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Introduction
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Why study zeros of L-functions?

Infinitude of primes, primes in arithmetic progression.

Chebyshev’s bias: π3,4(x) ≥ π1,4(x) ‘most’ of the time.

Birch and Swinnerton-Dyer conjecture.

Goldfeld, Gross-Zagier: bound for h(D) from
L-functions with many central point zeros.

Even better estimates for h(D) if a positive
percentage of zeros of ζ(s) are at most 1/2− ǫ of the
average spacing to the next zero.
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Distribution of zeros

ζ(s) 6= 0 for Re(s) = 1: π(x), πa,q(x).

GRH: error terms.

GSH: Chebyshev’s bias.

Analytic rank, adjacent spacings: h(D).

4



Introduction Cusp forms (square-free N) Cusp forms (General N) Conclusion and Refs

Sketch of proofs

In studying many statistics, often three key steps:

1 Determine correct scale for events.

2 Develop an explicit formula relating what we want to
study to something we understand.

3 Use an averaging formula to analyze the quantities
above.

It is not always trivial to figure out what is the correct
statistic to study!
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Riemann Zeta Function

ζ(s) =
∞∑

n=1

1
ns

=
∏

p prime

(
1− 1

ps

)−1

, Re(s) > 1.

Functional Equation:

ξ(s) = Γ
(s

2

)
π− s

2 ζ(s) = ξ(1− s).

Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+iγ.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A

T
= A.
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General L-functions

L(s, f ) =
∞∑

n=1

af (n)
ns

=
∏

p prime

Lp (s, f )
−1 , Re(s) > 1.

Functional Equation:

Λ(s, f ) = Λ∞(s, f )L(s, f ) = Λ(1− s, f ).

Generalized Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+iγ.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A

T
= A.
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Zeros of ζ(s) vs GUE

70 million spacings b/w adjacent zeros of ζ(s), starting at
the 1020th zero (from Odlyzko).
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Explicit Formula (Contour Integration)

−ζ
′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1− p−s

)−1
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Explicit Formula (Contour Integration)

−ζ
′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1− p−s

)−1

=
d
ds

∑

p

log
(
1− p−s

)

=
∑

p

log p · p−s

1− p−s
=
∑

p

log p
ps

+ Good(s).
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Explicit Formula (Contour Integration)

−ζ
′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1− p−s

)−1

=
d
ds

∑

p

log
(
1− p−s

)

=
∑

p

log p · p−s

1− p−s
=
∑

p

log p
ps

+ Good(s).

Contour Integration:
∫
− ζ ′(s)

ζ(s)
xs

s
ds vs

∑

p

log p
∫ (

x
p

)s ds
s
.
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Explicit Formula (Contour Integration)

−ζ
′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1− p−s

)−1

=
d
ds

∑

p

log
(
1− p−s

)

=
∑

p

log p · p−s

1− p−s
=
∑

p

log p
ps

+ Good(s).

Contour Integration:
∫
− ζ ′(s)

ζ(s)
φ(s)ds vs

∑

p

log p
∫
φ(s)p−sds.
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Explicit Formula (Contour Integration)

−ζ
′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1− p−s

)−1

=
d
ds

∑

p

log
(
1− p−s

)

=
∑

p

log p · p−s

1− p−s
=
∑

p

log p
ps

+ Good(s).

Contour Integration (see Fourier Transform arising):
∫
− ζ ′(s)

ζ(s)
φ(s)ds vs

∑

p

log p
∫
φ(s)e−σ log pe−it log pds.

Knowledge of zeros gives info on coefficients.
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Explicit Formula: Cuspidal Newforms

Cuspidal Newforms: Let F be a family of cupsidal
newforms (say weight k , prime level N and possibly split
by sign) L(s, f ) =

∑
n λf (n)/ns. Then

1
|F|

∑

f∈F

∑

γf

φ

(
log R

2π
γf

)
= φ̂(0) +

1
2
φ(0)− 1

|F|
∑

f∈F

P(f ;φ)

+ O
(

log log R
log R

)

P(f ;φ) =
∑

p∤N

λf (p)φ̂
(

log p
log R

)
2 log p√
p log R

.
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Measures of Spacings: n-Level Correlations

{αj} increasing sequence, box B ⊂ Rn−1.

n-level correlation

lim
N→∞

#

{(
αj1 − αj2 , . . . , αjn−1 − αjn

)
∈ B, ji 6= jk

}

N

(Instead of using a box, can use a smooth test function.)
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Measures of Spacings: n-Level Correlations

{αj} increasing sequence, box B ⊂ Rn−1.

