Introduction Preliminaries

1-dim German Tank Problem

2D Square 2D Circle L-D

L-Dimensional Referen

References and Appendix

Generalizing the German Tank Problem: Math/Stats at War!

Anthony Lee: Milton Academy (anthony_lee24@milton.edu) Advisor: Steven J. Miller: Williams College (sjml@williams.edu, Steven.Miller.MC.96@aya.yale.edu) http://www.williams.edu/Mathematics/sjmiller AISC Conference at UNC Greensboro, October 8, 2022 Introduction 00000

2

1-dim German Tank Problem

2D Square 2D Circle L-Dimensional

Introduction

Introduction Preliminaries 1 00000 00000 0

1-dim German Tank Problem

2D Square 2D Circle L-Di

L-Dimensional F

References and Appendix

The German Tank Problem: General Statement

- Problem of statistical inference using limited information.
- Dates back to WW II.
- Allies needed to find an accurate way of estimating the number of German Tanks being produced.

Introduction	Preliminaries	1-dim German Tank Problem	2D Square	2D Circle 000000	L-Dimensional	References and Appendix

Approaches

How did allies find the number of tanks?

Introduction	Preliminaries	1-dim German Tank Problem	2D Square	2D Circle	
00000					

Approaches

How did allies find the number of tanks?

Spies vs Math/Stats!

Month	Statistical estimate	Intelligence estimate	German records
June 1940	169	1,000	122
June 1941	244	1,550	271
August 1942	327	1,550	342

Allies used serial numbers of captured or broken tanks on the battlefield to find a formula for estimation.

Assumed serial numbers started at 1.

Statistical estimates were MUCH more accurate.

uction	Preliminaries	1-dim German Tan
0		000000000000000000000000000000000000000

Problem 2D Square 2D Circle

Circle L-Dimensional

References and Appendix

Importance

Introdu

0000

Why is it important to make a accurate estimate?

Dangers of under-estimating and over-estimating.

ction	Preliminaries	1-dim German Tar

2D Square 2D Circle L-Din

L-Dimensional R

References and Appendix

Importance

Introdu

Why is it important to make a accurate estimate?

Problem

Dangers of under-estimating and over-estimating.

- Underestimating: Send too few tanks and will likely lose in battle.
- Overestimating: Waste resources, waste time.

luction	Preliminaries	1-dim German Tank Problem	2D
•			

Square 2D Circle L-Dime

L-Dimensional Refer

References and Appendix

Structure of the Talk

Intro

- Original Tank Problem & Improving the formula.
- Discrete 2-dim Problem (Square & Circle).
- Discrete Generalized L dimensional problem.

Introduction Preliminaries

1-dim German Tank Problem

2D Square 2D Circle L-Di

-Dimensional R

References and Appendix

Mathematical Preliminaries

Introduction Preliminaries

1-dim German Tank Problem

2D Square 2D Circle L-Di

L-Dimensional Re

References and Appendix

Combinatorial Identities

Pascal's identity

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}.$$

Hockey Stick Identity

$$\sum_{m=k}^{N} \binom{m}{k} = \binom{N+1}{k+1}.$$

Introduction Preliminaries 1-dim German

1-dim German Tank Problem

2D Square 2D Circle L-Di

E L-Dimensional

References and Appendix

Generalized Hockey Stick Identities

Identity I: For all $N \ge k$,

$$\sum_{m=k}^{N} \binom{m-b}{k-c} = \binom{N-b+1}{k-c+1} - \binom{k-b}{k-c+1}.$$

Identity II: For all $N \ge k$,

11

$$\sum_{m=k}^{N} (m-a) \frac{\binom{m-b}{k-c}}{\binom{N}{k}} = \frac{N\binom{N-b+1}{k-c+1} - (k-1)\binom{k-b}{k-c+1} - \binom{N-b+1}{k-c+2}}{\binom{N}{k}} - \frac{a\binom{N-b+1}{k-c+1} - \binom{k-b}{k-c+2} - a\binom{k-b}{k-c+1}}{\binom{N}{k}}.$$

Introduction Preliminaries

1-dim German Tank Problem

2D Square 2D Circle L-Din

L-Dimensional

References and Appendix

CDF Method

Cumulative Distribution Function Method

The cumulative distribution function (CDF) of a random variable X with density f, denoted F, is given by

$$F(x) := \operatorname{Prob}(X \le n) = \int_{-\infty}^{n} f(t) \, dt$$
, for any $n \in \mathbb{R}$.

