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Why study zeros of L-functions?

@ Infinitude of primes, primes in arithmetic progression.
@ Chebyshev’s bias: m34(x) > m1.4(x) ‘most’ of the time.
@ Birch and Swinnerton-Dyer conjecture.

@ Goldfeld, Gross-Zagier: bound for h(D) from
L-functions with many central point zeros.

@ Even better estimates for h(D) if a positive
percentage of zeros of {(s) are at most 1/2 — ¢ of the
average spacing to the next zero.
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Distribution of zeros

@ ((s) # 0 for Re(s) = 1: m(X), maq(X).
@ GRH: error terms.
@ GSH: Chebyshev’s bias.

@ Analytic rank, adjacent spacings: h(D).

A




Introduction
°

Sketch of proofs

In studying many statistics, often three key steps:
© Determine correct scale for events.

@ Develop an explicit formula relating what we want to
study to something we understand.

© Use an averaging formula to analyze the quantities
above.

It is not always trivial to figure out what is the correct
statistic to study!
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Riemann Zeta Function

n=1 p prime

Functional Equation:
S\ _s
&(s) = T(3)75c(s) = ¢ —s).
Riemann Hypothesis (RH):
- 1 : 1 .
All non-trivial zeros have Re(s) = > can write zeros as §+w.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A — A
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General L-functions

L(s,f) = iaf(”) — I (st Re(s)>1.

n=1 p prime
Functional Equation:
A(s,f) = Ax(s,f)L(s,f) = A1 —s,T).

Generalized Riemann Hypothesis (RH):
- 1 : 1 .
All non-trivial zeros have Re(s) = > can write zeros as §+w.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A=A
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Zeros of ((s) vs GUE

06

04 P

02

0.0

0.0 0.5 1.0 15 20 2.5 3.0

70 million spacings b/w adjacent zeros of ((s), starting at
the 10%°"" zero (from Odlyzko).
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Explicit Formula (Contour Integration)
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Explicit Formula (Contour Integration)

d -1
ol _C?—Slogg(s) = —£|091;[(1—p_s)

d —S
= E;Iog(l—p )

logp - p~° log p
— Zl—ip—s = ZF + Good(s).
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Explicit Formula (Contour Integration)

Contour Integration:

[-@

poo 5) %
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Explicit Formula (Contour Integration)

Contour Integration:

~¢(s) s
/ ) #(s)ds vs ;Iogp/gb(s)p ds.
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Explicit Formula (Contour Integration)

Contour Integration (see Fourier Transform arising):

('(s) —ologp o—itlo
|-G otsids v > logp [ ots)errrvetomngs.

Knowledge of zeros gives info on coefficients.
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Explicit Formula: Cuspidal Newforms

Cuspidal Newforms: Let F be a family of cupsidal
newforms (say weight k, prime level N and possibly split
by sign) L(s,f) =>_, A(n)/n®. Then

1 log R ~ 1 1 _
WZZ¢(2W %) — 3(0)+ 5900) ~ 7 S_P(0)

feF n

~(logp\ 2logp
P(fi0) = ZAf(p)as( >\/5IogR'
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Measures of Spacings: n-Level Correlations

{ay} increasing sequence, box B  R"*.

n-level correlation

# <Ozj1 = Qfpy - Qg — O‘jn) € Baji 7£Jk

lim
N— oo N

(Instead of using a box, can use a smooth test function.)
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Measures of Spacings: n-Level Correlations

{oy} increasing sequence, box B  R"*.

© Normalized spacings of ¢(s) starting at 10%°
(Odlyzko).

@ 2 and 3-correlations of ((s) (Montgomery, Hejhal).

© n-level correlations for all automorphic cupsidal
L-functions (Rudnick-Sarnak).

@ n-level correlations for the classical compact groups
(Katz-Sarnak).

