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General Advice: What are your tools and how can they be used?

Law of the Hammer:

@ Abraham Kaplan: | call it the law of the instrument, and it
may be formulated as follows: Give a small boy a hammer,
and he will find that everything he encounters needs
pounding.

@ Abraham Maslow: | suppose it is tempting, if the only tool
you have is a hammer, to treat everything as if it were a
nail.

@ Bernard Baruch: If all you have is a hammer, everything
looks like a nail.
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Zombie Infection: Rules

@ If share walls with 2 or more infected, become infected.
@ Once infected, always infected.
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Zombie Infection: Rules

@ If share walls with 2 or more infected, become infected.
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Zombie Infection: Rules

@ If share walls with 2 or more infected, become infected.
@ Once infected, always infected.

Initial Configuration One moment later

Two moments later Threemoments later
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Zombie Infection: Conquering The World

Easiest initial state that ensures all eventually infected is...?
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Zombie Infection: Conquering The World

Easiest initial state that ensures all eventually infected is...?
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Zombie Infection: Conquering The World

Next simplest initial state ensuring all eventually infected...?
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Next simplest initial state ensuring all eventually infected...?
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Zombie Infection: Conquering The World

Fewest number of initial infections needed to get all...?
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Zombie Infection: Conquering The World

Fewest number of initial infections needed to get all...?
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Zombie Infection: Can n — 1 infect all on an n x n board?
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Zombie Infection: Can n — 1 infect all on an n x n board?

Perimeter of infection unchanged.
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Zombie Infection: Can n — 1 infect all on an n x n board?

Perimeter of infection unchanged.
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Zombie Infection: Can n — 1 infect all on an n x n board?

Perimeter of infection decreases by 2.
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Zombie Infection: Can n — 1 infect all on an n x n board?

Perimeter of infection decreases by 4.
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Zombie Infection: n — 1 cannot infect all

@ If n— 1 infected, maximum perimeter is 4(n — 1) = 4n — 4.
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Zombie Infection: n — 1 cannot infect all

@ If n— 1 infected, maximum perimeter is 4(n — 1) = 4n — 4.

@ Mono-variant: As time passes, perimeter of infection never
increases.
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Zombie Infection: n — 1 cannot infect all

@ If n— 1 infected, maximum perimeter is 4(n — 1) = 4n — 4.

@ Mono-variant: As time passes, perimeter of infection never
increases.

@ Perimeter of n x nsquare is 4n, so at least 1 square safe!
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Figure: John Horton Conway: Image from The Guardian.

A0)




Conway’s Soldiers
L]

John Horton Conway

So many items to discuss....

@ Game of life: https://en.wikipedia.org/wiki/
Conway%27s_Game_of_Life

@ Monster group:
https://en.wikipedia.org/wiki/Monster_group

@ Audioactive decay: https://en.wikipedia.org/
wiki/Look—-and-say_sequence

@ 15 and 290 theorems: https:
//en.wikipedia.org/wiki/15_and_290_theorems
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Conway'’s Soldiers

Problem: Infinite checkerboard, pieces at all (x, y) with y < 0.
Using horizontal / vertical jumps (jumped piece gone forever),
how high can you move a piece?
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Figure: Left: A subset of the initial configuration. Right: moving a
soldier / checker up 1. Can you do 27
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Conway'’s Soldiers

Problem: Infinite checkerboard, pieces at all (x, y) with y < 0.
Using horizontal / vertical jumps (jumped piece gone forever),
how high can you move a piece?
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Figure: Left: A subset of the initial configuration. Right: moving a
soldier / checker up 2. Can you do 3? 4? 5?7 Any height?
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Conway'’s Soldiers

Problem: Infinite checkerboard, pieces at all (x, y) with y <O0.
Using horizontal / vertical jumps (jumped piece gone forever),
how high can you move a piece?
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Figure: Left: A subset of the initial configuration. Right: Also moving
a soldier / checker up 2. Can you do 3?7 4? 5? Any height?
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Conway'’s Soldiers: The Monovariant: |

Problem: Infinite checkerboard, pieces at all (x, y) with y <O0.
Using horizontal / vertical jumps (jumped piece gone forever),
how high can you move a piece?
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Figure: Conway’s monovariant: What is it?
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Conway'’s Soldiers: The Monovariant: Il

Choose a target point T; for us it is a point of height 5 above
the checkers: T = (0,5).