Discrete CDF method: get probability by differences

$$\operatorname{Prob}(X = n) = \operatorname{Prob}(X \le n) - \operatorname{Prob}(X \le n - 1).$$

Introduction Preliminaries

1-dim German Tank Problem

2D Square 2D Circle L-Dir

L-Dimensional Refere

References and Appendix

Variance & Covariance

Definition

The variance for a random variable X is the average of the squared difference from the mean, $\mathbb{E}[X]$:

$$\operatorname{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

= $\mathbb{E}[X^2] - \mathbb{E}[X]^2.$

Lemma

The covariance of two random variables satisfies

$$Cov(X, Y) = \mathbb{E}[X - \mathbb{E}[X]] \cdot \mathbb{E}[Y - \mathbb{E}[Y]]$$

= $\mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y].$

Introduction Preliminaries 1-dim German Tank Problem

2D Square 2D Circle L-Dimensional

References and Appendix

1-dim German Tank Problem

Introduction Preliminaries

1-dim German Tank Problem

2D Square 2D Circle L-Dim

L-Dimensional Re

References and Appendix

Conjecturing the Formula

How should \hat{N} depend on m_k (maximum tank number observed) and k (number of tanks observed)?

Introduction Preliminaries 1-dim German Tank Problem 2D Square 2D Circle L-Dimensional References and Appendix

Conjecturing the Formula

How should \hat{N} depend on m_k (maximum tank number observed) and k (number of tanks observed)?

We state the formula:

$$\widehat{N} = m_k \left(1 + \frac{1}{k}\right) - 1.$$

Is this reasonable?

Introduction Preliminaries 1-dim German Tank Problem 2D Square 2D Circle L-Dimensional References and Appendix

Conjecturing the Formula

How should \hat{N} depend on m_k (maximum tank number observed) and k (number of tanks observed)?

We state the formula:

$$\widehat{N} = m_k \left(1 + \frac{1}{k}\right) - 1.$$

Is this reasonable?

Note sanity checks at k = 1 and k = N.

2D Square 2D Circle L-Dimensional

References and Appendix

Proving the Formula: Step 1: Sample Maximum Probability

Lemma

M: random variable for the maximum number observed; m_k : the value we see. For $k \le m_k \le N$,

$$\operatorname{Prob}(\boldsymbol{M}=\boldsymbol{m}_k) = \frac{\binom{\boldsymbol{m}_k-1}{k-1}}{\binom{\boldsymbol{N}}{k}}$$

Proof:

Have to choose (k - 1) tanks from (m - 1) values. Probability is $\binom{m-1}{k-1}/\binom{N}{k}$. Introduction Preliminaries

1-dim German Tank Problem

2D Square 2D Circle L-Di

L-Dimensional

References and Appendix

Step 2: Expected Value Preliminaries

Definition of expected value:

$$\mathbb{E}[M] := \sum_{m_k=k}^{N} m_k \cdot \operatorname{Prob}(M = m_k).$$

Substituting:

$$\mathbb{E}[M] = \sum_{m_k=k}^N m_k \frac{\binom{m_k-1}{k-1}}{\binom{N}{k}}.$$

Introduction Preliminaries 1-dim German Tank Problem 2D Square 2D Circle L-Dimensional References and Appendix

Step 3: Computing $\mathbb{E}[M]$

$$\mathbb{E}[M] = \sum_{m_k=k}^N m_k \frac{\binom{m_k-1}{k-1}}{\binom{N}{k}}.$$

Hockey stick identity allows us calculate nice closed form expressions.

$$\mathbb{E}[M] = \frac{k(N+1)}{k+1}.$$

We invert the equation.

Solve for N:

$$N = \mathbb{E}[M]\left(1+\frac{1}{k}\right)-1.$$

Substitute m_k (observed value for M) as best guess for $\mathbb{E}[M]$.

Obtain our estimate for the number of tanks produced:

$$\widehat{N} = m_k \left(1 + \frac{1}{k}\right) - 1,$$

completing the proof.

Introduction Preliminaries 00000 1-dim German Tank Problem 2D Square 2D Circle L-Dimensional Re

References and Appendix

Improving the formula

Can we do better by using the second largest tank? What about the L^{th} largest tank?

Introduction Preliminaries **1-dim German Tank Problem** 2D Square 2D Circle L-Dimensional References and Appendix

Improving the formula

Can we do better by using the second largest tank? What about the L^{th} largest tank?

