Introduction Mathematical Preliminaries GTP: Original GTP: New Regression Implementation Issues References

Appendix

The German Tank Problem: Math/Stats at War!

Steven J. Miller: Williams College (sjm1@williams.edu, Steven.Miller.MC.96@aya.yale.edu) http://www.williams.edu/Mathematics/sjmiller Texas State, June 3, 2025

Patton Quotes

- If you tell people where to go, but not how to get there, you'll be amazed at the results.
- If everyone is thinking alike, then somebody isn't thinking.
- When in doubt, observe and ask questions. When certain, observe at length and ask many more questions.
- Often I have encountered in life that great disappointments have proved to be the road to future successes.

https://www.azquotes.com/quote/226575

IntroductionMathematical PreliminariesGTP: Original
occocoGTP: New
occocoRegression
occocoImplementation Issues
occocoReferences
occocoAppendic
occoco

Introduction

The German Tank Problem

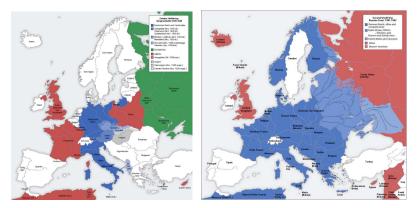


Figure: Left: Europe before the start of major hostilities. Right: Europe in 1942. Wikimedia Commons (author San Jose). Video: https://www.youtube.com/watch?v=WOVEy1tC7nk

Introduction	Mathematical Preliminaries	GTP: Original
00000000		

GTP: New

Rearession

Implementation Issues References

Appendix

Approaches

Figure: German tank production. Photographer Rudolf Schmidt, provided to Wikimedia Commons by the German Federal Archive.

How to find the number of tanks?

Introduction	Mathematical Preliminaries	GTP: Original
00000000		

GTP: New Rearession

Implementation Issues References

Appendi

Approaches

Figure: German tank production. Photographer Rudolf Schmidt, provided to Wikimedia Commons by the German Federal Archive.

How to find the number of tanks? Spies vs Math/Stats!

Introduction Mathematical Preliminaries

ies GTP: Original

GTP: New Regression I

ssion Implementation Issues

References Appendix

Related Problems: My Experience

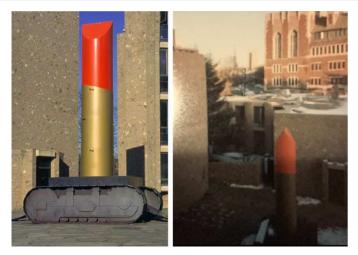


Figure: Morse tank problem. R: SJMiller, College Years. L: https://www.pinterest.com/pin/288230444874671007/.

Introduction Mathematical Preliminaries

ries GTP: Original

GTP: New Regression

ression Implementation Issues

References Appendix

The German Tank Problem: General Statement

German Tank Problem

After a battle see serial numbers $s_1, s_2, ..., s_k$ on captured and destroyed tanks; how many tanks were produced?

troduction Mathematical Preliminaries

GTP: Original

GTP: New Regression Imple

ssion Implementation Issues

References App

The German Tank Problem: Mathematical Formulation

Original formulation: Tanks numbered from 1 to N, observe k, largest seen is m, estimate N with $\widehat{N} = \widehat{N}(m, k)$.

New version: Tanks numbered from N_1 to N_2 , observe k, smallest seen is m_1 , largest m_2 (so spread $s = m_2 - m_1$), estimate $N = N_2 - N_1 + 1$ with $\hat{N} = \hat{N}(s, k)$.

Introduction	Mathematical Preliminaries	GTP: Original	GTP: New 00000	Regression	References	Appendi»
Import	ance					

Dangers of under-estimating and over-estimating.

Dangers of under-estimating and over-estimating.

President Lincoln: If General McClellan isn't going to use his army, I'd like to borrow it for a time.

Dangers of under-estimating and over-estimating.

President Lincoln: If General McClellan isn't going to use his army, I'd like to borrow it for a time.

From Wikipedia: Although outnumbered two-to-one, Lee committed his entire force, while McClellan sent in less than three-quarters of his army, enabling Lee to fight the Federals to a standstill. McClellan's persistent but erroneous belief that he was outnumbered contributed to his cautiousness throughout the campaign.

- Mathematical Preliminaries (binomial coefficients).
- GTP: Original Formulation (start at 1).
- GTP: New Version (unknown start).
- Regression and Conjecturing.

		riegression	Implementation Issues	References	Appendix
0000000 000000					

Mathematical Preliminaries

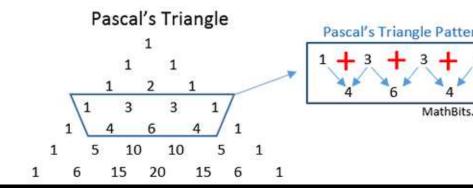
- n!: Number of ways to order n objects, equals $n \cdot (n-1) \cdots 3 \cdot 2 \cdot 1$, with 0! = 1.
- $\binom{n}{k} = \frac{n!}{k!(n-k)!}$: Number of ways to choose *k* items from *n* items when order doesn't matter.
- Binomial Theorem:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Pascal's Identity

