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Random Matrix Ensembles

A =





a11 a12 a13 · · · a1N

a12 a22 a23 · · · a2N
...

...
...

. . .
...

a1N a2N a3N · · · aNN



 = AT , aij = aji

Fix p, define

Prob(A) =
∏

1≤i≤j≤N

p(aij).

This means

Prob (A : aij ∈ [αij , βij ]) =
∏

1≤i≤j≤N

∫ βij

xij=αij

p(xij)dxij .

Want to understand eigenvalues of A.
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Eigenvalue Distribution

δ(x − x0) is a unit point mass at x0:∫
f (x)δ(x − x0)dx = f (x0).

To each A, attach a probability measure:

µA,N(x) =
1
N

N∑

i=1

δ

(
x − λi(A)

2
√

N

)

∫ b

a
µA,N(x)dx =

#
{
λi : λi(A)

2
√

N
∈ [a, b]

}

N

kth moment =

∑N
i=1 λi(A)k

2kN
k
2 +1

=
Trace(Ak )

2k N
k
2 +1

.
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Random Matrix Theory: Eigenvalue Trace Formula

Want to understand the eigenvalues of A, but it is the
matrix elements that are chosen randomly and
independently.

Eigenvalue Trace Lemma

Let A be an N × N matrix with eigenvalues λi(A). Then

Trace(Ak ) =
N∑

n=1

λi(A)k ,

where

Trace(Ak) =
N∑

i1=1

· · ·
N∑

ik=1

ai1i2ai2i3 · · ·aik i1.
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Riemann Zeta Function

ζ(s) =
∞∑

n=1

1
ns

=
∏

p prime

(
1 − 1

ps

)−1

, Re(s) > 1.

Functional Equation:

ξ(s) = Γ
(s

2

)
π− s

2 ζ(s) = ξ(1 − s).

Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2

; can write zeros as
1
2

+iγ.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A

T
= A.
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General L-functions

L(s, f ) =
∞∑

n=1

af (n)

ns
=

∏

p prime

Lp (s, f )−1 , Re(s) > 1.

Functional Equation:

Λ(s, f ) = Λ∞(s, f )L(s, f ) = Λ(1 − s, f ).

Generalized Riemann Hypothesis (GRH):

All non-trivial zeros have Re(s) =
1
2

; can write zeros as
1
2

+iγ.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A

T
= A.
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Measures of Spacings: 1-Level Density and Families

φ(x) even Schwartz function whose Fourier Transform is
compactly supported.

1-level density

Df (φ) =
∑

j

φ
(

Lfγj ;f

)

1 Individual zeros contribute in limit.
2 Most of contribution is from low zeros.
3 Average over similar curves (family).

Katz-Sarnak Conjecture
For a ‘nice’ family of L-functions, the n-level density
depends only on a symmetry group attached to the family.
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Number Theory: Explicit Formula: Example

Cuspidal Newforms: Let F be a family of cupsidal
newforms (say weight k , prime level N and possibly split
by sign) L(s, f ) =

∑
n λf (n)/ns. Then

1
|F|

∑

f∈F

∑

γf

φ

(
log R

2π
γf

)
= φ̂(0) +

1
2
φ(0) − 1

|F|
∑

f∈F
P(f ;φ)

+ O
(

log log R
log R

)

P(f ;φ) =
∑

p∤N

λf (p)φ̂

(
log p
log R

)
2 log p√
p log R

.
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Toeplitz Ensembles
(Steven Jackson and Vincent Pham)
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Previous Results

N × N Toeplitz matrix:




b0 b1 b2 · · · bN−1

b−1 b0 b1 · · · bN−2

b−2 b−1 b0 · · · bN−3
...

...
...

. . .
...

b1−N b2−N b3−N · · · b0





Density of eigenvalues close to, but not, a Gaussian.
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Previous Results

N × N Palindromic Toeplitz matrix:




b0 b1 b2 · · · b2 b1 b0

b1 b0 b1 · · · b3 b2 b1

b2 b1 b0 · · · b4 b3 b2
...

...
...

. . .
...

...
...

b2 b3 b4 · · · b0 b1 b2

b1 b2 b3 · · · b1 b0 b1

b0 b1 b2 · · · b2 b1 b0





.

Density of eigenvalues is the Gaussian (each
configuration contributes equally).

12



Background Toeplitz Ensembles d -Regular Graphs BS-D on Average Number Field Ratios Conjecture

Previous Results

N × N Doubly Palindromic Toeplitz matrix (first row):

(b0 b1 · · · b1 b0 b0 b1 · · · b1 b0)

Questions

What is the density of eigenvalues?