Probability that the second largest tank is m_{k-1} :

Prob
$$(M_{k-1} = m_{k-1}) = \frac{\binom{m_{k-1}-1}{k-2}\binom{N-m_{k-1}}{1}}{\binom{N}{k}}.$$

Introduction Preliminaries 1-dim German Tank Problem 2D Square 2D Circle L-Dimensional References and Appendix

Formula using Second Largest Tank

Using these identities, we get:

$$\widehat{N} = m_{k-1} \frac{k+1}{k-1} - 1.$$

Using the definition of variance, $\mathbb{E}[X^2] - \mathbb{E}[X]^2$, to calculate variances of both formulas.

$$\operatorname{Var}(X_k) = \frac{(N-k)(N+1)}{(k)(k+2)}.$$
$$\operatorname{Var}(X_{k-1}) = \frac{2(N-k)(N+1)}{(k+2)(k-1)}.$$

Notice that $Var(X_{k-1})$ is roughly two times as larger.

Introduction Preliminaries

1-dim German Tank Problem

2D Square 2D Circle L-Dim

L-Dimensional R 00000 0

References and Appendix

Using more tanks to estimate

What if we use more than one tank?

25

2D Square 2D Circle L-Dim

L-Dimensional F

References and Appendix

Using more tanks to estimate

What if we use more than one tank?

Motivation from portfolio theory.

Linear combination of two stocks.

Two independent stocks with same rate of return with different variances.

Can get a smaller variance by investing in both.

Portfolio Theory

Two independent stocks with mean μ , variances σ_i (assume $0 \le \sigma_2 \le \sigma_1$).

Let
$$X_{\alpha} = \alpha X_1 + (1 - \alpha)X_2$$
. We have
 $\operatorname{Var}(X_{\alpha}) = \alpha^2 \sigma_1^2 + (1 - \alpha)^2 \sigma_2^2$.

Check endpoints ($\alpha = 0$ or 1) and critical points:

$$2\alpha\sigma_1^2 - 2(1-\alpha)\sigma_2^2 = 0,$$

gives a critical value of

$$\alpha_* = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}.$$

Introduction	Preliminaries	1-dim German Tank Problem	2D Square	2D Circle	L-Dimensional	References and Appendix
		000000000000000000000000000000000000000				

Checking Critical Values

- When $\alpha = 0$, $Var(X_{\alpha}) = \sigma_2^2$.
- When $\alpha = 1$, $Var(X_{\alpha}) = \sigma_1^2$.
- When $\alpha = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}\;$, plug in $\alpha \text{:}\;$

$$\operatorname{Var}(X_{\alpha}) = \left(\frac{\sigma_{2}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}\right)^{2} \sigma_{1}^{2} + \left(1 - \frac{\sigma_{2}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}\right)^{2} \sigma_{2}^{2}$$
$$= \frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}.$$

Notice

$$\frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} \cdot \sigma_2^2 < \sigma_2^2.$$

Introduction Preliminaries 1-dim German Tank Problem 2D Sq	are 2D Circle L-Dimensional References and Appendix
--	---

Weighted Statistic

We quickly review notation.

- M_k = Largest Observed Tank.
- M_{k-1} = Second largest Observed Tank.
- X_k = Statistic using M_k : $M_k(\frac{k+1}{k})$ 1.
- X_{k-1} = Statistic using M_{k-1} : $M_{k-1}(\frac{k+1}{k-1}) 1$.

Weighted statistic. Let $\alpha \in [0, 1]$ and define the weighted statistic X_{α} by

$$X_{\alpha} := \alpha X_k + (1 - \alpha) X_{k-1}.$$

Introduction Preliminaries 1-dim German Tank Problem 2D Square 2D Circle L-Dimensional F

References and Appendix

Variance of Weighted Statistic

We calculate the variance of X_{α} .

$$\operatorname{Var}(X_{\alpha}) = \alpha^{2}\operatorname{Var}(X_{k}) + (1-\alpha)^{2}\operatorname{Var}(X_{k-1}) + 2\alpha(1-\alpha)\operatorname{Cov}(X_{k}, X_{k-1}).$$

Introduction Preliminaries 1-dim German Tank Problem 2D Square 2D Circle L-Dimensional References and Appendix

Variance of Weighted Statistic

We calculate the variance of X_{α} .

$$\operatorname{Var}(X_{\alpha}) = \alpha^{2}\operatorname{Var}(X_{k}) + (1-\alpha)^{2}\operatorname{Var}(X_{k-1}) + 2\alpha(1-\alpha)\operatorname{Cov}(X_{k}, X_{k-1}).$$

Covariance calculation is involved, as it uses the joint PDF.