@ Insensitive to any finite set of zeros.
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Measures of Spacings: n-Level Density and Families

o(x) =[] ¢i(x), ¢i even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Dnf(¢) = Z¢1<Lffyf(h))...¢H<Lf,yf(jn))

i15---5dn
distinct
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Measures of Spacings: n-Level Density and Families

o(x) =[] ¢i(x), ¢i even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Dnf(¢) = Z¢1<Lffyf(h))...¢H<Lf,yf(jn))

i15---5dn
distinct

© Individual zeros contribute in limit.
@ Most of contribution is from low zeros.
© Average over similar curves (family).
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Measures of Spacings: n-Level Density and Families

o(x) =[] ¢i(x), ¢i even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Dnf(¢) = Z¢1<Lffyf(h))...¢H<Lf,yf(jn))

i15---5dn
distinct

© Individual zeros contribute in limit.
@ Most of contribution is from low zeros.
© Average over similar curves (family).

Katz-Sarnak Conjecture

For a ‘nice’ family of L-functions, the n-level density
depends only on a symmetry group attached to the family.
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Normalization of Zeros

Local (hard, use Cs) vs Global (easier, use logC =
| Fnlt ZfefN log C;). Hope: ¢ a good even test function
with compact support, as |F| — oo,

T~ % X T2

feFn feFn J1 77777 Jn

—>/ /cb Wh g(7)(X)dX.

Katz-Sarnak Conjecture

As C; — oo the behavior of zeros near 1/2 agrees with
N — oo limit of eigenvalues of a classical compact group.
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1-Level Densities

The Fourier Transforms for the 1-level densities are

W sormen(U) = 8o(u) + Zu(u)
Woso(u) = dou) + 5

Wi sorin(u) = do(u) — zn(u) +1
Woss(U) = do(u) — n(u)

W17u(U) = (50(U)
where do(u) is the Dirac Delta functional and

1 ifjuj<1
n(u) = { ; ifjul=1

2
0 iflu/>1
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Correspondences

Similarities between L-Functions and Nuclei:

Zeros <+— Energy Levels

Schwartz test function —— Neutron

Support of test function <+— Neutron Energy.




Cusp forms (square-free N)

Cuspidal Newforms
Iwaniec-Luo-Sarnak, Hughes-Miller
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Results from Iwaniec-Luo-Sarnak

@ Orthogonal: lwaniec-Luo-Sarnak: 1-level density for
holomorphic even weight k cuspidal newforms of
square-free level N (SO(even) and SO(odd) if split by
sign) in (—2, 2).

@ Symplectic: Iwaniec-Luo-Sarnak: 1-level density for
sym?(f), f holomorphic cuspidal newform.

Will review Orthogonal case.
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Modular Form Preliminaries

ab) ad—-bc =1
) = 4(2 4 ) " om) )
f is a weight k holomorphic cuspform of level N if

¥y € To(N), f(y2) = (cz +d)*f(z2).

@ Fourier Expansion: f(z) = Y o2, a;(n)e®"Z,
L(s,f)=>",an"s.

@ Petersson Norm: (f,g) = fro(N)\Hf(z)g(z)yk*dedy.

@ Normalized coefficients:

rk—1) 1

Pr(n) Wwaf(n)-
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Modular Form Preliminaries: Petersson Formula

Bk (N) an orthonormal basis for weight k level N. Define

Agn(m,n) = Z wr(m)d(n).

fEBk(N)

Petersson Formula
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Modular Form Preliminaries: Explicit Formula

Let F be a family of cupsidal newforms (say weight k,
prime level N and possibly split by sign)
L(s,f) = >, A(n)/n3. Then

1 log R ~ 1 1 _
WZZ¢(2W %) — 3(0)+ 5900) ~ 7 S_P(0)

feF n

~(logp\ 2logp
P(fi0) = ZAf(p)as( >\/5IogR'
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Modular Form Preliminaries: Fourier Coefficient Review

A(n) = af(n)n%
mn
Mmxm) = Y (T)
d|(m,n)
(d,M)=1

For a newform of level N, A\¢(N) is trivially related to the
sign of the form:

e = i*u(N)A(N)VN.

Above allows us to split into even and odd families: 1 + ¢.
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Key Kloosterman-Bessel integral from ILS

Ramanujan sum:

R(n.g) = Y e(@n/q) = > u(g/d)d

amod g d|(n,q)

where x restricts the sum to a relatively prime to q.

