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The Random Matrix Theory Connection

Philosophy: Critical-zero statistics of L-functions agree
with eigenvalue statistics of large random matrices.

@ Montgomery - pair-correlations of zeros of ((s) and
eigenvalues of the Gaussian Unitary Ensemble.

@ Hejhal, Rudnick and Sarnak - Higher correlations and
automorphic L-functions.

@ Odlyzko - further evidence through extensive
numerical computations.
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Consecutive Zero Spacings
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Consecutive zero spacings of qsz vs. GUE predictions (Odlyzko).
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Large Gaps between Zeros

Let0 < <9 <---<~n <--- be the ordinates of the
critical zeros of an L-function.

Gaps between consecutive zeros that are arbitrarily large,
relative to the average gap size, appear infinitely often.
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°

Large Gaps between Zeros

Let0 < <9 <---<~n <--- be the ordinates of the
critical zeros of an L-function.

Gaps between consecutive zeros that are arbitrarily large,
relative to the average gap size, appear infinitely often.

Letting A = limsup — L —
nee  @verage spacing’

this conjecture is equivalent to A = cc.

@ Best unconditional result for the Riemann zeta
function is A > 2.69.
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Dedekind zeta functions in quadratic number fields

Higher degree L-functions are mostly unexplored. First
nontrivial quantitative lower bound for an L-function of
degree greater than 1.:

Theorem (Turnage-Butterbaugh '14)

Let T > 2,e > 0, (x(s) the Dedekind zeta function
attached to a quadratic number field K with discriminant d
with |[d| < T¢, and 8t := {y1,72, ..., } be the distinct
zeros of (x (% + it,f) in the interval [T, 2T]. Let xt denote
the maximum gap between consecutive zeros in 8t. Then

KT (1+0(dlogT)™).

> \/EL
N log \/|d|T

@ Assuming GRH, this means A > /6 ~ 2.449.
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Dedekind zeta functions in quadratic number fields

Using a similar argument with the added flexibility of
smoothed mean-value estimates, been improved to

Theorem (Bui, Heap, Turnage-Butterbaugh '14

(preprint))

Let T > 2,e > 0, («(s) the Dedekind zeta function
attached to a quadratic number field K with discriminant d
with |[d| < T¢, and 8t := {y1,72, ..., } be the distinct
zeros of (x (% + it,f) in the interval [T, 2T]. Let xt denote
the maximum gap between consecutive zeros in 8t. Then

/QT>28

T
866 ———
B log +/|d|T
@ Assuming GRH, this means A > 2.866.

(1+0(d°logT) ™).
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A Lower Bound on Large Gaps

We proved the following unconditional theorem for an L-function
associated to a holomorphic cusp form f on GL(2).

Theorem (BMMRTW '14)

Let 8t := {71,72, ..., } be the set of distinct zeros of L (3 + it,f) in
the interval [T, 2T]. Let xt denote the maximum gap between
consecutive zeros in 8t. Then

KT > Iz)/g_$ <1+O (C—lf(logT)“5>),

where ¢; is the residue of the Rankin-Selberg convolution L(s, f x )
ats = 1.

Assuming GRH, there are infinitely many normalized gaps between
consecutive zeros at least /3 times the mean spacing, i.e.,

A > V3 ~ 1.732.
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An Upper Bound on Small Gaps

Theorem (BMMRTW '14)

L in Selberg class primitive of degree m_. Assume GRH for
logL(s) = 3252, bu(n)/n®, Xy, b (n) log n? = (L + o(1))x log x.
Have a computable nontrivial upper bound on g (liminf of smallest
average gap) depending on m,.

m_  upper bound for p
1 0.606894
2 0.822897

3 0.905604

4

5

0.942914
0.962190

(m_ = 1 due to Carneiro, Chandee, Littmann and Milinovich).

.
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Results on Gaps and Shifted Second Moments J
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Shifted Moment Result

To prove our theorem, use a method due to R.R. Hall and
the following shifted moment result.

Theorem (BMMRTW '14)

2T 1 1
/ L<—+it+a,f)L(——it+B,f)dt
LD 2

oy ENE ((iif;!naogn% 10 (T(log T)*?)

where «, 5 € Cand |«|,|3] < 1/logT.

Key idea: differentiate wrt parameters, yields formulas for
integrals of products of derivatives.

9
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Shifted Moments Proof Technique

@ Approximate functional equation:

L(s +a,f) = > ?]fs(fa)e—% +F(s)) nAlf(S”)a +E(s),

n>1 n<X

where X¢(n) are the Fourier coefficients of L(s,f),
F(s) is a functional equation term, and E(s) is an
error term.