Introduction Preliminaries 1-dim German Tank Problem 2D Square 2D Circle L-Dimensional References and Appendix

Covariance Calculation

Show part using joint PDF of the involved calculation.

$$\operatorname{Cov}[X_k, X_{k-1}] = \mathbb{E}[X_k \cdot X_{k-1}] - \mathbb{E}[X_k] \cdot \mathbb{E}[X_{k-1}].$$
$$\mathbb{E}[X_k \cdot X_{k-1}] = \mathbb{E}\left[\left(m_k\left(\frac{k+1}{k}\right) - 1\right)\right]$$
$$\cdot \left(m_{k-1}\left(\frac{k+1}{k-1}\right) - 1\right)\right]$$
$$= \frac{(k+1)^2}{k(k-1)}\mathbb{E}[m_k \cdot m_{k-1}] - \frac{k+1}{k}\mathbb{E}[m_k]$$
$$- \frac{k+1}{k-1}\mathbb{E}[m_{k-1}] + \mathbb{E}[1].$$

Introduction	Preliminaries	1-dim German Tank Problem	2D Square	2D Circle	L-Dimensional	References and Appendix
		000000000000000000000000000000000000000				

Covariance Calculation

Use the joint PDF:

$$\mathbb{E}[M_k \cdot M_{k-1}] = \sum_{m_k=k}^{N} \sum_{m_{k-1}=k-1}^{m_k-1} m_k m_{k-1}$$

$$\operatorname{Prob}(M_{k-1} = m_{k-1}, M_k = m_k)$$

$$= \sum_{m_k=k}^{N} \sum_{m_{k-1}=k-1}^{m_k-1} m_k m_{k-1} \frac{\binom{m_{k-1}-1}{k-2}}{\binom{N}{k}}$$

Using identities,

$$= \frac{(k-1)(N+2)(N+1)}{(k+2)} - \frac{(k-1)(N+1)}{k+1}.$$

Introduction	Preliminaries	1-dim German Tank Problem	2D Square	2D Circle	L-Dimensio
		000000000000000000000000000000000000000			

References and Appendix

nal

Results from Calculations

Variance of X_k

$$\operatorname{Var}(X_k) = \frac{(N-k)(N+1)}{(k)(k+2)}.$$

Variance of X_{k-1} :

$$\operatorname{Var}(X_{k-1}) = \frac{2(N-k)(N+1)}{(k+2)(k-1)}.$$

Covariance term:

$$\mathbb{E}[X_k \cdot X_{k-1}] - \mathbb{E}[X_k] \cdot \mathbb{E}[X_{k-1}] = \frac{(N+1)(N-k)}{k(k+2)}.$$

Introduction	Preliminaries	1-dim German Tank Problem	2D Square	2D Circle	L-Dimensional	References and Appen
		000000000000000000				

Calculating Optimal α value

Recall,

$$\operatorname{Var}(X_{\alpha}) = \alpha^{2}\operatorname{Var}(X_{k}) + (1-\alpha)^{2}\operatorname{Var}(X_{k-1}) + 2\alpha(1-\alpha)\operatorname{Cov}(X_{k}, X_{k-1}).$$

Introduction	Preliminaries	1-dim German Tank Problem	2D Square	2D Circle	L-Dimensional	References and Appendix
		0000000000000000000				

Calculating Optimal α value

Recall,

$$\operatorname{Var}(X_{\alpha}) = \alpha^{2}\operatorname{Var}(X_{k}) + (1-\alpha)^{2}\operatorname{Var}(X_{k-1}) + 2\alpha(1-\alpha)\operatorname{Cov}(X_{k}, X_{k-1}).$$

We solve for $Var(X_{\alpha})' = 0$ (and check the endpoints of $\alpha = 0$ or 1).

After algebra, we get the optimal α is 1.

Corresponds to using only the largest tank.

Introduction Preliminaries

1-dim German Tank Problem

2D Square 2D Circle L-Di

Dimensional Refer

References and Appendix

2D Square

37

Discrete Square Problem

Discrete Square Problem: From a square with points (1, 1) to (N, N), we select *k* pairs without replacement.

Introduction Preliminaries 1-dim German Tank Problem 2D Square 2D Circle L-Dimensional References and Appendix

Discrete Square Problem

Discrete Square Problem: From a square with points (1, 1) to (N, N), we select *k* pairs without replacement.

Estimate using the largest observed component.

$$\widehat{N} = \frac{2k+1}{2k}(m-1).$$

Focus on asymptotic relations as it is hard to get clean formulas.

