F,, Fri1): the Zeckendorf
decomposition of N has exactly kK summands}.
For N € [F,, Fni1), the largest summand is F,.
N:Fi1 +FI'2+"'+FIK71 +Fn,
1<ih <b<- - <y <lg=n,0j—lj_4 > 2.
d1 ZZi1 —1,deZij—ij,1 —2(j>1)
di+d+---+de=n—-2k+1,d>0.

Cookie counting = ppx = ("2 K1) = (775).
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