Pascal's identity

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}.$$



Introduction	Mathematical Preliminaries		Regression		Appendi>

Pascal's Identity

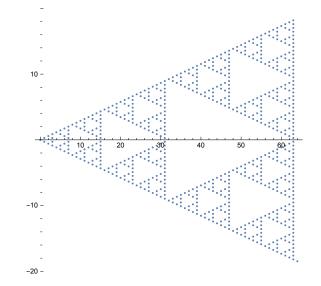
Pascal's identity

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}.$$

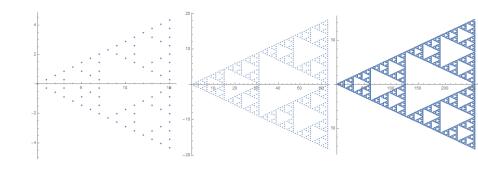
Proof: Assume *n* Red Sox fans, 1 Yankee fan, how many ways to choose a group of *k*?

$$\binom{n+1}{k} = \binom{1}{0}\binom{n}{k} + \binom{1}{1}\binom{n}{k-1}.$$

Pascal's Triangle Mod 2

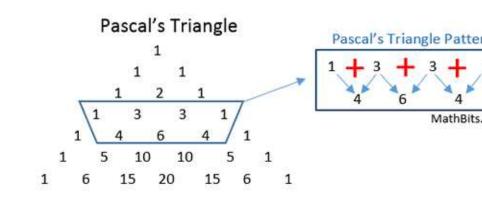


Pascal's Triangle Mod 2



https://www.youtube.com/watch?v=tt4_4YajqRM

Pascal's Triangle

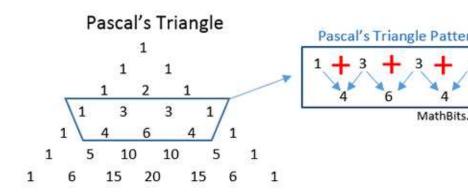


GTP: New Regression 000000000 00000

References Appendix

Needed Identity

$$\sum_{m=k}^{N} \binom{m}{k} = \binom{N+1}{k+1}.$$



Introduction	Mathematical Preliminaries	GTP: Original	GTP: New	Regression	Implementation Issues
	00000				

References Appendix

Needed Identity

$$\sum_{m=k}^{N} \binom{m}{k} = \binom{N+1}{k+1}.$$

Proof: Induct on N, noting that k is fixed.

Introduction	Mathematical Preliminaries	GTP: Original	GTP: New	Regression	Implementation Issues	
	000000					

References Appendi

Needed Identity

$$\sum_{m=k}^{N} \binom{m}{k} = \binom{N+1}{k+1}.$$

Proof: Induct on N, noting that k is fixed.

The base case (N = k) is readily established.

Introduction Mathematical Preliminaries GTP: Original GTP: New Regression Implementat

Implementation Issues References

Appendix 000000

Needed Identity

$$\sum_{m=k}^{N} \binom{m}{k} = \binom{N+1}{k+1}.$$

Proof: Induct on N, noting that k is fixed.

The base case (N = k) is readily established. Inductive step:

$$\sum_{m=k}^{N+1} \binom{m}{k} = \binom{\sum_{m=k}^{N} \binom{m}{k}}{k} + \binom{N+1}{k} = \binom{N+2}{k+1},$$

where the last equality follows from Pascal's identity.

Introduction Mathematical Preliminaries GTP: Original GTP: New Regression Implementation Issues References

Appendix 000000

GTP: Original

25

How should \widehat{N} depend on *m* (maximum tank number observed) and *k* (number of tanks observed)?

How should \widehat{N} depend on *m* (maximum tank number observed) and *k* (number of tanks observed)?

Expect $\widehat{N} = m + g(m, k)$, simplest guess g(m, k) = bm/k for some constant *b*.

How should \hat{N} depend on *m* (maximum tank number observed) and *k* (number of tanks observed)?

Expect $\hat{N} = m + g(m, k)$, simplest guess g(m, k) = bm/k for some constant *b*.

Answer:

$$\widehat{N} = m\left(1+\frac{1}{k}\right)-1;$$

is this reasonable?

How should \widehat{N} depend on *m* (maximum tank number observed) and *k* (number of tanks observed)?

Expect $\widehat{N} = m + g(m, k)$, simplest guess g(m, k) = bm/k for some constant *b*.

Answer:

$$\widehat{N} = m\left(1+\frac{1}{k}\right)-1;$$

is this reasonable?

Note sanity checks at k = 1 and k = N.