Introduction Preliminaries

1-dim German Tank Problem

2D Square 2D Circle L-Dim

sional References and Appendix

Sample Maximum Probability & Expected Value Calculations

$$\begin{aligned} \operatorname{PDF}_{M}(m) &= \operatorname{Prob}(M \leq m) - \operatorname{Prob}(M \leq m-1) \\ &= \frac{\binom{m^{2}}{k}}{\binom{N^{2}}{k}} - \frac{\binom{(m-1)^{2}}{k}}{\binom{N^{2}}{k}}. \end{aligned}$$

Introduction Preliminaries

1-dim German Tank Problem

2D Square 2D Circle L-Dim

L-Dimensional References and Appendix

Sample Maximum Probability & Expected Value Calculations

$$\begin{aligned} \operatorname{PDF}_{M}(m) &= \operatorname{Prob}(M \leq m) - \operatorname{Prob}(M \leq m-1) \\ &= \frac{\binom{m^{2}}{k}}{\binom{N^{2}}{k}} - \frac{\binom{(m-1)^{2}}{k}}{\binom{N^{2}}{k}}. \end{aligned}$$

Use definition of expected value, and telescope:

$$\mathbb{E}[M] = \sum_{m=\lceil \sqrt{k}\rceil}^{N} m \cdot \text{PDF}_{M}(M = m) \\ = \sum_{m=\lceil \sqrt{k}\rceil}^{N} \frac{m\binom{m^{2}}{k} - (m-1)\binom{(m-1)^{2}}{k}}{\binom{N^{2}}{k}} - \sum_{m=\lceil \sqrt{k}\rceil}^{N} \frac{\binom{(m-1)^{2}}{k}}{\binom{N^{2}}{k}}.$$

Introduction Preliminaries 1-dim German

1-dim German Tank Problem

2D Square 2D Circle L-Dir

L-Dimensional F

References and Appendix

Euler-Maclaurin Formula

Theorem (Euler-Maclaurin formula)

For p a positive integer and a function f(x) that is p times continuously differentiable on the interval [a, b], we have

$$\begin{split} \sum_{i=a}^{b} f(i) &= \int_{a}^{b} f(x) \, dx + \frac{f(a) + f(b)}{2} \\ &+ \sum_{q=1}^{\lfloor \frac{p}{2} \rfloor} \frac{B_{2q}}{(2q)!} (f^{2q-1}(b) - f^{2q-1}(a)) + R_{p}, \text{and} \\ &|R_{p}| \; \leq \; \frac{2\zeta(p)}{(2\pi)^{p}} \int_{m}^{n} |f^{(p)}(x)| \, dx. \end{split}$$

ntroduction	Preliminaries
00000	00000

1-dim German Tank Problem

2D Square 2D Circle L-Dimensional

mensional Reference

References and Appendix

Bounds lemma

Lemma

For $m, L \ge 0$ and $k \ge 1$, $m^{Lk} - m^{Lk-L} \left(\frac{k(k-1)}{2}\right)$ $\leq m^{L}(m^{L}-1) \cdots (m^{L}-(k-1))$ $\leq m^{Lk}.$

ntroduction	Prelimin

1-dim German Tank Problem

2D Square 2D Circle L-Dime

L-Dimensional Refer

References and Appendix

Bounds lemma

aries

Lemma

For $m, L \ge 0$ and $k \ge 1$, $m^{Lk} - m^{Lk-L} \left(\frac{k(k-1)}{2}\right)$ $\le m^{L}(m^{L}-1) \cdots (m^{L}-(k-1))$ $\le m^{Lk}.$

Upper bound: trivial.

Lower bound: by induction.

Then, apply Euler-Maclaurin on both bounds.

Use only the main term to find a clean approximation (as $N \rightarrow \infty$ dominates the error terms).

Use only the main term to find a clean approximation (as $N \rightarrow \infty$ dominates the error terms).

$$\sum_{m=\lceil\sqrt{k}\rceil}^{N-1} m^{2k} \approx \frac{(N-1)^{2k+1} - (\lceil\sqrt{k}\rceil)^{2k+1}}{2k+1}$$

Because we assumed that k is fixed, if N is very large the other terms are negligible. $\approx \frac{(N-1)^{2k+1}}{2k+1}.$

Now we combine all terms and get

$$\mathbb{E}[M] = N\left(\frac{2k}{2k+1}\right) + 1.$$

Invert the relationship between N and m and get

$$\widehat{N} = \frac{2k+1}{2k}(m-1).$$

Introduction	Preliminaries	1-dim German Tank Problem	2D Square	2D Circle 000000	L-Dimensional	References and Appendix

Comparing Formulas

• Discrete 1D formula:
$$\hat{N} = \frac{k+1}{k} \cdot m - 1$$
.

• Discrete 2D square formula:
$$\widehat{N} = \frac{2k+1}{2k}(m-1)$$
.

