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Introduction
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The Random Matrix Theory Connection

Philosophy: Critical-zero statistics of L-functions agree
with eigenvalue statistics of large random matrices.

Montgomery - pair-correlations of zeros of ζ(s) and
eigenvalues of the Gaussian Unitary Ensemble.

Hejhal, Rudnick and Sarnak - Higher correlations and
automorphic L-functions.

Odlyzko - further evidence through extensive
numerical computations.
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Consecutive Zero Spacings

Consecutive zero spacings of ζ(s) vs. GUE predictions (Odlyzko).
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Large Gaps between Zeros

Let 0 ≤ γ1 ≤ γ2 ≤ · · · ≤ γi ≤ · · · be the ordinates of the
critical zeros of an L-function.

Conjecture
Gaps between consecutive zeros that are arbitrarily large,
relative to the average gap size, appear infinitely often.
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Large Gaps between Zeros

Let 0 ≤ γ1 ≤ γ2 ≤ · · · ≤ γi ≤ · · · be the ordinates of the
critical zeros of an L-function.

Conjecture
Gaps between consecutive zeros that are arbitrarily large,
relative to the average gap size, appear infinitely often.

Letting Λ = lim sup
n→∞

γn+1 − γn

average spacing
,

this conjecture is equivalent to Λ = ∞.

Best unconditional result for the Riemann zeta
function is Λ > 2.69.
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Dedekind zeta functions in quadratic number fields

Higher degree L-functions are mostly unexplored. First
nontrivial quantitative lower bound for an L-function of
degree greater than 1:

Theorem (Turnage-Butterbaugh ’14)

Let T ≥ 2, ε > 0, ζK (s) the Dedekind zeta function
attached to a quadratic number field K with discriminant d
with |d | ≤ T ε, and ST := {γ1, γ2, . . . , γN} be the distinct
zeros of ζK

(

1
2 + it , f

)

in the interval [T , 2T ]. Let κT denote
the maximum gap between consecutive zeros in ST . Then

κT ≥
√

6
π

log
√

|d |T
(

1 + O(dε log T )−1
)

.

Assuming GRH, this means Λ ≥
√

6 ≈ 2.449.
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Dedekind zeta functions in quadratic number fields

Using a similar argument with the added flexibility of
smoothed mean-value estimates, been improved to

Theorem (Bui, Heap, Turnage-Butterbaugh ’14
(preprint))

Let T ≥ 2, ε > 0, ζK (s) the Dedekind zeta function
attached to a quadratic number field K with discriminant d
with |d | ≤ T ε, and ST := {γ1, γ2, . . . , γN} be the distinct
zeros of ζK

(

1
2 + it , f

)

in the interval [T , 2T ]. Let κT denote
the maximum gap between consecutive zeros in ST . Then

κT ≥ 2.866
π

log
√

|d |T
(

1 + O(dε log T )−1
)

.

Assuming GRH, this means Λ ≥ 2.866.
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A Lower Bound on Large Gaps

We proved the following unconditional theorem for an L-function
associated to a holomorphic cusp form f on GL(2).

Theorem (BMMRTW ’14)

Let ST := {γ1, γ2, ..., γN} be the set of distinct zeros of L
(

1
2 + it , f

)

in
the interval [T , 2T ]. Let κT denote the maximum gap between
consecutive zeros in ST . Then

κT ≥
√

3π
log T

(

1 + O
(

1
cf
(log T )−δ

))

,

where cf is the residue of the Rankin-Selberg convolution L(s, f × f̄ )
at s = 1.

Assuming GRH, there are infinitely many normalized gaps between
consecutive zeros at least

√
3 times the mean spacing, i.e.,

Λ ≥
√

3 ≈ 1.732.
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An Upper Bound on Small Gaps

Theorem (BMMRTW ’14)

L in Selberg class primitive of degree mL. Assume GRH for
log L(s) =

∑∞

n=1 bL(n)/ns ,
∑

n≤x |bL(n) log n|2 = (1 + o(1))x log x .
Have a computable nontrivial upper bound on µL (liminf of smallest
average gap) depending on mL.

mL upper bound for µL

1 0.606894
2 0.822897
3 0.905604
4 0.942914
5 0.962190
...

...

(mL = 1 due to Carneiro, Chandee, Littmann and Milinovich).

Key idea: use pair correlation analysis.
10



Introduction Shifted Moments & Proofs Properties Refs

Results on Gaps and Shifted Second Moments

11



Introduction Shifted Moments & Proofs Properties Refs

Shifted Moment Result

To prove our theorem, use a method due to R.R. Hall and
the following shifted moment result.

Theorem (BMMRTW ’14)

∫ 2T

T
L
(

1
2
+ it + α, f

)

L
(

1
2
− it + β, f

)

dt

= cf T
∑

n≥0

(−1)n2n+1(α + β)n(log T )n+1

(n + 1)!
+O

(

T (log T )1−δ
)

,

where α, β ∈ C and |α|, |β| ≪ 1/ log T .

Key idea: differentiate wrt parameters, yields formulas for
integrals of products of derivatives.
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Shifted Moments Proof Technique

Approximate functional equation:

L(s + α, f ) =
∑

n≥1

λf (n)
ns+α

e− n
X + F (s)

∑

n≤X

λf (n)
n1−s−α

+ E(s),

where λf (n) are the Fourier coefficients of L(s, f ),
F (s) is a functional equation term, and E(s) is an
error term.

