
Introduction 2d Bishops And Queens Line-Pieces Hyper-Pieces Conclusion Appendix

Hyper-Bishops, Hyper-Rooks, and
Hyper-Queens: Percentage of Safe

Squares on Higher Dimensional Chess
Boards

Jenna Shuffelton

jms13@williams.edu
Williams College

SMALL REU 2024
Advances in Interdisciplinary Statistics and Combinatorics,

October 12th, 2024

mailto:jms13@williams.edu


Introduction 2d Bishops And Queens Line-Pieces Hyper-Pieces Conclusion Appendix

Chess Problems

Many combinatoric questions related to chess such as the
n-queens problem.

Question
What is the percentage of safe squares on an n × n board with
n rooks placed? What about n bishops? Or queens? What do
these problems look like with higher dimensions?

Miller, Sheng, and Turek found that when placing n rooks on an
n × n board, the percentage of safe squares converged to 1/e2

as n → ∞.
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Notation and Definitions

Use n for sidelength, k for number of dimensions. Have a board
configuration B be attacking pieces placed on a board.

Xx1,...,xk (B) :=

{
1 (x1, . . . , xk ) is safe under B
0 otherwise.

Sn(B) :=
n∑

x1,...,xn=1

Xx1,...,xn(B).

E[Sn] =
n∑

x1,...,xn=1

E[Xx1,...,xn(B)].

µn :=
1
nk

n∑
x1,...,xn=1

E[Xx1,...,xn(B)].
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Higher Dimension Chessboards

Definition
A k -dimensional board has k dimensions with equal integer
side length n. Boards are created by stacking alternating
boards in the (k − 1)-dimensional subspace so that no two
adjacent squares are the same color.

Figure: Depiction of a 5 × 5 × 5 chessboard.
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Combinatoric Preliminaries

Combinatorial Limit
Miller, Sheng, and Turek showed that for a,b ∈ Z, with a
positive,

lim
n→∞

(
n2 − an − b

n

)/(
n2

n

)
=

1
ea .

This represents placing n pieces that each see an + b squares
on an n × n chessboard.

Generalized Combinatorial Limit - Cashman, Cooper,
Marquez, Miller, Shuffelton
For positive integers a, k ,m, c,d and any integer b, with
k > m > k − c, we have

lim
n→∞

(
nk − anm + bnk−c

dnk−m

)/(
nk

dnk−m

)
=

1
eda .
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Interpreting the Combinitorial Limit

Generalized Combinatorial Limit
For positive integers a, k ,m, c,d and any integer b, with
k > m > k − c, we have

lim
n→∞

(
nk − anm + bnk−c

dnk−m

)/(
nk

dnk−m

)
=

1
eda .

nk Total spaces on chess board.
anm − bnk−c Spaces attacked by piece.

dnk−m Pieces placed on board.

Count setups where a space is safe, divide by total
configurations, end with probability the space is safe on a
random configuration.
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Combinatoric Limit Proof

We have two parts. First is

(
nk − anm + bnk−c

dnk−m

)/(
nk

dnk−m

)
=

anm−bnk−c−1∏
i=0

(
1 − dnk−m

nk − i

)

=
anm−bnk−c−1∏

i=0

(
1 − d

nm − di
nm(nk − i)

)
.

Know that limn→∞(1 − d/nm)anm
= 1/eda. Use this to bound

the limit.
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Combinatoric Limit Proof Continued

Take extremes of the product, for

(
1 − d

nm − d(anm − bnk−c − 1)
nm(nk − anm + bnk−c + 1)

)anm−bnk−c

≤
anm−bnk−c−1∏

i=0

(
1 − dnk−m

nk − i

)
≤
(

1 − d
nm

)anm−bnk−c

.

Both upper and lower bounds converge to 1
eda after some

algebra.
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Variance

Theorem: Cashman, Cooper, Marquez, Miller, Shuffelton

Let n, k ,m,d ,a ∈ Z>0. Define µn as before, with dnk−m

attacking pieces placed, each of which attack anm spaces.
Then, the variance of the random variable with mean µn
approaches 0 as n approaches infinity.
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Variance Proof Sketch

Begin with Var(Sn/nk ) = Var(Sn)/n2k .
Split into variance and covariance of the Xi1,...,ik .
Find Var(Xi1,...,ik ) = µn − µ2

n.