GTP: Original G

GTP: New Regression Imp

on Implementation Issues

References Appe

Proving the Formula: Step 1: Sample Maximum Probability

Lemma

Let *M* be the random variable for the maximum number observed, and let *m* be the value we see. There is zero probability of observing a value smaller than *k* or larger than *N*, and for $k \le m \le N$

Prob
$$(M = m) = \frac{\binom{m}{k} - \binom{m-1}{k}}{\binom{N}{k}} = \frac{\binom{m-1}{k-1}}{\binom{N}{k}}.$$

GTP: New Regression Im

Implementation Issues

References Append

Proving the Formula: Step 1: Sample Maximum Probability

Lemma

Let *M* be the random variable for the maximum number observed, and let *m* be the value we see. There is zero probability of observing a value smaller than *k* or larger than *N*, and for $k \le m \le N$

$$Prob(M = m) = \frac{\binom{m}{k} - \binom{m-1}{k}}{\binom{N}{k}} = \frac{\binom{m-1}{k-1}}{\binom{N}{k}}.$$

Proof: If the largest is *m* then we have to choose that serial number, and now we must choose k - 1 tanks from the m - 1 smaller values; thus we find the probability is just $\binom{m-1}{k-1} / \binom{N}{k}$.

GTP: Original GTP: N

w Regression Implen

Implementation Issues

References Appendix

Step 2: Expected Value Preliminaries

Definition of Expected Value:

$$\mathbb{E}[M] := \sum_{m=k}^{N} m \cdot \operatorname{Prob}(M = m).$$

Substituting:

$$\mathbb{E}[M] = \sum_{m=k}^{N} m \frac{\binom{m-1}{k-1}}{\binom{N}{k}}.$$

Introduction	Mathematical Preliminaries	GTP: Original	GTP: New	Regression
		000000		

Regression Impleme

olementation Issues R

Appendix 000000

Step 2: Computing $\mathbb{E}[M]$

$$\mathbb{E}[M] = \sum_{m=k}^{N} m \frac{\binom{m-1}{k-1}}{\binom{N}{k}} \\ = \sum_{m=k}^{N} m \frac{(m-1)!}{(k-1)!(m-k)!} \frac{k!(N-k)!}{N!} \\ = \sum_{m=k}^{N} \frac{m!k}{k!(m-k)!} \frac{k!(N-k)!}{N!} \\ = \frac{k \cdot k!(N-k)!}{N!} \sum_{m=k}^{N} \binom{m}{k} \\ = \frac{k \cdot k!(N-k)!}{N!} \binom{N+1}{k+1} \\ \end{bmatrix}$$

Introduction	Mathematical Preliminaries	GTP: Original	GTP: New	Regression
		000000		

egression Implemer

ation Issues Referen

Appendix 000000

Step 2: Computing $\mathbb{E}[M]$

$$\mathbb{E}[M] = \sum_{m=k}^{N} m \frac{\binom{m-1}{k-1}}{\binom{N}{k}}$$

$$= \sum_{m=k}^{N} m \frac{(m-1)!}{(k-1)!(m-k)!} \frac{k!(N-k)!}{N!}$$

$$= \sum_{m=k}^{N} \frac{m!k}{k!(m-k)!} \frac{k!(N-k)!}{N!}$$

$$= \frac{k \cdot k!(N-k)!}{N!} \sum_{m=k}^{N} \binom{m}{k}$$

$$= \frac{k \cdot k!(N-k)!}{N!} \frac{(N+1)!}{(k+1)!(N-k)!}$$

Introduction	Mathematical Preliminaries	GTP: Original	GTP: New	Regression
		000000		

ession Implementati

sues References Appendix

Step 2: Computing $\mathbb{E}[M]$

$$\mathbb{E}[M] = \sum_{m=k}^{N} m \frac{\binom{m-1}{k-1}}{\binom{N}{k}} \\ = \sum_{m=k}^{N} m \frac{(m-1)!}{(k-1)!(m-k)!} \frac{k!(N-k)!}{N!} \\ = \sum_{m=k}^{N} \frac{m!k}{k!(m-k)!} \frac{k!(N-k)!}{N!} \\ = \frac{k \cdot k!(N-k)!}{N!} \sum_{m=k}^{N} \binom{m}{k} \\ = \frac{k(N+1)}{k+1}.$$

Showed
$$\mathbb{E}[M] = rac{k(N+1)}{k+1}$$
, solve for *N*:
 $N = \mathbb{E}[M] \left(1 + rac{1}{k}\right) - 1.$

Substitute *m* (observed value for *M*) as best guess for $\mathbb{E}[M]$, we obtain our estimate for the number of tanks produced:

$$\widehat{N} = m\left(1+\frac{1}{k}\right)-1,$$

completing the proof.

Introduction	Mathematical Preliminaries	GTP: Original	GTP: New	R
			0000	

gression Implementation

References A

GTP: New

How should \hat{N} depend on m_1, m_2 (min/max observed) and k (number of tanks observed)?

Let $N = N_2 - N_1 + 1$, $s = m_2 - m_1$.

How should \widehat{N} depend on m_1, m_2 (min/max observed) and k (number of tanks observed)?

Let $N = N_2 - N_1 + 1$, $s = m_2 - m_1$.

Expect $\hat{N} = s + g(s, k)$, simplest guess g(m, k) = bs/(k-1) for some constant *b*.

How should \widehat{N} depend on m_1, m_2 (min/max observed) and k (number of tanks observed)?

Let
$$N = N_2 - N_1 + 1$$
, $s = m_2 - m_1$.

Expect $\widehat{N} = s + g(s, k)$, simplest guess g(m, k) = bs/(k-1) for some constant *b*.

