

Spectral Properties of Randomly Thinned d -Regular Graphs

Pedro Espinosa and Steven J. Miller, Williams College

`pre1@williams.edu` `sjm1@williams.edu`

JMM ILAS Special Session on Matrix Analysis and Applications
January 6, 2026

Motivation

- Classical RMT and Nuclear Physics (1950s and 1960s).

Motivation

- Classical RMT and Nuclear Physics (1950s and 1960s).
- RMT and Number Theory (1970s – present).

Motivation

- Classical RMT and Nuclear Physics (1950s and 1960s).
- RMT and Number Theory (1970s – present).
- Motivation: Can number theory operations (convolving L -functions) be modeled in classical RMT?

Motivation

- Classical RMT and Nuclear Physics (1950s and 1960s).
- RMT and Number Theory (1970s – present).
- Motivation: Can number theory operations (convolving L -functions) be modeled in classical RMT?
- Hadamard Product (studying d -regular graphs, ‘cousin’ for checkerboard matrices: Virginia Tech).

Why Study Spectra of Random Graphs?

- Eigenvalues encode global structure (expansion, randomness, mixing).

Why Study Spectra of Random Graphs?

- Eigenvalues encode global structure (expansion, randomness, mixing).
- For many random ensembles, eigenvalue distributions have universal limits.

Why Study Spectra of Random Graphs?

- Eigenvalues encode global structure (expansion, randomness, mixing).
- For many random ensembles, eigenvalue distributions have universal limits.
- Regular graphs have known limiting law (McKay).

Why Study Spectra of Random Graphs?

- Eigenvalues encode global structure (expansion, randomness, mixing).
- For many random ensembles, eigenvalue distributions have universal limits.
- Regular graphs have known limiting law (McKay).
- What happens if we randomly delete edges?

The McKay Ensemble

- Let A be the adjacency matrix of a random d -regular graph on n vertices.

The McKay Ensemble

- Let A be the adjacency matrix of a random d -regular graph on n vertices.
- Aside from trivial eigenvalue d , remaining eigenvalues admit a limiting distribution as $n \rightarrow \infty$.

The McKay Law

McKay: excluding trivial eigenvalue d , the empirical spectral distribution converges to

$$f(x) := \frac{d\sqrt{4(d-1) - x^2}}{2\pi(d^2 - x^2)} \quad \text{for } |x| \leq 2\sqrt{d-1}.$$

- Regular-graph analogue of semicircle law. Can create a new random matrix ensemble, similar to the ensemble of checkerboard matrices.

Random Thinning with the Hadamard Product

- Start with a d -regular graph (adjacency matrix A).

Random Thinning with the Hadamard Product

- Start with a d -regular graph (adjacency matrix A).
- Delete each edge independently with probability $1 - p$.

Random Thinning with the Hadamard Product

- Start with a d -regular graph (adjacency matrix A).
- Delete each edge independently with probability $1 - p$.
- Matrix model: Hadamard Product:

$$H := A \odot B,$$

where B is a symmetric Bernoulli(p) matrix (entries 0/1), independent of A .

Random Thinning with the Hadamard Product

- Start with a d -regular graph (adjacency matrix A).
- Delete each edge independently with probability $1 - p$.
- Matrix model: Hadamard Product:

$$H := A \odot B,$$

where B is a symmetric Bernoulli(p) matrix (entries 0/1), independent of A .

- Question: What is the limiting eigenvalue distribution of H ?

Empirical Spectral Distribution (ESD)

Let $H \in \mathbb{R}^{n \times n}$ be symmetric, eigenvalues $\lambda_1, \dots, \lambda_n$:

$$\mu_H := \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i}.$$

- μ_H encodes the global eigenvalue distribution of H .

Moment Method

Define the k -th moment of the ESD by

$$m_k(H) := \int x^k d\mu_H(x) := \frac{1}{n} \sum_{i=1}^n \lambda_i^k := \frac{1}{n} \text{Tr}(H^k).$$

- Moments often determine the limiting distribution.