We have an analogous expression for L(1 − s + β, f ).
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Shifted Moments Proof Technique

Analyze product

L(s + α, f )L(1 − s + β, f ),

where each factor gives rise to four products (so
sixteen products to estimate).

Use a generalization of Montgomery and Vaughan’s
mean value theorem and contour integration to
estimate product and compute the resulting moments.
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Shifted Moment Result for Derivatives

Shifted moment result yields lower order terms and
moments of derivatives of L-functions by
differentiation and Cauchy’s integral formula.

Derive an expression for
∫ 2T

T
L(µ)

(

1
2
+ it , f

)

L(ν)

(

1
2
− it , f

)

dt ,

where T ≥ 2 and µ, ν ∈ Z+. Use this in Hall’s method
to obtain the lower bound stated in our theorem.

Need (µ, ν) ∈ {(0, 0), (1, 0), (1, 1)}; other cases
previously done (Good did (0, 0) and Yashiro did
µ = ν).
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Modified Wirtinger Inequality

Using Hall’s method, we bound the gaps between zeroes.
This requires the following result, due to Wirtinger and
modified by Bredberg.

Lemma (Bredberg)

Let y : [a, b] → C be a continuously differentiable function
and suppose that y(a) = y(b) = 0. Then

∫ b

a
|y(x)|2dx ≤

(

b − a
π

)2 ∫ b

a
|y ′(x)|2dx .
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Proving our Result

For ρ a real parameter to be determined later, define

g(t) := eiρt log T L
(

1
2 + it , f

)

,

Fix f and let γ̃f (k) denote an ordinate zero of L(s, f )
on the critical line ℜ(s) = 1

2 .
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Proving our Result

For ρ a real parameter to be determined later, define

g(t) := eiρt log T L
(

1
2 + it , f

)

,

Fix f and let γ̃f (k) denote an ordinate zero of L(s, f )
on the critical line ℜ(s) = 1

2 .

g(t) has same zeros as L(s, f ) (at t = γ̃f (k)). Use in
the modified Wirtinger’s inequality.
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Proving our Result

For ρ a real parameter to be determined later, define

g(t) := eiρt log T L
(

1
2 + it , f

)

,

Fix f and let γ̃f (k) denote an ordinate zero of L(s, f )
on the critical line ℜ(s) = 1

2 .

g(t) has same zeros as L(s, f ) (at t = γ̃f (k)). Use in
the modified Wirtinger’s inequality.

For adjacent zeros have
N−1
∑

n=1

∫ γ̃f (n+1)

γ̃f (n)
|g(t)|2dt ≤

N−1
∑

n=1

κ2
T

π2

∫ γ̃f (n+1)

γ̃f (n)
|g′(t)|2dt .

Summing over zeros with n ∈ {1, . . . ,N} and trivial
estimation yields integrals from T to 2T .

19



Introduction Shifted Moments & Proofs Properties Refs

Proving our Result

|g(t)|2 = |L(1/2 + it , f )|2 and

|g′(t)|2 = |L′(1/2 + it , f )|2 + ρ2 log2 T · |L(1/2 + it , f )|2

+ 2ρ log T · Re
(

L′(1/2 + it , f )L(1/2 + it , f )
)

.

Apply sub-convexity bounds to L(1/2 + it , f ):
∫ 2T

T
|g(t)|2dt ≤ κ2

T

π2

∫ 2T

T
|g′(t)|2dt + O

(

T
2
3 (log T )

5
6

)

.

As g(t) and g′(t) may be expressed in terms of
L
(

1
2 + it , f

)

and its derivatives, can write our
inequality explicitly in terms of formula given by our
mixed moment theorem.
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Finishing the Proof

After substituting our formula, we have

κ2
T

π2
≥ 3

3ρ2 − 6ρ+ 4
(log T )−2

(

1 + O(log T )−δ
)

.

The polynomial in ρ is minimized at ρ = 1, yielding

κT ≥
√

3π
log T

(

1 + O
(

1
cf
(log T )−δ

))

.
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Essential GL(2) properties
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Properties

For primitive f on GL(2) over Q (Hecke or Maass) with

L(s, f ) =
∞
∑

n=1

af (n)
ns

, R(s) > 1,

we isolate needed crucial properties (all are known).

1 L(s, f ) has an analytic continuation to an entire
function of order 1.

2 L(s, f ) satisfies a function equation of the form

Λ(s, f ) := L(s, f∞)L(s, f ) = ǫfΛ(1 − s, f̄ )

with L(s, f∞) = QsΓ
(s

2
+ µ1

)

Γ
(s

2
+ µ2

)

.
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Properties (continued)

3 Convolution L-function L(s, f × f̄ ),
∞
∑

n=1

|af (n)|2
ns

, R(s) > 1,

is entire except for a simple pole at s = 1.

4 The Dirichlet coefficients (normalized so that the
critical strip is 0 ≤ ℜ(s) ≤ 1) satisfy

∑

n≤x

|af (n)|2 ≪ x .

5 For some small δ > 0, we have a subconvexity bound
∣

∣

∣

∣

L
(

1
2
+ it , f

)
∣

∣

∣

∣

≪ |t | 1
2−δ.
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Properties (status)

Mœglin and Waldspurger prove the needed
properties of L(s, f × f ) (in greater generality).

Dirichlet coefficient asymptotics follow for Hecke
forms essentially from the work of Rankin and
Selberg, and for Maass by spectral theory.

Michel and Venkatesh proved a subconvexity bound
for primitive GL(2) L-functions over Q.

Other properties are standard and are valid for GL(2).
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Thank you!
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