Fix x (to be determined later) and attach x/*/ to a point that is i
units horizontally and j units vertically from T.
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Conway'’s Soldiers: The Monovariant: Il

Choose a target point T; for us it is a point of height 5 above
the checkers: T = (0,5).

Fix x (to be determined later) and attach x/*/ to a point that is i
units horizontally and j units vertically from T.

What is the value of the initial board?

@ Zerothrow: ..., x7, x8 x5 x8 x7 ...:sumis
o
2x8 1+ x)x°
xX°+2> XK = x4 _ Ly
prd 1—x 1—x
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Conway'’s Soldiers: The Monovariant: Il

Choose a target point T; for us it is a point of height 5 above
the checkers: T = (0,5).

Fix x (to be determined later) and attach x/*/ to a point that is i
units horizontally and j units vertically from T.

What is the value of the initial board?

@ Zerothrow: ..., x7, x8 x5 x8 x7 ...:sumis
o
2x8 (1 + x)x°
5 k 5
x> +2 X = x°+ = .
kZG 1—x 1—x

@ Each row is x times previous: Thus initial board value is

e n 5
(1 —I-X)XSZ_IX_X = ((11+_);))); .
n=0




Conway’s Soldiers
L]

Conway'’s Soldiers: The Monovariant: IV

Two moves: lose 2 pieces and add a piece further from T, or
lose 2 pieces and add a piece closer to target.

First type of move clearly decreases value of board.
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: The Monovariant: IV

Two moves: lose 2 pieces and add a piece further from T, or
lose 2 pieces and add a piece closer to target.
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Figure: Moving from pieces on x® and x° to a piece on x*.
Change is x* — x®> — x®, want this to be zero.
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Conway'’s Soldiers: The Monovariant: IV

Two moves: lose 2 pieces and add a piece further from T, or
lose 2 pieces and add a piece closer to target.

Second type replaces x"+2 and x™t1 with an x": change is
x" — x™1 _ x™2_ Choose x so that this change is zero.

Thus 1 — x — x2 =0 or x = (—1 + v/5) /2. Take positive root,
(=1 +15)/2 =1 — ¢ (p the golden mean).

Monovariant: sum of the values of squares with checkers.
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Conway'’s Soldiers: The Monovariant: V

Choose a target point T; for us it is a point of height 5 above
the checkers: T = (0,5).
@ Initial board value is

(1+x)x° V5 —1
2

-————— :when X =
(1-x)?2

get 3 — /5 ~ 0.763932.

@ If have a checker at (0, 4) contributes

= ¥5-1 ~ 0.618034; as less than 0.763932 possible
(and can be done).

@ If have a checker at the target T = (0, 5) that board’s value
is at least 1. As moves never increase board value:
IMPOSSIBLE!
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Conway'’s Soldiers: Generalizations

How could you generalize Conway’s game?




Conway’s Soldiers
o

Conway'’s Soldiers: Generalizations

How could you generalize Conway’s game?
@ What if we had a different lattice, say a hexagon?
@ What if we tried to do in higher dimensions?

@ What if we have some new moves (diagonal jump, jumping
over two pieces)? Similar to hyper-radicals....

@ What if you choose if you want to remove the jumped
piece?

Goal is to get in the habit of asking questions!
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Zeckendorf Games
with Cordwell, Epstein, Flynt, Hlavacek, Huynh, Peterson, Vu

AR




Zeckendorf Games
o

Introduction: Summand Minimality

Fibonaccis: F4 :1,F2:2,F3:3,F4:5,Fn+2:F,H_1+Fn.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2020 = 1597 +377+34+-8+3+1 = Fig+Fi3+Fg+Fs+F3+Fq.