Covariance when pieces can’t attack each other cancels
out.
Times that pieces can attack each other is infinitesimal as
n → ∞.
Conclude that Var(Sn/nk ) → 0 as n → ∞ for any board
setup studied.
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Bishop Counting

Harder to work with Bishops than Rooks, as Bishops see a
variable number of squares.

A Bishop at the outer edge sees n squares, while a bishop at
the center sees 2n − 1 squares.

A bishop placed at (3,1) on a 7 × 7 chessboard.



Introduction 2d Bishops And Queens Line-Pieces Hyper-Pieces Conclusion Appendix

Bishops and Rings

To more efficiently count, we define “rings” on the chessboard,
starting with the 0th ring being the center square, and working
outwards. (We assume an odd n for easier calculation).

A bishop placed in the i th ring sees 2n − 2i − 1 squares, and
there are 8r squares in each ring.

Have (n − 1)/2 rings, for

µn =
1
n2 ·

(n2−2n+1
n

)(n2

n

) +

(n−1)/2∑
r=1

4(2r)
n2

(n2−2n+2r+1
n

)(n2

n

) .
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2d Bishop Results

Can assume that n is odd, and the center term is an
infinitesimal part of the final result. Lower terms in # of squares
seen also vanish, for

lim
n→∞

µn = lim
n→∞

(n−1)/2∑
r=1

(
8r
n2

(n2−2n+2r
n

)(n2

n

) )

= lim
n→∞

(n−1)/2∑
r=1

(
8r
n2

2n−2r∏
α=0

n2 − n − α

n2 − α

)
.

Then, we bound the product using extreme values of α, which
lets us find bounds for the sum, giving us

lim
n→∞

µn =
2
e2 ≈ 27.067%.
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Queen Results

Queens can be modeled as combination of Bishops and
Rooks.

Combining the two pieces gives

µn =

(n−1)/2∑
r=0

4(2r)
n2 ·

(n2−4n+2r+1
n

)(n2

n

) .

Evaluating gives a convergence to 2
e4 percent of squares

being safe.
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Line Rooks

Definition

A line-rook attacks any square that shares nk−1 planes with it,
which is equivalent to having all but one coordinate be equal.

Figure: Movement of a line-rook placed at (3,3,3) on a 5 × 5 × 5
chessboard.
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Line-Rooks Limit

Line-Rooks see kn − k + 1 spaces, anywhere on the board.

Result

For nk−1 line-rooks on an n × n board, have

lim
n→∞

(
nk − kn + k − 1

nk−1

)/(
nk

nk−1

)
=

1
ek .

This means the probability a square is safe tends towards 1
ek as

n grows large.

nk−1 line-rooks more than covers a k -dimensional board
with n spaces to a side.
In 3 dimensions, n2/2 enough to cover the board.
Unknown in higher dimensions.
In 3 dimensions, converges to 1

e3/2 .
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Line-Bishops

Definition
In k dimensions, a k -dimensional line-bishop attacks as a
normal bishop inside any plane it resides in, and does not
attack any other spaces.

Figure: Movement of a line-bishop placed at (3,3,5) on a 5 × 5 × 5
chessboard, meaning that r2 = 0 and r3 = 2.
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Line-Bishop Results

Use generalization of rings to count the number of spaces seen:

s := nk !− 2r2 −
k∑

i=3

(i!− (i − 1)!)ri .

Have percentage of safe spaces when placing nk−1 be

µn =
1
nk

n/2∑
rk=0

rk∑
rk−1=0

· · ·
r3∑

r2=0

2k−3(k − 1)k8r2

(nk−(k!− s
n )n

nk−1

)( nk

nk−1

) .

In 3 dimensions,

lim
n→∞

µn =
−1 + 9e2 − 2e3

3e6 ≈ 2.0929%.
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Hyper-Rooks

Definition
A hyper-rook attacks any piece that shares at least one
coordinate with it.

Blah

Sees roughly knk−1 − ank−2 spaces, so with n hyper-rooks
placed, average percentage of safe squares is

µn =

(
nk − knk−1 − ank−2

n

)/(
nk

n

)
.

Converges to 1/ek .
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Hyper-Bishops

Can define a regular Bishop as

(x − i) + (y − j) = 0,
(x − i)− (y − j) = 0.

For higher dimensions, we add the new coordinates, in the
possible diagonal subspaces.