1 Normalized spacings of ζ(s) starting at 1020

(Odlyzko).
2 2 and 3-correlations of ζ(s) (Montgomery, Hejhal).
3 n-level correlations for all automorphic cupsidal

L-functions (Rudnick-Sarnak).
4 n-level correlations for the classical compact groups

(Katz-Sarnak).
5 Insensitive to any finite set of zeros.
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Measures of Spacings: n-Level Density and Families

φ(x) :=
∏

i φi(xi), φi even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Dn,f (φ) =
∑

j1,...,jn
distinct

φ1

(
Lfγ

(j1)
f

)
· · ·φn

(
Lfγ

(jn)
f

)
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Measures of Spacings: n-Level Density and Families

φ(x) :=
∏

i φi(xi), φi even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Dn,f (φ) =
∑

j1,...,jn
distinct

φ1

(
Lfγ

(j1)
f

)
· · ·φn

(
Lfγ

(jn)
f

)

1 Individual zeros contribute in limit.
2 Most of contribution is from low zeros.
3 Average over similar curves (family).
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Measures of Spacings: n-Level Density and Families

φ(x) :=
∏

i φi(xi), φi even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Dn,f (φ) =
∑

j1,...,jn
distinct

φ1

(
Lfγ

(j1)
f

)
· · ·φn

(
Lfγ

(jn)
f

)

1 Individual zeros contribute in limit.
2 Most of contribution is from low zeros.
3 Average over similar curves (family).

Katz-Sarnak Conjecture
For a ‘nice’ family of L-functions, the n-level density
depends only on a symmetry group attached to the family.
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Normalization of Zeros

Local (hard, use Cf ) vs Global (easier, use log C =
|FN |−1

∑
f∈FN

log Cf ). Hope: φ a good even test function
with compact support, as |F| → ∞,

1
|FN |

∑

f∈FN

Dn,f (φ) =
1
|FN |

∑

f∈FN

∑

j1,...,jn
ji 6=±jk

∏

i

φi

(
log Cf

2π
γ
(ji )
f

)

→
∫
· · ·
∫
φ(x)Wn,G(F)(x)dx .

Katz-Sarnak Conjecture

As Cf →∞ the behavior of zeros near 1/2 agrees with
N →∞ limit of eigenvalues of a classical compact group.

20



Introduction Cusp forms (square-free N) Cusp forms (General N) Conclusion and Refs

1-Level Densities

The Fourier Transforms for the 1-level densities are

̂W1,SO(even)(u) = δ0(u) +
1
2
η(u)

Ŵ1,SO(u) = δ0(u) +
1
2

̂W1,SO(odd)(u) = δ0(u)−
1
2
η(u) + 1

Ŵ1,Sp(u) = δ0(u)−
1
2
η(u)

Ŵ1,U(u) = δ0(u)

where δ0(u) is the Dirac Delta functional and

η(u) =

{ 1 if |u| < 1
1
2 if |u| = 1
0 if |u| > 1
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Correspondences

Similarities between L-Functions and Nuclei:

Zeros ←→ Energy Levels

Schwartz test function −→ Neutron

Support of test function ←→ Neutron Energy.
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Cuspidal Newforms
Iwaniec-Luo-Sarnak, Hughes-Miller
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Results from Iwaniec-Luo-Sarnak

Orthogonal: Iwaniec-Luo-Sarnak: 1-level density for
holomorphic even weight k cuspidal newforms of
square-free level N (SO(even) and SO(odd) if split by
sign) in (−2, 2).

Symplectic: Iwaniec-Luo-Sarnak: 1-level density for
sym2(f ), f holomorphic cuspidal newform.