Zeckendorf Games
o

Introduction: Summand Minimality

Fibonaccis: F4 :1,F2:2,F3:3,F4:5,Fn+2:F,H_1+Fn.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2020 = 1597+377+34+4-8+3+1 = Fig+Fi3+Fs+Fs+F3+Fy.

Conversely, we can construct the Fibonacci sequence using
this property:

1
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Introduction: Summand Minimality

Fibonaccis: F4 :1,F2:2,F3:3,F4:5,Fn+2:F,H_1+Fn.
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Introduction: Summand Minimality

Fibonaccis: F4 :1,F2:2,F3:3,F4:5,Fn+2:F,H_1+Fn.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2020 = 1597+377+34+4-8+3+1 = Fig+Fi3+Fs+Fs+F3+Fy.

Conversely, we can construct the Fibonacci sequence using
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1,2,3,5
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o

Introduction: Summand Minimality

Fibonaccis: F4 :1,F2:2,F3:3,F4:5,Fn+2:F,H_1+Fn.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2020 = 1597+377+34+4-8+3+1 = Fig+Fi3+Fs+Fs+F3+Fy.

Conversely, we can construct the Fibonacci sequence using
this property:

1,2,3,5,8
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o

Introduction: Summand Minimality

Fibonaccis: F4 :1,F2:2,F3:3,F4:5,Fn+2:F,H_1+Fn.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2020 = 1597+377+34+4-8+3+1 = Fig+Fi3+Fs+Fs+F3+Fy.

Conversely, we can construct the Fibonacci sequence using
this property:

1,2,3,5,8,13...

N TS
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Summand Minimality

@ 18 = 13 + 5= Fg + F4, legal decomposition, two
summands.

@18 = 18 + 83 + 2= F + F3+ F», non-legal
decomposition, three summands.

The Zeckendorf decomposition is summand minimal.
Overall Question
What other recurrences are summand minimal?

;
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Positive Linear Recurrence Sequences

A positive linear recurrence sequence (PLRS) is a sequence
given by a recurrence {ap} with

an = Ciap—1 + -+ Cta@n—t

and each ¢; > 0 and ¢4, ¢; > 0. We use ideal initial conditions
a_(n-1)=0,...,a1=0,a =1andcall (¢,...,c) the
signature of the sequence.

Theorem (Cordwell, Hlavacek, Huynh, M., Peterson, Vu)

For a PLRS with signature (¢4, Co, . . ., Ct), the Generalized
Zeckendorf Decompositions are summand minimal if and only if

C{>C > - > Ct.

BA
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Proof for Fibonacci Case

Idea of proof:

@ D = biFi + -+ bpF, decomposition of N, set
Ind(’D):b1 A4+ by-n

SN EOGOSTSTSSSSSSSS
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Proof for Fibonacci Case

Idea of proof:

@ D = biFi + -+ bpF, decomposition of N, set
Ind(’D):b1 A4+ by-n

@ Move to D’ by
o 2Fk = Fxi 1+ Fx_2 (and 2F, = F3 + F4).
o Fi + Fk+1 = Fk+2 (and F1 + F1 = F).

@ Monovariant: Note Ind(D’) < Ind(D).
o 2F = Fk+1 + Fi_o: 2k vs 2k — 1.
o Fx+ Fxi1 = Fao: 2k +1vs k4 2.

@ If not at Zeckendorf decomposition can continue, if at
Zeckendorf cannot. Better: Ind'(D) = byv/1 + - -+ + byy/n.

;
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@ Two player game, alternate turns, last to move wins.

I~ EEEEOTOSTSTSSSSSSS——




Zeckendorf Games
L]

@ Two player game, alternate turns, last to move wins.

@ Bins F4, Fo, F3, ..., start with N pieces in F; and others
empty.

~N- TS
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@ Two player game, alternate turns, last to move wins.

@ Bins F4, Fo, F3, ..., start with N pieces in F; and others
empty.

@ Aturnis one of the following moves:
o If have two pieces on F, can remove and put one
piece at Fx.1 and one at Fx_»
(if Kk =1 then 2F; becomes 1F5)
o If pieces at Fx and F,1 remove and add one at Fi_».