Answer:

$$\widehat{N} = s\left(1+\frac{2}{k-1}\right)-1;$$

note sanity checks at k = 2 and k = N.

GTP: Original GTP: New

Regression Implem 00000000 00000

Implementation Issues References

Appendix 000000

Proving the Formula: Step 1: Sample Maximum Probability

Lemma

Probability is 0 unless $k - 1 \le s \le N_2 - N_1$, then

$$\operatorname{Prob}(S = s) = \frac{\sum_{m=N_1}^{N_2-s} {\binom{s-1}{k-2}}}{\binom{N_2-N_1+1}{k}} = \frac{(N-s) {\binom{s-1}{k-2}}}{\binom{N}{k}}.$$

Proof: Spread *s* must be at least k - 1 (as we have *k* observations), and cannot be larger than $N_2 - N_1$.

If spread of *s* and smallest observed is *m* then largest is m + s. Choose exactly k - 2 of the s - 1 numbers in $\{m + 1, m + 2, ..., m + s - 1\}$. Have $\binom{s-1}{k-2}$ ways to do so, all the summands are the same.

Rest of proof is similar to before, but more involved algebra.

Repeatedly multiply by 1 or add 0 to facilitate applications of binomial identities.

See appendix for details.

GTP: New 0000

Rearession

Implementation Issues References

Appendix

Comparison of Spies versus Statistics

Month	Statistical estimate	Intelligence estimate	German records
June 1940	169	1,000	
June 1941	244	1,550	
August 1942	327	1,550	

Figure: Comparison of estimates from statistics and spies to the true values. Table from https://en.wikipedia.org/wiki/German_tank_problem.

GTP: New 0000

Rearession

Implementation Issues References

Appendix

Comparison of Spies versus Statistics

Month	Statistical estimate	Intelligence estimate	German records
June 1940	169	1,000	122
June 1941	244	1,550	271
August 1942	327	1,550	342

Figure: Comparison of estimates from statistics and spies to the true values. Table from

https://en.wikipedia.org/wiki/German_tank_problem.

See https://web.williams.edu/Mathematics/ sjmiller/public_html/probabilitylifesaver/ MethodLeastSquares.pdf

Overview

Idea is to find *best-fit* parameters: choices that minimize error in a conjectured relationship.

Say observe y_i with input x_i , believe $y_i = ax_i + b$. Three choices:

$$E_1(a,b) = \sum_{n=1}^{N} (y_i - (ax_i + b))$$
$$E_2(a,b) = \sum_{n=1}^{N} |y_i - (ax_i + b)|$$
$$E_3(a,b) = \sum_{n=1}^{N} (y_i - (ax_i + b))^2.$$

Overview

Idea is to find *best-fit* parameters: choices that minimize error in a conjectured relationship.

Say observe y_i with input x_i , believe $y_i = ax_i + b$. Three choices:

$$E_1(a,b) = \sum_{n=1}^{N} (y_i - (ax_i + b))$$
$$E_2(a,b) = \sum_{n=1}^{N} |y_i - (ax_i + b)|$$
$$E_3(a,b) = \sum_{n=1}^{N} (y_i - (ax_i + b))^2.$$

Use sum of squares as calculus available.

Linear Regression

Explicit formula for values of a, b minimizing error $E_3(a, b)$. From

$$\partial E_3(a,b)/\partial a = \partial E_3(a,b)/\partial b = 0$$
:

$$E_3(a,b) = \sum_{n=1}^{N} (y_i - ax_i - b)^2$$

$$\frac{\partial E_3(a,b)}{\partial a} = \sum_{n=1}^{N} 2(y_i - ax_i - b)^{2-1} \cdot (-x_i)$$

$$\frac{\partial E_3(a,b)}{\partial b} = \sum_{n=1}^{N} 2(y_i - ax_i - b)^{2-1} \cdot (-1).$$

Linear Regression

Explicit formula for values of a, b minimizing error $E_3(a, b)$. From

$$\partial E_3(a,b)/\partial a = \partial E_3(a,b)/\partial b = 0$$
:

Expanding gives two linear equations in two unknowns (a, b):

$$\begin{aligned} \Xi_3(a,b) &= \sum_{n=1}^N (y_i - ax_i - b)^2 \\ 0 &= \sum_{n=1}^N (-x_i y_i) + a \sum_{n=1}^N x_i^2 + b \sum_{n=1}^N x_i \\ 0 &= \sum_{n=1}^N (-y_i) + a \sum_{n=1}^N x_i + b \sum_{n=1}^N 1. \end{aligned}$$

Linear Regression

Explicit formula for values of a, b minimizing error $E_3(a, b)$. From

$$\partial E_3(a,b)/\partial a = \partial E_3(a,b)/\partial b = 0$$
:

After algebra:

$$\begin{pmatrix} \widehat{a} \\ \widehat{b} \end{pmatrix} = \begin{pmatrix} \sum_{n=1}^{N} x_i^2 & \sum_{n=1}^{N} x_i \\ \sum_{n=1}^{N} x_i & \sum_{n=1}^{N} 1 \end{pmatrix}^{-1} \begin{pmatrix} \sum_{n=1}^{N} x_i y_i \\ \sum_{n=1}^{N} y_i \end{pmatrix}$$

or

$$a = \frac{\sum_{n=1}^{N} 1 \sum_{n=1}^{N} x_n y_n - \sum_{n=1}^{N} x_n \sum_{n=1}^{N} y_n}{\sum_{n=1}^{N} 1 \sum_{n=1}^{N} x_n^2 - \sum_{n=1}^{N} x_n \sum_{n=1}^{N} x_n}$$

$$b = \frac{\sum_{n=1}^{N} x_n \sum_{n=1}^{N} x_n y_n - \sum_{n=1}^{N} x_n^2 \sum_{n=1}^{N} y_n}{\sum_{n=1}^{N} x_n \sum_{n=1}^{N} x_n - \sum_{n=1}^{N} x_n^2 \sum_{n=1}^{N} 1}.$$

Introduction Mathematical Preliminaries GTP: Original GTP: New Regression Implementation Issues References

Appendix

Logarithms and Applications

Many non-linear relationships are linear after applying logarithms:

$$Y = BX^a$$
 then $\log(Y) = a\log(X) + b$, $b = \log B$.

Logarithms and Applications

Many non-linear relationships are linear after applying logarithms:

$$Y = BX^a$$
 then $\log(Y) = a\log(X) + b$, $b = \log B$.

Kepler's Third Law: if T is the orbital period of a planet traveling in an elliptical orbit about the sun (and no other objects exist), then $T^2 = \tilde{B}L^3$, where L is the length of the semi-major axis.

Assume do not know this – can we *discover* through statistics?

Logarithms and Applications

Many non-linear relationships are linear after applying logarithms:

$$Y = BX^a$$
 then $\log(Y) = a\log(X) + b$, $b = \log B$.

Kepler's Third Law: if *T* is the orbital period of a planet traveling in an elliptical orbit about the sun (and no other objects exist), then $T = BL^{1.5}$, where *L* is the length of the semi-major axis.

Assume do not know this – can we *discover* through statistics?

GTP: New Rearession

Implementation Issues

References Annend

Kepler's Third Law: Can see the 1.5 exponent!

Data: Semi-major axis: Mercury 0.387, Venus 0.723, Earth 1.000, Mars 1.524, Jupiter 5.203, Saturn 9.539, Uranus 19.182, Neptune 30.06 (the units are astronomical units, where one astronomical unit is $1.496 \cdot 10^8$ km).

Data: orbital periods (in years) are 0.2408467, 0.61519726, 1.0000174, 1.8808476, 11.862615, 29.447498. 84.016846 and 164.79132.

If $T = BL^a$, what should B equal with this data? Units: bruno, millihelen, slug, smoot, See https://en.wikipedia.org/wiki/List_of_ humorous units of measurement

GTP: New Rearession

Implementation Issues References

Annend

Kepler's Third Law: Can see the 1.5 exponent!

Data: Semi-major axis: Mercury 0.387, Venus 0.723, Earth 1.000, Mars 1.524, Jupiter 5.203, Saturn 9.539, Uranus 19.182, Neptune 30.06 (the units are astronomical units, where one astronomical unit is $1.496 \cdot 10^8$ km).

Data: orbital periods (in years) are 0.2408467, 0.61519726, 1.0000174, 1.8808476, 11.862615, 29.447498. 84.016846 and 164.79132.

If $T = BL^a$, what should B equal with this data? Units: bruno, millihelen, slug, smoot, See https://en.wikipedia.org/wiki/List_of_ humorous units of measurement

Introduction Mathematical Preliminaries

ies GTP: Original

lementation Issues References

s Appendix

Kepler's Third Law: Can see the 1.5 exponent!

If try log $T = a \log L + b$: best fit values $a \approx 1.49986$, $b \approx 0.000148796$:

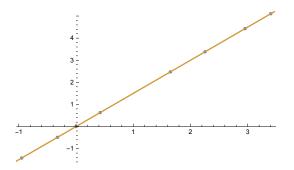


Figure: Plot of log *P* versus log *L* for planets. Is it surprising $b \approx 0$ (so $B \approx 1$ or $b \approx 0$?

Statistics

Goal is to find good statistics to describe real world.

Figure: Harvard Bridge, about 620.1 meters.

57

Goal is to find good statistics to describe real world.

Figure: Harvard Bridge, 364.1 Smoots (\pm one ear).

Birthday Problem: Assume a year with D days, how many people do we need in a room to have a 50% chance that at least two share a birthday, under the assumption that the birthdays are independent and uniformly distributed from 1 to D?

Birthday Problem: Assume a year with D days, how many people do we need in a room to have a 50% chance that at least two share a birthday, under the assumption that the birthdays are independent and uniformly distributed from 1 to D?

A straightforward analysis shows the answer is approximately $D^{1/2}\sqrt{\log 4}$.

Can do simulations and try and see the correct exponent; will look not for 50% chance but the expected number of people in room for the first collision.

Birthday Problem (cont)

Try $P = BD^a$, take logs so $\log P = a \log D + b$ ($b = \log B$).