Notice

$$\frac{k+1}{k} > \frac{2k+1}{2k}.$$

Introduction

1-dim German Tank Problem

2D Square 2D Circle L-Dimensional

2D Circle

49

Select *k* pairs without replacement from a circle with radius r and center (0,0).

Which statistic to study?

Select k pairs without replacement from a circle with radius r and center (0,0).

Which statistic to study?

We look at $X^2 + Y^2$.

• Only integers.

• Estimate for *r*² and then take square root to estimate for *r*.

Introduction Preliminaries 1-dim German Tank Problem 2D Square 2D Circle L-Dimensional References and Appendix

Gauss Circle Problem

Need to know the number of lattice points inside the circle.

Theorem (Gauss Circle Problem)

Let
$$P(r) := \{ \# \text{ of } (q, n) \in \mathbb{Z}^2 : q^2 + n^2 \le r^2 \}.$$

We have

$$P(r) = \pi r^2 + E(r).$$

We do not need the best known results, so we write E(r) as $O(r^{\delta})$. The current world record has $.5 < \delta < .63$.

Introduction Preliminaries 1-dim German Tank Problem 2D Square 2D Circle 000000 References and Appendix

Calculating the Expected Value

Calculate using the discrete CDF method. Leave them as expressions of *P*.

Introduction Preliminaries 1-dim German Tank Problem 2D Square CONSTRUCTION CONSTRUCTION OF CONSTRUCTURA OF CONSTRUCTURA OF CONSTRUCTURA OF CONSTRUCTURA OF CONSTRUCTURA OF CONSTRUCTURA OF CO

Calculating the Expected Value

Calculate using the discrete CDF method. Leave them as expressions of *P*.

$$\mathbb{E}[M] = \sum_{m_1=0}^{r^2} m_1 \cdot \operatorname{Prob}(M = m_1)$$

= $[P(1) - P(0)] + [2P(2) - 2P(1)] + \dots + r^2[P(r^2) - r^2P(r^2 - 1)]$
= $r^2P(r^2) - [P(1) + P(2) + P(r^2 - 1)]$
= $r^2 - \frac{1}{\binom{\pi r^2 + O(r^{\delta})}{k}} \sum_{m_1=0}^{r^2} \binom{\pi (m_1 - 1) + O((m_1 - 1)^{\delta})}{k}$

Set bounds and apply E-M to calculate the second term.

Use only the main term, as we can't invert if we use all terms.

Using similar arguments as the discrete square,

$$\sum_{m_1=0}^{r^2} \binom{\pi(m_1-1)+O(m_1^{\delta})}{k} \approx \pi^k \cdot \frac{(r^2-1)^{k+1}}{k+1}.$$

Now that we have a estimation for the main term, we finish our calculation.

For the expected value, we get

$$\mathbb{E}[M] \approx r^2 \cdot \frac{k}{k+1} + 1.$$

For the expected value, we get

$$\mathbb{E}[M] \approx r^2 \cdot \frac{k}{k+1} + 1.$$

Inverting the relationship, we get

$$\widehat{r} = \sqrt{\frac{k+1}{k}(m_1-1)}.$$

Introduction Preliminaries

1-dim German Tank Problem

2D Square 2D Circle

L-Dimensional

References and Appendix

L-Dimensional Problem

58

Higher Dimensional Cases

The results and calculations for higher dimensional cases are similar to the two dimensional cases.

However, we look at different statistics:

- Generalized Discrete Square: Largest observed component.
- Generalized Discrete Circle: $X_1^2 + X_2^2 + \cdots + X_L^2$.

L-Dimensional Reference 000000

References and Appendix

Results for Generalized Square

$$\widehat{N} = \frac{Lk+1}{Lk}(m-1).$$

Notice $\frac{Lk+1}{Lk}$ is very very close to 1.

Scaling factor doesn't play a big role in higher dimensions.

Generalized Circle Problem

Have to know the number of lattice points inside a L-dim sphere with radius r.

V(n): be the volume of a *L*-dim sphere.

$$V(n) = \frac{\pi^{\frac{L}{2}}}{\Gamma(\frac{L}{2}+1)}r^{L}:$$

Use this formula to find P(r), the number of lattice points inside the *L*-dim sphere.

Denote the bounds with big O notation.

$$P(r) = \frac{\pi^{\frac{L}{2}}}{\Gamma(\frac{L}{2}+1)}r^{L} + O(r^{\delta}).$$

Introduction 00000	Preliminaries	1-dim German Tank Problem	2D Square 00000000	2D Circle 000000	L-Dimensional 0000●	References and Appendix
Result	S					

• Discrete:
$$\widehat{r} = \sqrt{(m_1 - 1) \cdot \frac{k + 1}{k}}$$

Notice formula is independent of *L*.