Moment Method

Define the k -th moment of the ESD by

$$m_k(H) := \int x^k d\mu_H(x) := \frac{1}{n} \sum_{i=1}^n \lambda_i^k := \frac{1}{n} \text{Tr}(H^k).$$

- Moments often determine the limiting distribution.
- From Graph Theory: $\text{Tr}(A^k)$ counts closed walks of length k in the graph of A .

Low Moments: Already Different from McKay

$$\begin{aligned} m_1(H) &= \frac{1}{n} \mathbb{E}[\text{Tr}(H)] = 0 \quad (\text{no self-loops}). \\ m_2(H) &= \frac{1}{n} \mathbb{E}[\text{Tr}(H^2)] = dp. \end{aligned}$$

Compare with McKay:

$$m_2^{\text{McKay}} = d.$$

Conclusion

For any fixed $p \in (0, 1)$, the Hadamard-thinned ensemble is not McKay.

Difference From McKay (Formal Statement)

Theorem (Difference From McKay)

For any fixed $p \in (0, 1)$, the empirical spectral distribution μ_H of the Hadamard-thinned ensemble does not converge to the McKay distribution or a scaled McKay distribution.

Difference From McKay (Formal Statement)

Theorem (Difference From McKay)

For any fixed $p \in (0, 1)$, the empirical spectral distribution μ_H of the Hadamard-thinned ensemble does not converge to the McKay distribution or a scaled McKay distribution.

- Reason: second moments differ ($dp \neq d$), so limiting laws cannot agree.
- Fourth moments $pd + 2p^2d(d - 1)$ versus $2d^2 - d$; if rescale so second moments equal, scaled fourth differ.

Odd Moments Vanish (Idea)

- Odd moments correspond to odd-length closed walks.

Odd Moments Vanish (Idea)

- Odd moments correspond to odd-length closed walks.
- For random d -regular graphs A , the limiting expected odd moments vanish:

$$\lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}[\text{Tr}(A^k)] = 0 \quad \text{for odd } k.$$

Odd Moments Vanish (Idea)

- Odd moments correspond to odd-length closed walks.
- For random d -regular graphs A , the limiting expected odd moments vanish:

$$\lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}[\text{Tr}(A^k)] = 0 \quad \text{for odd } k.$$

- Thinning produces a subgraph, can compare closed-walk counts.

Subgraph Argument (Squeeze)

Obtain H by deleting edges of A ; any closed walk in H is a closed walk in A . Thus, for odd k ,

$$0 \leq \text{Tr}(H^k) \leq \text{Tr}(A^k).$$

Taking expectations, dividing by n , and letting $n \rightarrow \infty$ gives

$$0 \leq \lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}[\text{Tr}(H^k)] \leq \lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}[\text{Tr}(A^k)] = 0.$$

Vanishing of Odd Moments

Theorem (Vanishing of Odd Moments)

For every positive odd integer k ,

$$\lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}[\text{Tr}(H^k)] := 0.$$

Vanishing of Odd Moments

Theorem (Vanishing of Odd Moments)

For every positive odd integer k ,

$$\lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}[\text{Tr}(H^k)] := 0.$$

Corollary (Asymptotic Symmetry)

The limiting spectral measure of the Hadamard ensemble is symmetric about 0 for all $p \in (0, 1)$.

Even Moments: What Changes?

- Even moments count closed walks of even length $2k$.

Even Moments: What Changes?

- Even moments count closed walks of even length $2k$.
- A walk using r distinct edges survives with probability p^r .

Even Moments: What Changes?

- Even moments count closed walks of even length $2k$.
- A walk using r distinct edges survives with probability p^r .
- Asymptotically, dominant contribution from tree-like closed walks (as in McKay's analysis).

Even Moments of the Hadamard Ensemble

Let $A_{k,r}$ denote the number of closed walks of length $2k$ using exactly r distinct edges (tree-like walks dominate asymptotically). Then for $k \geq 1$,

$$m_{2k}(H) = \sum_{r=1}^k A_{k,r} p^r d(d-1)^{r-1}.$$

- Setting $p = 1$ recovers the McKay even moments.