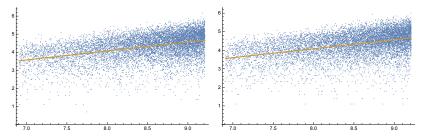


Figure: Plot of best fit line for *P* as a function of *D*. We twice ran 10,000 simulations with *D* chosen from 10,000 to 100,000. Best fit values were $a \approx 0.506167$, $b \approx -0.0110081$ (left) and $a \approx 0.48141$, $b \approx 0.230735$ (right).

Introduction Mathematical Preliminaries

GTP: Original C

GTP: New Regression Implem

ion Implementation Issues

References

Appendix

Statistics and German Tank Problem

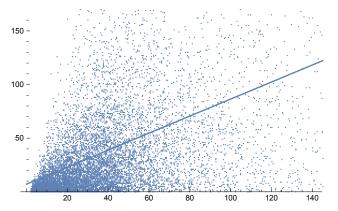


Figure: Plot of best fit line for N - m as a function of m/k. We ran 10,000 simulations with *N* chosen from [100, 2000] and *k* from [10, 50]. Best fit values for N - m = a(m/k) + b for this simulation were $a \approx 0.793716$, $b \approx 7.10602$.

Introduction Mathematical Preliminaries

es GTP: Original GTP: New

w Regression Implem

Implementation Issues

References Appendix

Statistics and German Tank Problem

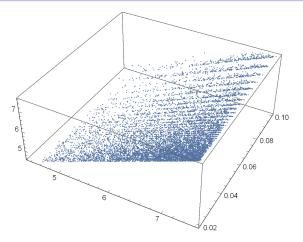


Figure: Plot of $\log N$ against $\log m$ and 1/k. We ran 10,000 simulations with *N* chosen from [100, 2000] and *k* from [10, 50]. The data is well-approximated by a plane (we do not draw it in order to

See https://web.williams.edu/Mathematics/ sjmiller/public_html/probabilitylifesaver/ MethodLeastSquares.pdf

Statistics and German Tank Problem: N = (1 + 1/k)m - 1

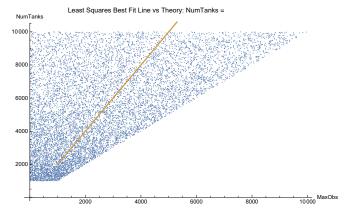


Figure: Plot of *N* vs maximum observed tank *m* for fixed k = 1. Theory: N = 2m - 1, best fit N = .784m + 2875.

Statistics and German Tank Problem: N = (1 + 1/k)m - 1

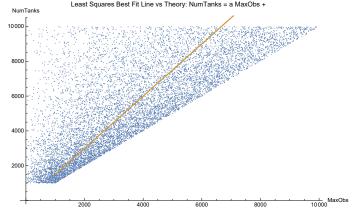
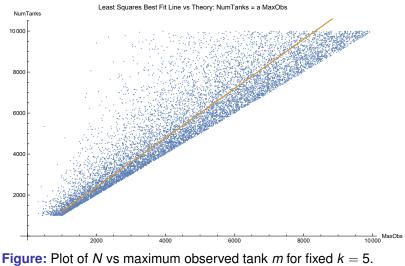


Figure: Plot of *N* vs maximum observed tank *m* for fixed k = 2. Theory: N = 1.5m - 1, best fit N = .964m + 1424.

Statistics and German Tank Problem: N = (1 + 1/k)m - 1



Theory: N = 1.2m - 1, best fit N = 1.037m + 749.

Statistics and German Tank Problem: $m = \frac{k+1}{k}N + \frac{k+1}{k}$

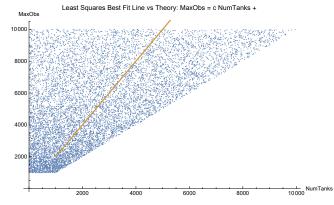


Figure: Plot of maximum observed tank *m* vs *N* for fixed k = 1. Theory: m = .5N + .5, best fit m = .496N + 10.5.

Statistics and German Tank Problem: $m = \frac{k+1}{k}N + \frac{k+1}{k}$

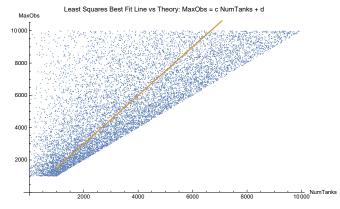


Figure: Plot of maximum observed tank *m* vs *N* for fixed k = 2. Theory: m = .667N + .667, best fit m = .668N + 9.25.