BQ
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@ Two player game, alternate turns, last to move wins.

@ Bins F4, Fo, F3, ..., start with N pieces in F; and others
empty.

@ Aturnis one of the following moves:
o If have two pieces on F, can remove and put one
piece at Fx,1 and one at Fx_»
(if Kk =1 then 2F; becomes 1F5)
o If pieces at Fx and F,1 remove and add one at Fi_».

Questions:
@ Does the game end? How long?
@ For each N who has the winning strategy?
@ What is the winning strategy?
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Sample Game

Start with 10 pieces at F4, rest empty.

10 0 0 0 0
[Fi=1 [Fo=2] [FR=3] [F=5 [Fs=8]

Next move: Player 1: F1 + F1 = F»
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Sample Game

Start with 10 pieces at F4, rest empty.

8 1 0 0 0
[Fi=1 [Fo=2] [FR=3] [Fa=5 [Fs=8]

Next move: Player2: F1 + F1 = F»
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Sample Game

Start with 10 pieces at F4, rest empty.

6 2 0 0 0
[Fi=1 [Fo=2] [FR=3] [Fa=5 [Fs=8]

Next move: Player 1: 2F, = F3 + F;
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Sample Game

Start with 10 pieces at F4, rest empty.

7 0 1 0 0
[F1 =1] [F2 = 2] [Fs = 3] [Fa=9] [Fs = 8]

Next move: Player2: F1 + F1 = F»
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Sample Game

Start with 10 pieces at F4, rest empty.

5 1 1 0 0
[F1 =1] [F2 = 2] [Fs = 3] [Fa=9] [Fs = 8]

Next move: Player 1: F» + F3 = F4.
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Sample Game

Start with 10 pieces at F4, rest empty.

5 0 0 1 0
[Fi=1 [Fo=2] [FR=3] [Fa=5 [Fs=8]

Next move: Player 2: F; + F; = Fo.
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Sample Game

Start with 10 pieces at F4, rest empty.

3 1 0 1 0
[Fi=1 [Fo=2] [FR=3] [Fa=5 [Fs=8]

Next move: Player 1: F; + F; = Fo.
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Sample Game

Start with 10 pieces at F4, rest empty.

1 2 0 1 0
[F1 =1] [F2 = 2] [Fs = 3] [Fa=9] [Fs = 8]

Next move: Player 2: F; + Fo = Fs.
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Sample Game

Start with 10 pieces at F4, rest empty.

0 1 1 1 0
[Fi=1 [Fo=2] [FR=3] [Fa=5 [Fs=8]

Next move: Player 1: F3 + F4 = Fs.
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Sample Game

Start with 10 pieces at F4, rest empty.

0 1 0 0 1
[F =1] [F2=2] [Fs = 3] [Fa=9] [F5 = 8]

No moves left, Player One wins.
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Sample Game

Player One won in 9 moves.

10 0 0 0 0
8 1 0 0 0
6 2 0 0 0
7 0 1 0 0
5 1 1 0 0
5 0 0 1 0
3 1 0 1 0
1 2 0 1 0
0 1 1 1 0
0 1 0 0 1
[Fi=1 [R=21 [R=3 [R=5 [Fk=8

2SS
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Player Two won in 10 moves.

10

[F5 = 8]

[Fa=9]

[F3 = 3]

[F2=2]

[Fr = 1]

y



Zeckendorf Games

Games end

All games end in finitely many moves.

Proof: The sum of the square roots of the indices is a strict
monovariant.

@ Adding consecutive terms: (\/F+ \/R) ~vVk+2<0.
e Splitting: 2vk — (Vk+1+vk+1) <0.

@ Adding 1’s: 2v/1 — V2 < 0.

o Splitting 2's: 2v2 — (V3+ /1) < 0.

y
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Games Lengths: |

Upper bound: At most nlog,, (nv/5 + 1/2) moves.

Fastest game: n — Z(n) moves (Z(n) is the number of
summands in n's Zeckendorf decomposition).
From always moving on the largest summand possible
(deterministic).

