## Large Gaps Between Zeros of GL(2) **L-Functions**

Owen Barrett (Yale) and Steven J. Miller (Williams) owen.barrett@yale.edu, sjml@williams.edu With Brian McDonald, Patrick Ryan, Caroline Turnage-Butterbaugh & Karl Winsor

http://web.williams.edu/Mathematics/sjmiller/public html/

29th Automorphic Forms Workshop University of Michigan, March 2, 2015 Introduction

## Introduction

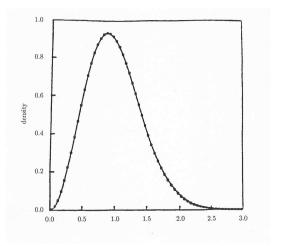
## **The Random Matrix Theory Connection**

Introduction

Philosophy: Critical-zero statistics of *L*-functions agree with eigenvalue statistics of large random matrices.

- Montgomery pair-correlations of zeros of  $\zeta(s)$  and eigenvalues of the Gaussian Unitary Ensemble.
- Hejhal, Rudnick and Sarnak Higher correlations and automorphic L-functions.
- Odlyzko further evidence through extensive numerical computations.

Introduction



Consecutive zero spacings of  $\zeta(s)$  vs. GUE predictions (Odlyzko).

## Large Gaps between Zeros

Let  $0 \le \gamma_1 \le \gamma_2 \le \cdots \le \gamma_i \le \cdots$  be the ordinates of the critical zeros of an I-function

## Conjecture

Introduction

Gaps between consecutive zeros that are arbitrarily large, relative to the average gap size, appear infinitely often.

#### Large Gaps between Zeros

Let  $0 \le \gamma_1 \le \gamma_2 \le \cdots \le \gamma_i \le \cdots$  be the ordinates of the critical zeros of an L-function.

## Conjecture

Introduction

Gaps between consecutive zeros that are arbitrarily large, relative to the average gap size, appear infinitely often.

Letting 
$$\Lambda = \limsup_{n \to \infty} \frac{\gamma_{n+1} - \gamma_n}{\text{average spacing}}$$
,

this conjecture is equivalent to  $\Lambda = \infty$ .

 Best unconditional result for the Riemann zeta function is  $\Lambda > 2.69$ .

#### Dedekind zeta functions in quadratic number fields

Introduction

Higher degree *L*-functions are mostly unexplored. First nontrivial quantitative lower bound for an L-function of degree greater than 1:

## Theorem (Turnage-Butterbaugh '14)

Let  $T \ge 2$ ,  $\varepsilon > 0$ ,  $\zeta_K(s)$  the Dedekind zeta function attached to a quadratic number field K with discriminant d with  $|d| \leq T^{\varepsilon}$ , and  $\mathcal{S}_T := \{\gamma_1, \gamma_2, \dots, \gamma_N\}$  be the distinct zeros of  $\zeta_K(\frac{1}{2}+it,f)$  in the interval [T,2T]. Let  $\kappa_T$  denote the maximum gap between consecutive zeros in  $S_T$ . Then

$$\kappa_T \geq \sqrt{6} \frac{\pi}{\log \sqrt{|d|}T} \left(1 + O(d^{\varepsilon} \log T)^{-1}\right).$$

• Assuming GRH, this means  $\Lambda > \sqrt{6} \approx 2.449$ .

Introduction

Using a similar argument with the added flexibility of smoothed mean-value estimates, been improved to

# Theorem (Bui, Heap, Turnage-Butterbaugh '14 (preprint))

Let  $T\geq 2$ ,  $\varepsilon>0$ ,  $\zeta_K(s)$  the Dedekind zeta function attached to a quadratic number field K with discriminant d with  $|d|\leq T^\varepsilon$ , and  $\mathcal{S}_T:=\{\gamma_1,\gamma_2,\ldots,\gamma_N\}$  be the distinct zeros of  $\zeta_K\left(\frac{1}{2}+it,f\right)$  in the interval [T,2T]. Let  $\kappa_T$  denote the maximum gap between consecutive zeros in  $\mathcal{S}_T$ . Then

$$\kappa_T \geq 2.866 \frac{\pi}{\log \sqrt{|d|}T} \left(1 + O(d^{\varepsilon} \log T)^{-1}\right).$$

• Assuming GRH, this means  $\Lambda > 2.866$ .

## A Lower Bound on Large Gaps

We proved the following unconditional theorem for an L-function associated to a holomorphic cusp form f on GL(2).

#### Theorem (BMMRTW '14)

Let  $S_T := \{\gamma_1, \gamma_2, ..., \gamma_N\}$  be the set of distinct zeros of  $L\left(\frac{1}{2} + it, f\right)$  in the interval [T, 2T]. Let  $\kappa_T$  denote the maximum gap between consecutive zeros in  $S_T$ . Then

$$\kappa_T \geq \frac{\sqrt{3}\pi}{\log T} \left( 1 + O\left(\frac{1}{c_f} (\log T)^{-\delta}\right) \right),$$

where  $c_f$  is the residue of the Rankin-Selberg convolution  $L(s, f \times \overline{f})$  at s = 1.