Statistics and German Tank Problem: $m = \frac{k+1}{k}N + \frac{k+1}{k}$

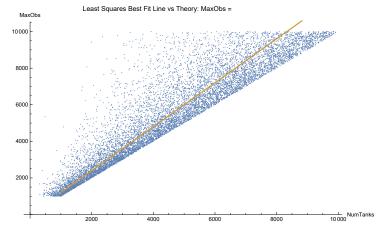


Figure: Plot of maximum observed tank *m* vs *N* for fixed k = 5. Theory: m = .883N + .883, best fit m = .828N + 25.8.

w Regression Impleme

on Implementation Issues

References Appendix

Statistics and German Tank Problem: N = (1 + 1/k)m - 1: Averaging 100 runs for each N

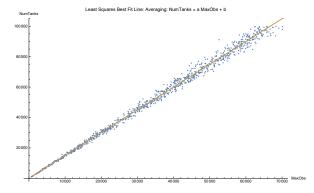
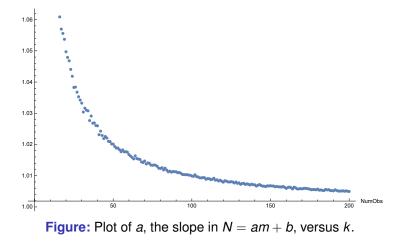


Figure: Plot of *N* vs maximum observed tank *m* for fixed k = 1. Theory: N = 1.5m - 1, best fit N = 1.496m + 171.2.

Statistics and German Tank Problem: N = (1 + 1/k)m - 1: Sniffing out *k* dependence



Statistics and German Tank Problem: N = (1 + 1/k)m - 1: Sniffing out *k* dependence

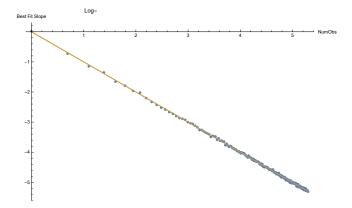


Figure: Log-Log Plot of a - 1, the slope in N = am + b, versus k. In $\log(a - 1)$ versus $\log k$, theory is $\log(a - 1) = -1 \log(k)$, best fit line is $\log(a - 1) = -.999 \log(k) - .007$.

Introduction Mathematical Preliminaries GTP: Original OCOCO GOOOD Implementation Issues OCOCO Appendix

References

Introduction	Mathematical Preliminaries	GTP: Original	GTP: New 00000	Regression		References ○●○	Appendi>		
Smoots									

Sieze opportunities: Never know where they will lead.

Sieze opportunities: Never know where they will lead.

Sieze opportunities: Never know where they will lead.

Oliver Smoot: Chairman of the American National Standards Institute (ANSI) from 2001 to 2002, President of the International Organization for Standardization (ISO) from 2003 to 2004.

Introduction Mathematical Preliminaries

es GTP: Original

GTP: New Regression In

n Implementation Issues

References ○○● Appendix

Thank you! Questions?

Work supported by NSF Grants DMS1561945 and DMS1659037.

Introduction Mathematical Preliminaries

s GTP: Original

GTP: New Regression Impl

Implementation Issues

References Appendix

Thank you! Questions?

Work supported by NSF Grants DMS1561945 and DMS1659037.

- Lessons from the German Tank Problem (with George Clark and Alex Gonye), Mathematical Intelligencer 62 (2021), https://doi.org/10.1007/s00283-021-10082-w.
- Generalizing the German Tank Problem (Anthony Lee and Steven J. Miller), PUMP Journal of Undergraduate Research 6 (2023), 59–95.
- The German Tank Problem with Multiple Factories (Steven J. Miller, Kishan Sharma, and Andrew K. Yang), PUMP Journal of Undergraduate Research 7 (2024), 231–257.

Introduction Mathematical Preliminaries GTP: Original GTP: New Regression Implementation Issues References Appendix

Appendix: Details for Unknown Minimum

- the minimum tank serial value, N_1 ,
- the maximum tank serial value, N₂,
- the total number of tanks, $N (N = N_2 N_1 + 1)$,
- the observed minimum value, m_1 (with corresponding random variable M_1),
- the observed maximum value, *m*₂ (with corresponding random variable *M*₂),
- the observed spread *s* (with corresponding random variable *S*).

As $s = m_2 - m_1$, can focus on just *s* and *S*.

Introduction	Mathematical Preliminaries	GTP: Original	GTP: New	Regression	Implementation Issues	References	Appendix
							000000

Proof

We argue similarly as before. In the algebra below we use our second binomial identity; relabeling the parameters it is

$$\sum_{\ell=a}^{b} \binom{\ell}{a} = \binom{b+1}{a+1}.$$
(1)

We begin by computing the expected value of the spread:

$$\begin{split} \mathbb{E}[S] &= \sum_{s=k-1}^{N-1} s \operatorname{Prob}(S=s) \\ &= \sum_{s=k-1}^{N-1} s \frac{(N-s) \binom{s-1}{k-2}}{\binom{N}{k}} \\ &= \binom{N}{k}^{-1} \sum_{s=k-1}^{N-1} s (N-s) \binom{s-1}{k-2} \\ &= \binom{N}{k}^{-1} N \sum_{s=k-1}^{N-1} \frac{s(s-1)!}{(s-k+1)!(k-2)!} - \binom{N}{k}^{-1} \sum_{s=k-1}^{N-1} \frac{s^2(s-1)!}{(s-k+1)!(k-2)!} \\ &= \binom{N}{k}^{-1} N \sum_{s=k-1}^{N-1} \frac{s!(k-1)}{(s-k+1)!(k-1)!} - \binom{N}{k}^{-1} \sum_{s=k-1}^{N-1} \frac{ss!(k-1)}{(s-k+1)!(k-1)!} = T_1 - T_2. \end{split}$$