Introduction Preliminaries 1-dim German Tank Problem

2D Square 2D Circle

References and Appendix

References and Appendix

Introduction Preliminaries 1-dim German Tank Problem 2D Square 2D Circle L-Dimensional References and Appendix

Thank you!

Introduction Preliminaries 1-dim German Tank Problem 2D Square 2D Circle L-Dimensional References and Appendix

000000

Simulation for 1-dim case

germantankcombinedestinatenolist[NumTanks_, k_, numdo_] := Module[{}, tanks = {}: (+ store list of tanks here +) For [i = 1, i s NumTanks, i++, tanks = AppendTo(tanks, i)]: sunX1 = 0: (* save prediction from largest tank here *) sumXlsg = 0: (* saves sum of squares *) alpha = 1: (+ add formula here - function of k and NumTanks+) For [n = 1, n s numdo, n++, {observedtanks = RandomSample[tanks, k]; (+ uniformly at random chooses k tanks from 1 to NunTanks+) observedtanks = Sort[observedtanks]; (* sorts list*) largest = observedtanks[-1]; (+largest tank+) X1 = largest + ((k+1,0)/k) - 1;sumX1 = sumX1 + X1: sumXisg = sumXisg + X1^2; }1: (+ end of n loop+) Print["German Tank Problem Calculations: N = ", NumTanks, ", k = ", k, "."]; Print["Check of Neans / Variances."]; Print["Nean(X1) = ", sumX11.0 / numdo, "; Var(X1) = ", (sumX1sq - sumX1^2 / numdo) / (numdo - 1.0), "."];

Timing[germantankcombinedestimatenolist[400, 60, 1000000]]

German Tank Problem Calculations: N = 400, k = 60. Check of Means / Variances. Mean(X1) - 399.989: Var(X1) - 36.781. (5.499, Null)

Timing[germantankcombinedestimatenolist[4008, 60, 10080000]]

German Tank Problem Calculations: N = 4000, k = 60. Check of Means / Variances, Mean(X1) = 3999.99; Var(X1) = 4245.42. (8,69669, Null)

Timing[germantankcombinedestimatenolist[100, 2, 1000000]]

German Tank Problem Calculations: N = 180, k = 2, Check of Means / Variances. Mean(X1) = 100.052: Var(X1) = 1234.92. (3.5706, Null)

German Tank Problem Calculations: N = 18888. k = 2. Check of Means / Variances. Mean(X1) = 10000.6: Var(X1) = 1.25123 × 10⁷. (3.89684, Null)

Introduction

1-dim German Tank Problem 2D Square 2D Circle L-Dimensional

References and Appendix 000000

Two Dimensional Circle Code

Preliminaries

```
discretecircle[radius , k , numdo ] := Module[{},
  sumestimatedradius = 0: (* save prediction from largest tank here *)
  sumestimatedradiussq = 0; (* saves sum of squares *)
iterations = 0:
  For [n = 1, n ≤ numdo, n++,
   count = 0;
R = radius:
list = {};
iterations = 0:
   {While[count < k, {iterations = iterations + 1;
       x = RandomInteger[{-R, R}]; (+Select pairs+)
       y = RandomInteger[{-R, R}]; (+Select pairs+)
      If [x^2 + y^2 ≤ R^2 && NemberO[list, {x, y}] = False, {list = AppendTo[list, {x, y}];
         count = count + 1:)1: (send of if statements))1:
    findingmax = Max[Table[Total[list[i]^2], {i, 1, Length[list]}]];
    largestpair = Flatten[Select[list, #[1]^2 + #[2]^2 = findingmax &]; (*Finding the largest pair*)
    beforescaled = 1.0 Sqrt[largestpair[1]^2 + largestpair[2]^2];
    estimatedradius = 1.0 Sgrt[largestpair[1]^2 + largestpair[2]^2] (2 k + 1) / (2 k);
    (+Naking estimates for the radius+)
    sumestimatedradius = sumestimatedradius + estimatedradius;
    sumestimatedradiussg = sumestimatedradiussg + estimatedradius^2:
   }]: (* end of n loop*)
  Print["Mean(estimated radius) = ", sumestimatedradius 1.0 / numdo, "; Var(X1) = ",
   (sumestimatedradiussg - sumestimatedradius^2 / numdo) / (numdo - 1.0), "."];
  Print["Actual Radius = ", radius "."];
  Print["Scaled value =", 1.0 × (2 k + 1) / (2 k), "."];
] (* end of module*)
discretecircle[50, 5, 1000]
Mean(estimated radius) = 49.8962; Var(X1) = 22.5574.
Actual Radius - 50.
Scaled value -1.1.
discretecircle[100, 15, 1000]
Mean(estimated radius) = 99,9577; Var(X1) = 10,8644.
Actual Radius = 108 .
Scaled value =1.93333.
discretecircle[100, 5, 1000]
```

Mean(estimated radius) = 99,6659; Var(X1) = 85,8634. Actual Radius - 108 Scaled value =1.1.