Theorem (ILS)

Let W be an even Schwartz function with supp(¥) C (—2,2). Then

Z Z (m?,b)R(1, b)/ Jea(y)¥ <2Iog(by\/ﬁ/47rm)> dy

ot cp(b logR logR
1[[= sin27x . 1 k loglogkN
- 72 V_ww(x) 2 X 2“’(0)] +O< logkN )

where R = k2N and ¢ is Euler's totient function.
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Limited Support ( o < 1): Sketch of proof

@ Estimate Kloosterman-Bessel terms trivially.
o Kloosterman sum: dd = 1 mod q, 7(q) is the
number of divisors of q,

oy o(md, nd
S(m,n;q) = Ze(q +q>

d mod q

S(m.ma)| < (m.n.q) \/min{ a_ 9 }T(q).

© Bessel function: integer k > 2,
Ji-1(x) < min (x, xk= x71/2),

@ Use Fourier Coefficients to split by sign: N fixed:

£ 3 (N # ().
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Increasing Support ( o < 2): Sketch of the proof

@ Using Dirichlet Characters, handle Kloosterman
terms.

@ Have terms like

[ a3 3 (90) &
0

logR /) Yy

with arithmetic factors to sum outside.

@ Works for support up to (-2, 2).
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2-Level Density

R R7 | ~ /| 2
/ / 3 ( ogxl) 3 ( ogxz) Iy <47T\/m x1x2N> dx,dx,
X1=2 J Xp=2

log R VX1X2
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2-Level Density

/ / log X1 ngS log X, ] 4 v/ M2x:xoN | dx;dxs
x1=2 J xp= log R log R k- c VX1 X2
Change of variables and Jacobian:

u
U = XX X2 = §

up = X1 X1 = U

Left with

// |OgU1 |Og (%i) 1 3 4 \/mZUZN dUldU;
logR logR VU2 k=1 | 7 c Uz
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2-Level Density (cont)

Changing variables, u;-integral is

7 ~ ~ (log uy
/W logu27o¢(W1)¢ (logR —Wl) dWl.

1= TogR

Support conditions imply
logu,\ [~ ~ ~ (log u,
Vs (IOQR) = /Wl__oo¢(W1)¢ (IogR Wl) dws.
Substituting gives

/oo 5, <4ﬁ,/m2uZN> v, <Iog uz) %
u,=0

C
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General N

with Owen Barrett, Paula Burkhardt,
Jonathan DeWitt and Robert Dorward
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Notation

Holomorphic cusp newform f, renormalized Fourier
coefficients

1/2
) = (i) I

where |[f||2 = (f,f) and (-, -,) denotes the Petersson inner
product.

Define

Agn(m,n) = Z Wy
geBi(N)

where B (N) is an orthonormal basis for the space of
cusp forms of weight k and level N.
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Generalized Averaging Formula

Using the orthonormal basis By (N) of Milicevi¢ and
Blomer, we prove the following (unconditional) formula.

Generalized Averaging Formula
Suppose that (n,N) = 1. Then

_ 2 =i
> o = oM ] (Fg) X m At

feHz (N) LM=N p2|M (m,M)=1
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Main Result: Consequence of averaging formula:

1-Level Density [BBDDM]

Fix any ¢ € S(R) with supp ¢ C (—2,2). Then, assuming GRH for
L(s,f) and L(s,sym?f) for f € H;(N) and for all Dirichlet L-functions,

S Difie) = /aswl (x) dx

feH; (N)

N—oo [HE(N)

where W, (0)(x) = 1 + 260(x); thus the 1-level density for the family
Hz (N) agrees only with orthogonal symmetry.

More generally, under the same assumptions the Density Conjecture
holds for the family H;(N) for any test function ¢(x) whose Fourier
transform is supported inside (—u, u) with u < 2log(kN)/log(k2N).
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Main Result: Consequence of averaging formula:

1-Level Density [BBDDM]

Fix any ¢ € S(R) with supp ¢ C (—2,2). Then, assuming GRH for
L(s,f) and L(s,sym?f) for f € H;(N) and for all Dirichlet L-functions,

1
im ——— (f:
No [HE(N)] 2 Dufig) / PXIWa(O)(x)

feH; (N)

where W, (0)(x) = 1 + 260(x); thus the 1-level density for the family
Hz (N) agrees only with orthogonal symmetry.