@ We have an analogous expression for L(1 — s + f,f).
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Shifted Moments Proof Technique

@ Analyze product
L(s + «,f)L(1 —s + 5,1),

where each factor gives rise to four products (so
sixteen products to estimate).

@ Use a generalization of Montgomery and Vaughan'’s
mean value theorem and contour integration to
estimate product and compute the resulting moments.
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Shifted Moment Result for Derivatives

@ Shifted moment result yields lower order terms and
moments of derivatives of L-functions by
differentiation and Cauchy’s integral formula.

@ Derive an expression for

2T 1 1
W= 4itf)L® (= it f)dt
/T L <2+|,) <2 it, ,

where T > 2 and p, v € Z*. Use this in Hall's method
to obtain the lower bound stated in our theorem.

@ Need (u,v) € {(0,0),(1,0),(1,1)}; other cases
prewously done (Good d|d (0,0) and Yashiro did

1= v).
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Modified Wirtinger Inequality

Using Hall's method, we bound the gaps between zeroes.
This requires the following result, due to Wirtinger and
modified by Bredberg.

Lemma (Bredberg)

Lety : [a, b] — C be a continuously differentiable function
and suppose thaty(a) = y(b) = 0. Then

[ oara < (b;a)z [ veorac
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Proving our Result

@ For p areal parameter to be determined later, define
g(t) := e (1 +it,f),

Fix f and let 5¢(k ) denote an ordinate zero of L(s,f)

on the critical line R(s) = 3.
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Proving our Result

@ For p areal parameter to be determined later, define
g(t) := e (1 +it,f),

Fix f and let 5¢(k ) denote an ordinate zero of L(s,f)
on the critical line R(s) = 3.
@ g(t) has same zeros as L(s,f) (att = #(k)). Use in

the modified Wirtinger’s inequality.
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Proving our Result

@ For p areal parameter to be determined later, define
g(t) := e (1 +it,f),

Fix f and let 5¢(k ) denote an ordinate zero of L(s,f)

on the critical line R(s) = 3.

@ g(t) has same zeros as L(s,f) (att = #(k)). Use in
the modified Wirtinger’s inequality.

@ For adjacent zeros have

N-1 5 (n+1) N-1 K2 w(n+1
[, lewra < X0 [ gra
n=1 ;}‘/f(n) n= Y (n)

@ Summing over zeros withn € {1,... N} and trivial

estimation yields integrals from T to 2T.
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Proving our Result

o |g(t)[2 = |L(1/2 +it,f)]? and
GO = [U(L/2+ it ) + Plog? T - [L(L/2 + it, 1)
+2plogT -Re <L’(1/2 it f)L(1/2 1 it,f)) .

@ Apply sub-convexity bounds to L(1/2 + it, f):
2T 2 2T
[l < [ g+ 0 (T30 T
T T

@ As g(t) and ¢g/(t) may be expressed in terms of
L (% +it, f) and its derivatives, can write our
inequality explicitly in terms of formula given by our
mixed moment theorem.
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Finishing the Proof

@ After substituting our formula, we have

2

K 3 5 s
— > _—— (logT 1+0O(logT .
w2 = 3p? —6p—|—4(0g ) (logT)™)

@ The polynomial in p is minimized at p = 1, yielding

KT 2> I:)/g; < +0 <C—1f(logT)‘5)).
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Properties
For primitive f on GL(2) over Q (Hecke or Maass) with

we isolate needed crucial properties (all are known).
@ L(s,f) has an analytic continuation to an entire
function of order 1.

Q L(s,f) satisfies a function equation of the form

A(s,f) = L(s,fx)L(s,f) = &A1 —s,f)
S

withL(s,f.) = Q°F (§+ul)r(2+u2>.
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Properties (continued)

© Convolution L-function L(s, f x f),

o0

> M, R(s) > 1,

nS
n=1

is entire except for a simple pole ats = 1.

© The Dirichlet coefficients (normalized so that the
critical strip is 0 < R(s) < 1) satisfy

> lan)ff < x.
n<x
@ For some small § > 0, we have a subconvexity bound

1
L{=+it,f
’ (2+It,)

< Jt|2 0.
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Properties (status)

@ Moeglin and Waldspurger prove the needed
properties of L(s,f x f) (in greater generality).

@ Dirichlet coefficient asymptotics follow for Hecke
forms essentially from the work of Rankin and
Selberg, and for Maass by spectral theory.

@ Michel and Venkatesh proved a subconvexity bound
for primitive GL(2) L-functions over Q.

@ Other properties are standard and are valid for GL(2).
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