Does each configuration contribute equally?
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Matching Illustrations

ij ij ij

klkl
kl

jk jk jk
lilili

Figure: Possible Configurations for the Fourth Moment Matchings
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Matching Lemma

Lemma
Given aij , let A be one of the diagonals whose entries
equal aij and is on the same diagonal half of the matrix
with aij . Let B be the opposite of the symmetric diagonal
of A. Let b be the distance from B to the diagonal going
through aij . Then the contribution from diagonals A and B
to the fourth moment is the same for all configurations
and equals

N2(N + 1 − b).

Conjecture

The contribution from all configurations to the 2k th

moment are equal.
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Matching Illustrations

ij ij ij

klkl
kl

jk jk jk
lilili

Figure: Possible Configurations for the Fourth Moment Matchings
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Matching Illustrations
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Matching Illustrations

ij ij ij

klkl
kl

jk jk jk
lilili

Figure: Possible Configurations for the Fourth Moment Matchings
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Matching Illustrations
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Results: Highly Palindromic Toeplitz Matrices

Theorem
For a Toeplitz matrix with 2n palindromes, sum over 2n

similar cases to find fourth moment is

3 ·
(

2
3

2n +
1
3

2−n

)

(for doubly palindromic, equals 4.5).
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Convergence of the moments

The 2k th moment is bounded below by the Gaussian’s
moment, (2k − 1)!!.

The 2k th moment is bounded above by
(2k − 1)!! · (4 · 2n − 1)k−1.

Theorem
Moments grow sufficiently slowly to determine a unique
probability distribution, has ‘fattest’ tails of any ensemble
studied to date.
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d-Regular Graphs
(Kesinee Ninsuwan)
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Terminology

A d-regular graph G is a graph where each vertex is
connected to exactly d other vertices, no loops, no
multiple edges, no directed edges.

A closed walk of length n is a path 〈v1, v2, . . . , vn〉
such that v1 = vn.

The adjacency matrix of G is the matrix A = (aij)
where aij = 1 if vertices i and j are connected, 0
otherwise.
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Weighted d -regular graphs

Fix a probability distribution W.

Put a weight to each edge of G by independently drawing
from W.

The adjacency matrix of a weighted graph has entries

(Aw)ij =

{
wijaij if i ≥ j
wjiaij if i > j .
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Needed Results

Theorem (McKay)
As N → ∞, the limiting probability density for the
eigenvalues of unweighted d-regular graph G converges
to Kesten’s measure

fd(x) =

{
d

2π(d2−x2)

√
4(d − 1) − x2 if |x | ≤ 2

√
d − 1

0 otherwise.

Normalizing the eigenvalues by 2
√

d − 1 and letting
d → ∞, we see the probability density converges to the
semicircle distribution

C(x) =

{
2
π

√
1 − x2 if |x | ≤ 1

0 otherwise.
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New Results

Theorem
Let d grow slower than N r for any r > 0 (for example,
d = log N works). Normalizing the eigenvalues by
2
√

d − 1, as N → ∞ the 2k th moment of normalized
eigenvalues of weighted graphs tends to the semi-circle.

Proof
Counting weighted closed paths; as d → ∞ only the
path where each edge is traversed twice contributes:

∑

ℓ1+ℓ2+...+ℓr =k

αℓ1,ℓ2,...,ℓr (d)σ2ℓ1σ2ℓ2 · · ·σ2ℓr ,

where αℓ1,ℓ2,...,ℓr (d) is a polynomial in d of degree r .
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Towards an ‘average’ version
of the Birch and Swinnerton-Dyer Conjecture

(John Goes)
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Elliptic curves: Introduction

Consider y2 = x3 + ax + b; a, b ∈ Z.

 
 
 
 
 
 
 
 
 
 
 

sP
s

Q s
R

s

P ⊕ QE

Addition of distinct points P and Q

�
�
�
�
�
�
�
�
�
�
�

s
P

sR

s2P
E

Adding a point P to itself
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Elliptic curve: L-functions

E : y2 = x3 + ax + b, associate L-function

L(s,E) =
∞∑

n=1

aE(n)

ns
=

∏

p prime

Lp;E(p−s),

where

aE(p) = p − #{(x , y) ∈ (Z/pZ)2 : y2 ≡ x3 + ax + b mod p}.