TA
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Games Lengths: I

Frequency
0.12
0.10
04085
0406%
0A04f
OAOZi

0.00

e e o 4 o Moves
70

Figure: Frequency graph of the number of moves in 9,999
simulations of the Zeckendorf Game with random moves when
n =60 vs a Gaussian. Natural conjecture....
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Winning Strategy

Player Two Has a Winning Strategy

Idea is to show if not, Player Two could steal Player One’s
strategy.

Non-constructive!

Will highlight idea with a simpler game.

y
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Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i, j) and
coloring every dot (m, n) with i < mandj < n.

Once all dots colored game ends; whomever goes last loses.

Prove Player 1 has a winning strategy!
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Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i, j) and
coloring every dot (m, n) with i < mandj < n.

Once all dots colored game ends; whomever goes last loses.

Proof Player 1 has a winning strategy. If have, play; if not, steal.
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Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i, j) and
coloring every dot (m, n) with i < mandj < n.

Once all dots colored game ends; whomever goes last loses.

Proof Player 1 has a winning strategy. If have, play; if not, steal.
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Sketch of Proof for Player Two’s Winning Strategy

l(n—ﬂ A 3

1=9 A2 A3

I l(n—S)/\S I 1(!1—7)/\ 22 A3 I l(n—()) A 32 I 1(!1—5)/\ 2A3 | 1(11—8)/\ 24I
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Sketch of Proof for Player Two’s Winning Strategy

I(n—}) A3

]"‘_S'AZA 3
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Sketch of Proof for Player Two’s Winning Strategy
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Sketch of Proof for Player Two’s Winning Strategy
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Sketch of Proof for Player Two’s Winning Strategy
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Future Work

@ What if p > 3 people play the Fibonacci game?

@ Does the number of moves in random games converge to
a Gaussian?

@ How long do games take?

@ Define k-nacci numbersby S; 1 = Si+ Sj_ 1+ -+ Si_x;
game terminates but who has the winning strategy?
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Rectangle Game

RECTANGLE GAME: consider M x N board, take

turns, each turn can break any piece along one horizontal or
along one vertical, last one to break a piece wins. Does someone
have a winning strategy?

Figure: Winning strategy? Function of board dimension?
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Rectangle Game

RECTANG LE GAM E: Consider M x N board, take

turns, each turn can break any piece along one horizontal or
along one vertical, last one to break a piece wins. Does someone
have a winning strategy?

Gather data! Try various sized boards, strategies.
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Rectangle Game: Data

RECTANGLE GAME: consider M x N board, take

turns, each turn can break any piece along one horizontal or
along one vertical, last one to break a piece wins. Does someone

have a winning strategy? . .
N i . . Length  Width ‘Winner

2 2 --1--
2 3 --1--
3 3 --2--
2 1 --1--
3 4 --1--
! 1 --1--
3 5 --2--

Figure: Do you see a pattern?
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Mono-variant

A mono-variant is a quantity that moves on only one direction
(either non-decreasing or non-increasing).

Idea: Associate a mono-variant to the rectangle game....
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Rectangle Game: Solution

Every time move, increase number of pieces by 1!

Figure: Move: 0; Pieces: 1.
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Rectangle Game: Solution

Every time move, increase number of pieces by 1!

Figure: Move: 1; Pieces: 2.
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Rectangle Game: Solution

Every time move, increase number of pieces by 1!

[ ] |
[ [

Figure: Move: 2; Pieces: 3.
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Rectangle Game: Solution

Every time move, increase number of pieces by 1!

Figure: Move: 3; Pieces: 4.
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Rectangle Game: Solution

Every time move, increase number of pieces by 1!

[ L T[]
L]

Figure: Move: 4; Pieces: 5.
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Rectangle Game: Solution

Figure: Move: 5; Pieces: 6. Player 1 Wins.




Appendix: Rectangle Game
(]

Rectangle Game: Solution (Continued)

Mono-variant is the number of pieces.
If board is m x n, game ends with mn pieces.
Thus takes mn — 1 moves.

If mn even then Player 1 wins else Player 2 wins.
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