Will review Orthogonal case.

24



Introduction Cusp forms (square-free N) Cusp forms (General N) Conclusion and Refs

Modular Form Preliminaries

Γ0(N) =

{(
a b
c d

)
:

ad − bc = 1
c ≡ 0(N)

}

f is a weight k holomorphic cuspform of level N if

∀γ ∈ Γ0(N), f (γz) = (cz + d)k f (z).

Fourier Expansion: f (z) =
∑∞

n=1 af (n)e2πiz ,
L(s, f ) =

∑∞
n=1 ann−s.

Petersson Norm: 〈f , g〉 =
∫
Γ0(N)\H f (z)g(z)y k−2dxdy .

Normalized coefficients:

ψf (n) =

√
Γ(k − 1)
(4πn)k−1

1
||f ||af (n).
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Modular Form Preliminaries: Petersson Formula

Bk (N) an orthonormal basis for weight k level N. Define

∆k ,N(m, n) =
∑

f∈Bk (N)

ψf (m)ψf (n).

Petersson Formula

∆k ,N(m, n) = 2πik
∑

c≡0(N)

S(m, n, c)
c

Jk−1

(
4π

√
mn
c

)

+ δ(m, n).
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Modular Form Preliminaries: Explicit Formula

Let F be a family of cupsidal newforms (say weight k ,
prime level N and possibly split by sign)
L(s, f ) =

∑
n λf (n)/ns. Then

1
|F|

∑

f∈F

∑

γf

φ

(
log R

2π
γf

)
= φ̂(0) +

1
2
φ(0)− 1

|F|
∑

f∈F

P(f ;φ)

+ O
(

log log R
log R

)

P(f ;φ) =
∑

p∤N

λf (p)φ̂
(

log p
log R

)
2 log p√
p log R

.
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Modular Form Preliminaries: Fourier Coefficient Review

λf (n) = af (n)n
k−1

2

λf (m)λf (n) =
∑

d|(m,n)
(d,M)=1

λf

(mn
d

)
.

For a newform of level N, λf (N) is trivially related to the
sign of the form:

ǫf = ikµ(N)λf (N)
√

N.

Above allows us to split into even and odd families: 1± ǫf .
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Key Kloosterman-Bessel integral from ILS

Ramanujan sum:

R(n, q) =
∑∗

a mod q

e(an/q) =
∑

d |(n,q)

µ(q/d)d ,

where ∗ restricts the sum to a relatively prime to q.

Theorem (ILS)

Let Ψ be an even Schwartz function with supp(Ψ̂) ⊂ (−2,2). Then

∑

m≤Nǫ

1
m2

∑

(b,N)=1

R(m2, b)R(1,b)
ϕ(b)

∫ ∞

y=0
Jk−1(y)Ψ̂

(
2 log(by

√
N/4πm)

log R

)
dy

log R

= −1
2

[∫ ∞

−∞

Ψ(x)
sin 2πx

2πx
dx − 1

2
Ψ(0)

]
+ O

(
k log log kN

log kN

)
,

where R = k2N and ϕ is Euler’s totient function.
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Limited Support ( σ < 1): Sketch of proof

Estimate Kloosterman-Bessel terms trivially.
⋄ Kloosterman sum: dd ≡ 1 mod q, τ(q) is the
number of divisors of q,

S(m, n; q) =
∑∗

d mod q

e

(
md
q

+
nd
q

)

|S(m, n; q)| ≤ (m, n, q)

√
min

{
q

(m, q)
,

q
(n, q)

}
τ(q).

⋄ Bessel function: integer k ≥ 2,
Jk−1(x)≪ min

(
x , xk−1, x−1/2

)
.

Use Fourier Coefficients to split by sign: N fixed:
±∑f λf (N) ∗ (· · · ).
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Increasing Support ( σ < 2): Sketch of the proof

Using Dirichlet Characters, handle Kloosterman
terms.

Have terms like
∫ ∞

0
Jk−1

(
4π

√
m2yN
c

)
φ̂

(
log y
log R

)
dy√

y

with arithmetic factors to sum outside.