Birch and Swinnerton-Dyer Conjecture: Rank of group of
rational solutions equals order of vanishing of L(s,E) at
s = 1/2.
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1-Level Density

For a family of elliptic curves E of rank r , we have

1
|FR|

∑

E∈FR

φ

(
γj ,E

log NE

2π

)
=

(
r +

1
2

)
φ(0) + φ̂(0) + small

if φ̂(x) is zero for |x | ≥ σE .

Want σE to be large, in practice can only prove results for
σE small.

Question: how many zeros ‘near’ the central point?
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Previous Results

Mestre: elliptic curve of conductor N has a zero with
imaginary part at most B

log log N .

Expect the relevant scale to study zeros near central point
to be 1/ log NE .

Goal: bound (from above and below) number of zeros in a
neighborhood of size 1/ log NE near the central point in a
family.
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New results for families (as conductors tend to infinity)

Theorem
Let t0 = 1/2π

√
σE . The average number of normalized

zeros in [−t0, t0] is bounded below by

r +
1
2

+
φ̂(0)

φ(0)
+ small,

and is bounded above by

r +
1
2

+
(r + 1/2)(ψ(0) − ψ(t0)) + ψ̂(0)

ψ(t0)
+ small.
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Number Field L-Functions
(Ryan Peckner)
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Previous Work

Fouvry and Iwaniec investigated L-functions attached to
number fields of form Q(

√
−d).

Theorem (Fouvry and Iwaniec)
Let f be an even Schwartz function whose Fourier
transform is supported in (−1, 1). Then the 1-level density
for the ideal class L-functions is

f̂ (0) − 1
2

f (0).

(i.e., the 1-level density agrees with Symplectic matrices).
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New Results

Theorem
Let {K∆} be a sequence of number fields ordered by
(absolute value of) discriminant, such that

hK∆
is prime for each K∆ in the sequence.

There exists c > 0 such that log hK∆
∼ c log ∆ as

∆ → ∞.
N∆ := [K∆ : Q] is independent of ∆, say N∆ = N.

Let f be an even Schwartz function whose Fourier
transform is supported in (−1, 1). Then the 1-level density
for the ideal class L-functions is

f̂ (0)

(i.e., 1-level density agrees with Unitary matrices).
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L-functions Ratios Conjecture
(David Montague)
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Intro

A recipe that gives conjectured values for

1
|F|

∑

f∈F

L(1
2 + α, f )

L(1
2 + γ, f )

.

This gives a heuristic for studying properties of
L-functions.

Believed to be accurate up to O(|F|−1/2+ǫ).

Will use to calculate the 1-level density for F .
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The Recipe

Expand the numerator using the approximate
functional equation:

L(s) =
∑

n≤x

an

ns
+ ǫXL(s)

∑

m≤y

am

m1−s
+ R;

ignore the error term R.

Expand the denominator using its Dirichlet series:

1
L(s, f )

=
∞∑

h=1

µf (h)

hs
.

Execute the sum over F through the use of an
averaging formula, keeping only the main (diagonal)
terms. Ignore the error.
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The Recipe

Extend the n,m sums to infinity.

Differentiate the sum wrt α, set α = γ = r , giving a

conjectured value for 1
|F|

∑
f∈F

L′( 1
2 +r ,f )

L( 1
2+r ,f )

.

Perform a contour integral to determine the 1-level
density.
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Main Results: Test for family F = H±
k (N)

This family is an important test: the non-diagonal terms
that are dropped contribute to the main term!

Theorem: Ratios Conjecture Prediction

With χ(s) =
∏

p

(
1 + 1

(p−1)ps

)
, the 1-level density is

∑

p

2 log p
p log R

φ̂

(
2 log p
log R

)

∓2 lim
ǫ↓0

∫ ∞

−∞
XL

(
1
2

+ 2πix
)
χ(ǫ+ 4πix)φ(t log R)dt

−
∫ ∞

−∞

X ′
L

XL

(
1
2

+ 2πit
)
φ(t log R)dt + O(N−1/2+ǫ),
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Main Results: Test for family F = H±
k (N)

This family is an important test: the non-diagonal terms
that are dropped contribute to the main term!

Theorem: Agreement with Number Theory

Assume GRH for ζ(s), Dirichlet L-functions, and L(s, f ).
For φ such that supp(φ̂) ⊂ (−1, 1), the 1-level density
agrees with the ratios conjecture prediction up to
O(N−1/2+ǫ), and get agreement up to a power savings in
N if supp(φ̂) ⊂ (−2, 2).
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