More generally, under the same assumptions the Density Conjecture
holds for the family H;(N) for any test function ¢(x) whose Fourier
transform is supported inside (—u, u) with u < 2log(kN)/log(k2N).

Can't split by sign: don't have ¢ = i (N )X (N)N?/2 for general N (if
p%|N, then the level doesn’t determine the local representation and so
doesn’t determine the root number).




Cusp forms (General N)
L]

Proof of Averaging Formula: &4

For f € H;(M) consider the following arithmetic functions from [BM]:

b M b b) M b
Zbo.tms/t\efd( ZXO (b)p(b) 7 ZXO (b)

b|c b|c

where p¢(c) is the multiplicative function given implicitly by

w(c)
cs ’
or explicitly on prime powers by
_ —Ai(p) =1
pe(P') = { xom(p) j=2
0 j>2

and

tW|sted Z XoM (r

rlb
A
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Proof of Averaging Formula: &y (cont)

For ¢ | d define
o ad/On(d/0 S u(d )
@O = sapaaraan 9O T @rn@e@)

Write d = d;d; where d; is square-free, d, is square-full, and
(dy,d;) = 1. Thus p || d implies p | d; and p? | d implies p? | d,. Then
for ¢ | d define

€a(0) = &, ((d1,0)&,((d2, 0)).
Blomer and Milicevi€ prove if

fa(z) = > &(Of | (2),

£d

where N = LM and f € H}(M) is Petersson-normalized with respect
to the Petersson norm on level S (N), then {fq : d | L} is an
orthonormal basis of Sy (L; f).

A




Cusp forms (General N)
L]

A

Proof of Averaging Formula: &y (cont)

Orthonormal basis for S (N) and sum:

sy = U U Ut

LM=N feH* (M) d|L

K — 1/2 K — 1/2
Agn(mn) = > (r( l,)) HgH*lag(M(r(m)kf)l) llgl|~*ag(n)

gemm) \ mmi @

— (am) ) Z Tk - 1) >SS \\fdwrzay(m)ay()

LM=N feH (M )f’d\L

= (am)tK (mn) 7 k=1 > > > wz( > gd(z)zk/zxf(%)(m/z)(kfl)/z)
(d,m)

LM=N feHx (M) d|L

x ( > sd(e)zk/zaf(%)(n/@“*”“)
¢

(d;n)
12 M 1

T (k- Du(N) LMZ:N o) iz 201

x 2( > sd(e)zl/zxf(%)) ( S oe (f)zl/zxf(%))
2] £|(d,n)

d|L \¢|(d,m)
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Proof of Averaging Formula: &y (cont)

Specialize to (n, N)=1and (m,N) = 1. Thend|L|N and
(m,N) = (n,N) =1, ¢|(d,m) implies ¢ = 1 (and similarly for ¢|(d, n)).
Find
B 12 M Ar(m)A¢(n)
An(mn) = B3 0mN LMZ:N EO I IA) DY

feH! (M) d|L

Task to understand

> ()’

d|L

A




Cusp forms (General N)
[ ]

Proof of Averaging Formula: &y (cont)

Specialize to (n, N)=1and (m,N) = 1. Thend|L|N and
(m,N) = (n,N) =1, ¢|(d,m) implies ¢ = 1 (and similarly for ¢|(d, n)).
Find
B 12 M Ar(m)A¢(n)
An(mn) = B3 0mN LMZ:N EO I IA) DY

feH! (M) d|L

Task to understand

p?
>’ = >« = [T " [ -
diL diL p|L pZ\Np

piM PP

A
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Sample of the algebra....
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@ Choose combinatorics to simplify calculations.

@ Extending support often related to deep arithmetic
guestions.

@ Technical issues arise, some formulas only clean in
special cases.

A7
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