Introduction

1-dim German Tank Problem

2D Square 2D Circle L-Dimensional 0000000 000000

References and Appendix 000000

Two Dimensional Discrete Square

Preliminaries

```
discretesquare2D[NumTanks_, k_, numdo_] := Module[{},
   sumestimatednvalue = 0: (* save prediction from largest tank here *)
   sumestimatednyaluesg = \theta; (* saves sum of squares *)
 iterations = 0;
   For [n = 1, n \le numdo, n++,
    count = 0:
 list = {};
 iterations = 0:
    {While[count < k, {iterations = iterations + 1;
       x = RandomInteger[{0, NumTanks}]; (*Select pairs*)
       y = RandomInteger[{0, NumTanks}]; (*Select pairs*)
       If[MemberQ[list, {x, y}] = False, {list = AppendTo[list, {x, y}];
          count = count + 1:}1:(*end of if statement*)}1:
     maxofcomponents = Max[list]:
     estimatednvalue = 1.0 (maxofcomponents - 1) (2 k + 1) / (2 k);
     sumestimatednvalue = sumestimatednvalue + estimatednvalue;
     sumestimatednvaluesq = sumestimatednvaluesq + estimatednvalue^2;
```

```
Print["Mean(estimated N) = ", sumestimatednvalue 1.0 / numdo, "; Var(X1) = ",
 (sumestimatednvaluesq - sumestimatednvalue^2 / numdo) / (numdo - 1.0), "."];
Print["Scaled value =", 1.0 × (2 k+1) / (2 k), "."];
```

1 (* end of module*)

```
Timing[discretesquare2D[100, 10, 100000]]
 Mean(estimated N) = 99,4054; Var(X1) = 23,1241.
 Scaled value =1.05.
{4.29191, Null}
Timing[discretesquare2D[100, 3, 100000]]
 Mean (estimated N) = 99.2409; Var(X1) = 212.373.
 Scaled value =1.16667.
(1.53073, Null)
```

67

1-dim German Tank Problem 2D Square 2D Circle L-Dimensional

References and Appendix 00000

Comparing 1D to 2D

N = 100, k = 20

r(4)= Timing[germantankcombinedestimatenolist1D[10000, 40, 1000000]]

Check of Means / Variances.

Mean(X1) = 99,9936; Var(X1) = 1,51384.

Out44+ {9,24912, Null}

```
Ir(30)= Timing[discretesquare2D[100, 20, 1000000]]
     Mean(estimated N) = 99.4301; Var(X1) = 5.97766.
     Actual Radius = 100.
     Scaled value -1.025.
```

Out30)+ {87.609, Null}

N = 100, k = 2

r(40)= Timing[germantankcombinedestimatenolist1D[10000, 4, 1000000]] Check of Means / Variances. Mean(X1) = 99,4039; Var(X1) = 123,252. Ouf481+ (4.21961, Null) m(49)= Timing[discretesquare2D[100, 2, 1000000]]

Mean (estimated N) = 99.1212; Var(X1) = 425.357. Scaled value =1.25.

Out(4)+ {11.5519, Null}

N = 200, k = 30

http://www.mining[germantankcombinedestimatenolist1D[40000, 60, 1000000]] Check of Means / Variances. Mean(X1) = 199,992: Var(X1) = 2,73095.

Out-te (11.7437, Null)

inter Timing[discretesquare2D[200, 30, 1000000]] Mean(estimated N) = 199.452; Var(X1) = 10.7529. Actual Radius = 200. Scaled value =1.01667.

Out(-)= {136.32, Null}

N = 30, k = 5

- might Timing[germantankcombinedestimatenolist1D[900, 10, 1000000]] Check of Means / Variances. Mean (X1) = 29.9673; Var (X1) = 2.01427. Out-to (4.71964, Null)
- inter Timing(discretesquare2D[30, 5, 1000000]) Mean(estimated N) = 29.3293; Var(X1) = 7.86311. Actual Radius = 30. Scaled value =1.1. Out-1= {23.2372, Null}

68