Assuming GRH, there are infinitely many normalized gaps between consecutive zeros at least  $\sqrt{3}$  times the mean spacing, i.e.,

$$\Lambda > \sqrt{3} \approx 1.732.$$

#### **An Upper Bound on Small Gaps**

#### Theorem (BMMRTW '14)

L in Selberg class primitive of degree  $m_L$ . Assume GRH for  $\log L(s) = \sum_{n=1}^{\infty} b_L(n)/n^s$ ,  $\sum_{n \leq x} |b_L(n)| \log n|^2 = (1+o(1))x \log x$ . Have a computable nontrivial upper bound on  $\mu_L$  (liminf of smallest average gap) depending on  $m_L$ .

| $m_L$ | upper bound for $\mu_{\it L}$ |
|-------|-------------------------------|
| 1     | 0.606894                      |
| 2     | 0.822897                      |
| 3     | 0.905604                      |
| 4     | 0.942914                      |
| 5     | 0.962190                      |
| :     | :                             |

 $(m_L = 1 \text{ due to Carneiro, Chandee, Littmann and Milinovich)}.$ 

Kev idea: use pair correlation analysis.

Results on Gaps and Shifted Second Moments

#### **Shifted Moment Result**

To prove our theorem, use a method due to R.R. Hall and the following shifted moment result.

## Theorem (BMMRTW '14)

$$\int_{T}^{2T} L\left(\frac{1}{2} + it + \alpha, f\right) L\left(\frac{1}{2} - it + \beta, f\right) dt$$

$$= c_{f} T \sum_{n \geq 0} \frac{(-1)^{n} 2^{n+1} (\alpha + \beta)^{n} (\log T)^{n+1}}{(n+1)!} + O\left(T(\log T)^{1-\delta}\right),$$

where  $\alpha, \beta \in \mathbb{C}$  and  $|\alpha|, |\beta| \ll 1/\log T$ .

Key idea: differentiate wrt parameters, yields formulas for integrals of products of derivatives.

#### **Shifted Moments Proof Technique**

• Approximate functional equation:

$$L(s+\alpha,f) = \sum_{n\geq 1} \frac{\lambda_f(n)}{n^{s+\alpha}} e^{-\frac{n}{X}} + F(s) \sum_{n\leq X} \frac{\lambda_f(n)}{n^{1-s-\alpha}} + E(s),$$

where  $\lambda_f(n)$  are the Fourier coefficients of L(s, f), F(s) is a functional equation term, and E(s) is an error term.

• We have an analogous expression for  $L(1 - s + \beta, f)$ .

## **Shifted Moments Proof Technique**

Analyze product

$$L(s + \alpha, f)L(1 - s + \beta, f),$$

where each factor gives rise to four products (so sixteen products to estimate).

 Use a generalization of Montgomery and Vaughan's mean value theorem and contour integration to estimate product and compute the resulting moments.

Introduction

#### **Shifted Moment Result for Derivatives**

- Shifted moment result yields lower order terms and moments of derivatives of *L*-functions by differentiation and Cauchy's integral formula.
- Derive an expression for

$$\int_{T}^{2T} L^{(\mu)} \left(\frac{1}{2} + it, f\right) L^{(\nu)} \left(\frac{1}{2} - it, f\right) dt,$$

where  $T \ge 2$  and  $\mu, \nu \in \mathbb{Z}^+$ . Use this in Hall's method to obtain the lower bound stated in our theorem.

• Need  $(\mu, \nu) \in \{(0,0), (1,0), (1,1)\}$ ; other cases previously done (Good did (0,0) and Yashiro did  $\mu = \nu$ ).

#### **Modified Wirtinger Inequality**

Using Hall's method, we bound the gaps between zeroes. This requires the following result, due to Wirtinger and modified by Bredberg.

## Lemma (Bredberg)

Let  $y:[a,b]\to\mathbb{C}$  be a continuously differentiable function and suppose that y(a)=y(b)=0. Then

$$\int_a^b |y(x)|^2 dx \le \left(\frac{b-a}{\pi}\right)^2 \int_a^b |y'(x)|^2 dx.$$

## **Proving our Result**

• For  $\rho$  a real parameter to be determined later, define

$$g(t) := e^{i\rho t \log T} L\left(\frac{1}{2} + it, f\right),$$

Fix f and let  $\tilde{\gamma}_f(k)$  denote an ordinate zero of L(s, f)on the critical line  $\Re(s) = \frac{1}{2}$ .

## **Proving our Result**

ullet For ho a real parameter to be determined later, define

$$g(t) := e^{i\rho t \log T} L\left(\frac{1}{2} + it, f\right),$$

Fix f and let  $\tilde{\gamma}_f(k)$  denote an ordinate zero of L(s, f) on the critical line  $\Re(s) = \frac{1}{2}$ .