Even Moments of the Hadamard Ensemble

Let $A_{k,r}$ denote the number of closed walks of length $2k$ using exactly r distinct edges (tree-like walks dominate asymptotically). Then for $k \geq 1$,

$$m_{2k}(H) = \sum_{r=1}^k A_{k,r} p^r d(d-1)^{r-1}.$$

- Setting $p = 1$ recovers the McKay even moments.
- Yields explicit two-parameter family of limiting measures $\mu_{d,p}$.

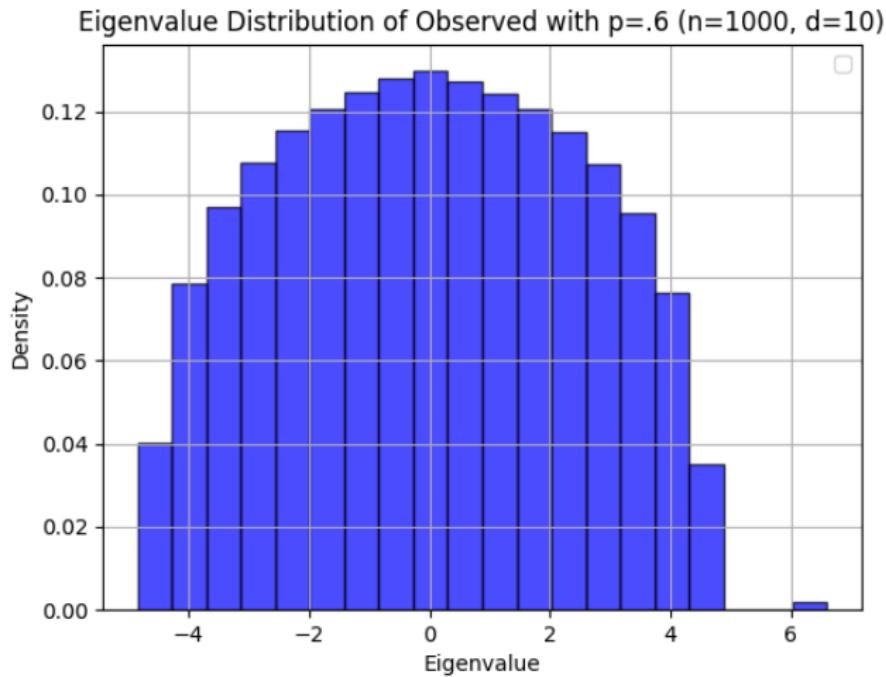
Convergence of the ESD

Theorem (ESD Converges to $\mu_{d,p}$)

As $n \rightarrow \infty$, the empirical spectral distribution of the Hadamard ensemble converges (in distribution) to a limiting measure $\mu_{d,p}$ whose moments are given by the above formulas.

- Moment convergence + determinacy \Rightarrow weak convergence.

Shape of the ESD



Key Takeaways

- Random thinning changes the spectral law (already visible in m_2).

Key Takeaways

- Random thinning changes the spectral law (already visible in m_2).
- Odd moments vanish \Rightarrow asymptotic symmetry about 0.

Key Takeaways

- Random thinning changes the spectral law (already visible in m_2).
- Odd moments vanish \Rightarrow asymptotic symmetry about 0.
- Even moments are an explicit polynomial in p and d .

Key Takeaways

- Random thinning changes the spectral law (already visible in m_2).
- Odd moments vanish \Rightarrow asymptotic symmetry about 0.
- Even moments are an explicit polynomial in p and d .
- This defines a new family of limiting distributions $\mu_{d,p}$.

References

- B. D. McKay, “The expected eigenvalue distribution of a large regular graph,” *Linear Algebra and its Applications*, vol. 40, pp. 203–216, 1981. doi:10.1016/0024-3795(81)90150-6.
- T. Hasegawa and S. Saito, “A note on the moments of the Kesten distribution,” *Discrete Mathematics*, vol. 344, no. 10, p. 112524, 2021. doi:10.1016/j.disc.2021.112524.

This work funded by the Finnerty Fund, Williams College, and NSF Grant DMS2241623.

Thank You.