Works for support up to (−2, 2).
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2-Level Density

∫ Rσ

x1=2

∫ Rσ

x2=2
φ̂

(
log x1

log R

)
φ̂

(
log x2

log R

)
Jk−1

(
4π

√
m2x1x2N

c

)
dx1dx2√

x1x2

32



Introduction Cusp forms (square-free N) Cusp forms (General N) Conclusion and Refs

2-Level Density

∫ Rσ

x1=2

∫ Rσ

x2=2
φ̂

(
log x1

log R

)
φ̂

(
log x2

log R

)
Jk−1

(
4π

√
m2x1x2N

c

)
dx1dx2√

x1x2

Change of variables and Jacobian:

u2 = x1x2 x2 = u2
u1

u1 = x1 x1 = u1

∣∣∣∣
∂x
∂u

∣∣∣∣ =

∣∣∣∣∣
1 0
−u2

u2
1

1
u1

∣∣∣∣∣ =
1
u1
.

Left with
∫ ∫

φ̂

(
log u1

log R

)
φ̂




log
(

u2
u1

)

log R


 1√

u2
Jk−1

(
4π

√
m2u2N

c

)
du1du2

u1
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2-Level Density (cont)

Changing variables, u1-integral is
∫ σ

w1=
log u2
log R −σ

φ̂ (w1) φ̂

(
log u2

log R
− w1

)
dw1.

Support conditions imply

Ψ2

(
log u2

log R

)
=

∫ ∞

w1=−∞

φ̂ (w1) φ̂

(
log u2

log R
− w1

)
dw1.

Substituting gives
∫ ∞

u2=0
Jk−1

(
4π

√
m2u2N

c

)
Ψ2

(
log u2

log R

)
du2√

u2
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General N

with Owen Barrett, Paula Burkhardt,
Jonathan DeWitt and Robert Dorward
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Notation

Holomorphic cusp newform f , renormalized Fourier
coefficients

Ψf (n) :=

(
Γ(k − 1)
(4π)k−1

)1/2

||f ||−1λf (n),

where ‖f‖2 = 〈f , f 〉 and 〈·, ·, 〉 denotes the Petersson inner
product.

Define
∆k ,N(m, n) :=

∑

g∈Bk(N)

Ψg(m)Ψg(n),

where Bk(N) is an orthonormal basis for the space of
cusp forms of weight k and level N.
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Generalized Averaging Formula

Using the orthonormal basis Bk(N) of Milićević and
Blomer, we prove the following (unconditional) formula.

Generalized Averaging Formula

Suppose that (n,N) = 1. Then

∑

f∈H⋆
k (N)

λf (n) =
k − 1

12

∑

LM=N

µ(L)M
∏

p2|M

(
p2

p2 − 1

)−1 ∑

(m,M)=1

m−1∆k,M(m
2, n).
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Main Result: Consequence of averaging formula:

1-Level Density [BBDDM]

Fix any φ ∈ S(R) with supp φ̂ ⊂ (−2, 2). Then, assuming GRH for
L(s, f ) and L(s, sym2 f ) for f ∈ H∗

k (N) and for all Dirichlet L-functions,

lim
N→∞

1∣∣H⋆
k (N)

∣∣
∑

f∈H⋆
k (N)

D1(f ;φ) =

∫
∞

−∞

φ(x)W1(O)(x)dx

where W1(O)(x) = 1 + 1
2δ0(x); thus the 1-level density for the family

H⋆
k (N) agrees only with orthogonal symmetry.

More generally, under the same assumptions the Density Conjecture
holds for the family H⋆

k (N) for any test function φ(x) whose Fourier
transform is supported inside (−u, u) with u < 2 log(kN)/ log(k2N).
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Main Result: Consequence of averaging formula:

1-Level Density [BBDDM]

Fix any φ ∈ S(R) with supp φ̂ ⊂ (−2, 2). Then, assuming GRH for
L(s, f ) and L(s, sym2 f ) for f ∈ H∗

k (N) and for all Dirichlet L-functions,

lim
N→∞

1∣∣H⋆
k (N)

∣∣
∑

f∈H⋆
k (N)

D1(f ;φ) =

∫
∞

−∞

φ(x)W1(O)(x)dx

where W1(O)(x) = 1 + 1
2δ0(x); thus the 1-level density for the family

H⋆
k (N) agrees only with orthogonal symmetry.