• g(t) has same zeros as L(s, f) (at  $t = \tilde{\gamma}_f(k)$ ). Use in the modified Wirtinger's inequality.

## **Proving our Result**

• For  $\rho$  a real parameter to be determined later, define

$$g(t) := e^{i\rho t \log T} L\left(\frac{1}{2} + it, f\right),$$

Fix f and let  $\tilde{\gamma}_f(k)$  denote an ordinate zero of L(s, f) on the critical line  $\Re(s) = \frac{1}{2}$ .

- g(t) has same zeros as L(s, f) (at  $t = \tilde{\gamma}_f(k)$ ). Use in the modified Wirtinger's inequality.
- For adjacent zeros have

$$\sum_{n=1}^{N-1} \int_{\tilde{\gamma}_f(n)}^{\tilde{\gamma}_f(n+1)} |g(t)|^2 dt \leq \sum_{n=1}^{N-1} \frac{\kappa_T^2}{\pi^2} \int_{\tilde{\gamma}_f(n)}^{\tilde{\gamma}_f(n+1)} |g'(t)|^2 dt.$$

• Summing over zeros with  $n \in \{1, ..., N\}$  and trivial estimation yields integrals from T to 2T.

## **Proving our Result**

• 
$$|g(t)|^2 = |L(1/2 + it, f)|^2$$
 and 
$$|g'(t)|^2 = |L'(1/2 + it, f)|^2 + \rho^2 \log^2 T \cdot |L(1/2 + it, f)|^2 + 2\rho \log T \cdot \text{Re}\left(L'(1/2 + it, f)\overline{L(1/2 + it, f)}\right).$$

• Apply sub-convexity bounds to L(1/2 + it, f):

$$\int_{T}^{2T} |g(t)|^2 dt \leq \frac{\kappa_T^2}{\pi^2} \int_{T}^{2T} |g'(t)|^2 dt + O\left(T^{\frac{2}{3}} (\log T)^{\frac{5}{6}}\right).$$

 As g(t) and g'(t) may be expressed in terms of L(½+it, f) and its derivatives, can write our inequality explicitly in terms of formula given by our mixed moment theorem.

## **Finishing the Proof**

After substituting our formula, we have

$$\frac{\kappa_T^2}{\pi^2} \geq \frac{3}{3\rho^2 - 6\rho + 4} (\log T)^{-2} (1 + O(\log T)^{-\delta}).$$

• The polynomial in  $\rho$  is minimized at  $\rho =$  1, yielding

$$\kappa_T \geq \frac{\sqrt{3}\pi}{\log T} \left( 1 + O\left(\frac{1}{c_f}(\log T)^{-\delta}\right) \right).$$

## Essential GL(2) properties

#### **Properties**

For primitive f on GL(2) over  $\mathbb{Q}$  (Hecke or Maass) with

$$L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s}, \quad \mathfrak{R}(s) > 1,$$

we isolate needed crucial properties (all are known).

- L(s, f) has an analytic continuation to an entire function of order 1.
- (2) L(s, f) satisfies a function equation of the form

$$egin{array}{lll} \Lambda(s,f) &:=& L(s,f_{\infty})L(s,f) &=& \epsilon_f \Lambda(1-s,\overline{f}) \ \mathrm{with} \; L(s,f_{\infty}) &=& Q^s \Gamma\left(rac{s}{2} + \mu_1
ight) \Gamma\left(rac{s}{2} + \mu_2
ight). \end{array}$$

## **Properties (continued)**

**3** Convolution *L*-function  $L(s, f \times f)$ ,

$$\sum_{n=1}^{\infty} \frac{|a_f(n)|^2}{n^s}, \quad \mathfrak{R}(s) > 1,$$

is entire except for a simple pole at s = 1.

The Dirichlet coefficients (normalized so that the critical strip is  $0 < \Re(s) < 1$ ) satisfy

$$\sum_{n\leq x} |a_f(n)|^2 \ll x.$$

 $\bullet$  For some small  $\delta > 0$ , we have a subconvexity bound

$$\left|L\left(\frac{1}{2}+it,f\right)\right|\ll |t|^{\frac{1}{2}-\delta}.$$

## **Properties (status)**

- Moeglin and Waldspurger prove the needed properties of  $L(s, f \times \overline{f})$  (in greater generality).
- Dirichlet coefficient asymptotics follow for Hecke forms essentially from the work of Rankin and Selberg, and for Maass by spectral theory.
- Michel and Venkatesh proved a subconvexity bound for primitive GL(2) L-functions over Q.
- Other properties are standard and are valid for GL(2).

## References

#### References

Introduction

 Gaps between zeros of GL(2) L-functions (with Owen Barrett, Brian McDonald, Ryan Patrick, Caroline Turnage-Butterbaugh and Karl Winsor), preprint. http://arxiv.org/pdf/1410.7765.pdf.

Funded by NSF Grants DMS1265673, DMS1347804 and Williams College.

Introduction

## Thank you!