We first simplify T_1 ; below we always try to multiply by 1 in such a way that we can combine ratios of factorials into binomial coefficients:

$$T_{1} = \binom{N}{k}^{-1} N \sum_{s=k-1}^{N-1} \frac{s!(k-1)}{(s-k+1)!(k-1)!}$$
$$= \binom{N}{k}^{-1} N \sum_{s=k-1}^{N-1} \frac{s!(k-1)}{(s-k+1)!(k-1)!}$$
$$= \binom{N}{k}^{-1} N(k-1) \sum_{s=k-1}^{N-1} \binom{s}{k-1}$$
$$= \binom{N}{k}^{-1} N(k-1) \binom{N}{k} = N(k-1),$$

where we used (1) with a = k - 1 and b = N - 1.

Turning to T_2 we argue similarly, at one point replacing s with (s - 1) + 1 to assist in collecting factors into a binomial coefficient:

$$\begin{split} T_2 &= \binom{N}{k}^{-1} \sum_{s=k-1}^{N-1} \frac{ss!(k-1)}{(s-k+1)!(k-1)!} \\ &= \binom{N}{k}^{-1} \sum_{s=k-1}^{N-1} \frac{(s+1-1)s!(k-1)}{(s-(k-1))!(k-1)!} \\ &= \binom{N}{k}^{-1} \sum_{s=k-1}^{N-1} \frac{(s+1)!(k-1)k}{(s+1-k)!(k-1)!k} - \binom{N}{k}^{-1} \sum_{s=k-1}^{N-1} \frac{s!(k-1)}{(s-(k-1))!(k-1)!} \\ &= \binom{N}{k}^{-1} \sum_{s=k-1}^{N-1} \frac{(s+1)!k(k-1)}{(s+1-k)!k!} - \binom{N}{k}^{-1} \sum_{s=k-1}^{N-1} (k-1)\binom{s}{k-1} \\ &= \binom{N}{k}^{-1} \sum_{s=k-1}^{N-1} k(k-1)\binom{s+1}{k} - \binom{N}{k}^{-1} \sum_{s=k-1}^{N-1} (k-1)\binom{s}{k-1} = T_{21} + T_{22}. \end{split}$$

Introduction	Mathematical Preliminaries	GTP: Original	GTP: New	Regression	Implementation Issues	References	Appendix
							00000

Proof (cont)

We can immediately evaluate T_{22} by using (1) with a = k - 1 and b = N - 1, and find

$$T_{22} = {\binom{N}{k}}^{-1} (k-1) {\binom{N}{k}} = k-1.$$

Thus all that remains is analyzing T_{21} :

$$T_{21} = \binom{N}{k}^{-1} \sum_{s=k-1}^{N-1} \binom{s+1}{k} k(k-1).$$

We pull k(k - 1) outside the sum, and letting w = s + 1 we see that

$$T_{21} = \binom{N}{k}^{-1} k(k-1) \sum_{w=k}^{N} \binom{w}{k},$$

and then from (1) with a = k and b = N we obtain

$$T_{21} = \binom{N}{k}^{-1} k(k-1) \sum_{w=k}^{N} \binom{w}{k} = \binom{N}{k}^{-1} k(k-1) \binom{N+1}{k+1}.$$

Introduction	Mathematical Preliminaries	GTP: Original	GTP: New 00000	Regression	References	Appendi>

Proof (cont)

Thus, substituting everything back yields

$$\mathbb{E}[S] = N(k-1) + (k-1) - \binom{N}{k}^{-1} k(k-1) \binom{N+1}{k+1}.$$

We can simplify the right hand side:

$$(N+1)(k-1) - k(k-1)\frac{\frac{(N+1)!}{(N-k)!(k+1)!}}{\frac{N!}{(N-k)!k!}} = (N+1)(k-1) - k(k-1)\frac{(N+1)!(N-k)!k!}{N!(N-k)!(k+1)!}$$
$$= (N+1)(k-1) - k(k-1)\frac{N+1}{k+1}$$
$$= (N+1)(k-1) - \frac{k(k-1)(N+1)}{k+1}$$
$$= (N+1)(k-1) \left(1 - \frac{k}{k+1}\right)$$
$$= (N+1)\frac{k-1}{k+1},$$

$$\mathbb{E}[S] = (N+1)\frac{k-1}{k+1}.$$

and thus obtain

Introduction	Mathematical Preliminaries	GTP: Original	GTP: New	Regression	Implementation Issues	References	Appendi
00000000	000000	000000	00000	000000000	00000	000	000000

Proof (cont)

The analysis is completed as before, where we pass from our observation of s for S to a prediction \widehat{N} for N:

$$\widehat{N} = \frac{k+1}{k-1}s - 1 = s\left(1 + \frac{2}{k-1}\right) - 1,$$

where the final equality is due to rewriting the algebra to mirror more closely the formula from the case where the first tank is numbered 1. Note that this formula passes the same sanity checks the other did; for example $s\frac{2}{k-1} - 1$ is always at least 1 (remember *k* is at least 2), and thus the lowest estimate we can get for the number of tanks is s + 1.