More generally, under the same assumptions the Density Conjecture
holds for the family H⋆

k (N) for any test function φ(x) whose Fourier
transform is supported inside (−u, u) with u < 2 log(kN)/ log(k2N).

Can’t split by sign: don’t have ǫf = ikµ(N)λf (N)N1/2 for general N (if
p2|N, then the level doesn’t determine the local representation and so
doesn’t determine the root number).
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Proof of Averaging Formula: ξd

For f ∈ H⋆
k (M) consider the following arithmetic functions from [BM]:

rf (c) :=
∑

b|c

µ(b)λf (b)2

bσtwisted
−1 (b)2

, α(c) :=
∑

b|c

χ0;M(b)µ(b)
b2

, β(c) :=
∑

b|c

χ0;M(b)µ2(b)
b

,

where µf (c) is the multiplicative function given implicitly by

L(f , s)−1 =
∑

c

µf (c)
cs

,

or explicitly on prime powers by

µf (p
j) =






−λf (p) j = 1

χ0;M(p) j = 2

0 j > 2

and
σtwisted
−1 (b) =

∑

r |b

χ0;M(r)
r

.
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Proof of Averaging Formula: ξd (cont)

For ℓ | d define

ξ′d(ℓ) :=
µ(d/ℓ)λf (d/ℓ)

rf (d)1/2(d/ℓ)1/2β(d/ℓ)
, ξ′′d (ℓ) :=

µf (d/ℓ)
(d/ℓ)1/2(rf (d)α(d))1/2

.

Write d = d1d2 where d1 is square-free, d2 is square-full, and
(d1, d2) = 1. Thus p || d implies p | d1 and p2 | d implies p2 | d2. Then
for ℓ | d define

ξd (ℓ) := ξ′d1
((d1, ℓ))ξ

′′
d2
((d2, ℓ)).

Blomer and Milićević prove if

fd (z) :=
∑

ℓ|d

ξd(ℓ)f |ℓ (z),

where N = LM and f ∈ H⋆
k (M) is Petersson-normalized with respect

to the Petersson norm on level Sk (N), then {fd : d | L} is an
orthonormal basis of Sk (L; f ).
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Proof of Averaging Formula: ξd (cont)

Orthonormal basis for Sk (N) and sum:

Bk(N) =
⋃

LM=N

⋃

f∈H⋆
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Proof of Averaging Formula: ξd (cont)

Specialize to (n,N) = 1 and (m,N) = 1. Then d |L|N and
(m,N) = (n,N) = 1, ℓ|(d ,m) implies ℓ = 1 (and similarly for ℓ|(d , n)).
Find

∆k,N(m, n) =
12

(k − 1)ν(N)

∑

LM=N

M
ϕ(M)

∑

f∈H⋆
k (M)

λf (m)λf (n)
Z (1, f )

∑

d|L

ξd (1)
2.

Task to understand

∑

d|L

ξd(1)
2
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Proof of Averaging Formula: ξd (cont)

Specialize to (n,N) = 1 and (m,N) = 1. Then d |L|N and
(m,N) = (n,N) = 1, ℓ|(d ,m) implies ℓ = 1 (and similarly for ℓ|(d , n)).
Find

∆k,N(m, n) =
12

(k − 1)ν(N)

∑

LM=N

M
ϕ(M)

∑

f∈H⋆
k (M)

λf (m)λf (n)
Z (1, f )

∑

d|L

ξd (1)
2.

Task to understand

∑
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ξd(1)
2 =

∑

d|L

ξd(1)
2 =

∏

p|L
p∤M

ρf (p)
−1
∏

p2|N
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p2

p2 − 1
.
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Sample of the algebra....
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Conclusion and References
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Recap

Choose combinatorics to simplify calculations.

Extending support often related to deep arithmetic
questions.

Technical issues arise, some formulas only clean in
special cases.
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