For example in 3 dimensions, a
hyper-bishop at (i , j , k) attacks

(x − i) + (y − j) + (z − k) = 0,
(x − i) + (y − j)− (z − k) = 0,
(x − i)− (y − j) + (z − k) = 0,
(x − i)− (y − j)− (z − k) = 0.
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Hyper-Bishop Properties

Definition
In general, for a k -dimensional chessboard, a hyper-bishop at
(a1,a2, . . . ,ak ) can attack the areas defined by any possible
version of

(x1 − a1)± (x2 − a2)± · · · ± (xk − ak ) = 0.

Only attacks spaces of the same color.
In a 2-dimensional subspace, moves like a 2-dimensional
bishop.
Main weakness is being incredibly difficult to work with.
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Only attacks spaces of the same color.
In a 2-dimensional subspace, moves like a 2-dimensional
bishop.

Main weakness is being incredibly difficult to work with.
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Hyper-Bishop Visualisation

y = 1 y = 2 y = 3 y = 4 y = 5

Figure: Spaces attacked by a hyper-bishop placed at (3,3,3) on a
5 × 5 × 5 board.

y = 1 y = 2 y = 3 y = 4 y = 5

Figure: Spaces attacked by a hyper-bishop placed at (1,1,1) on a
5 × 5 × 5 board.
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Hyper-Bishop Bounds

Lack a good way to count spaces attacked.

For k = 3, we found very bad bounds by looking at the most
extreme cases of spaces seen in the corners and center.

1
e3 ≤ lim

n→∞
µn ≤ 1

e3/2 .

As a result, hyper-queens are similarly difficult, with bounds of

1
e6 ≤ lim

n→∞
µn ≤ 1

e9/2 .
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Future Work

Alternative ways of describing higher dimensional bishops.

Better methods of counting spaces seen by line-bishops
and hyper-bishops, and the associated better bounds and
easier to calculate limits.

Bounds on the number of line-rooks needed to dominate in
k dimensions for k > 3.
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Thank you!
Any questions?
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Line-Bishops Rings

Rings become less nice, as each space sees a (mostly)
unique number of other spaces.

Can still generalize, with our old two dimensional rings
becoming r2.
Now have k − 1 dimensions of rings, from r2 to rk , with the
ri rings existing within a i-dimensional subspace of the
board.
Increasing in ri =⇒ (i − 1)2(i − 2)! fewer spaces attacked.
For bishop in rings (r2, . . . , rk ), sees

nk !− 2r2 −
k∑

i=3

(i!− (i − 1)!)ri

spaces.



Introduction 2d Bishops And Queens Line-Pieces Hyper-Pieces Conclusion Appendix

Line-Bishops Rings

Rings become less nice, as each space sees a (mostly)
unique number of other spaces.
Can still generalize, with our old two dimensional rings
becoming r2.
Now have k − 1 dimensions of rings, from r2 to rk , with the
ri rings existing within a i-dimensional subspace of the
board.

Increasing in ri =⇒ (i − 1)2(i − 2)! fewer spaces attacked.
For bishop in rings (r2, . . . , rk ), sees

nk !− 2r2 −
k∑

i=3

(i!− (i − 1)!)ri

spaces.



Introduction 2d Bishops And Queens Line-Pieces Hyper-Pieces Conclusion Appendix

Line-Bishops Rings

Rings become less nice, as each space sees a (mostly)
unique number of other spaces.
Can still generalize, with our old two dimensional rings
becoming r2.
Now have k − 1 dimensions of rings, from r2 to rk , with the
ri rings existing within a i-dimensional subspace of the
board.
Increasing in ri =⇒ (i − 1)2(i − 2)! fewer spaces attacked.
For bishop in rings (r2, . . . , rk ), sees

nk !− 2r2 −
k∑

i=3

(i!− (i − 1)!)ri

spaces.



Introduction 2d Bishops And Queens Line-Pieces Hyper-Pieces Conclusion Appendix

Line-Bishop Limit

To save space, we notate

s := nk !− 2r2 −
k∑

i=3

(i!− (i − 1)!)ri .

This lets us define the percentage of safe spaces when placing
nk−1 line-bishops as

µn =
1
nk

n/2∑
rk=0

rk∑
rk−1=0

· · ·
r3∑

r2=0

2k−3(k − 1)k8r2

(nk−(k!− s
n )n

nk−1

)( nk

nk−1

) .

Limit as n → ∞ can be evaluated, but have not found a
simplification for arbitrary k .
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Line-Bishop Safe Spaces, k = 3

When k = 3, we find that the percentage of safe spaces with
nk−1 line-bishops is

lim
n→∞

µn = lim
n→∞

1
n3

n/2∑
r3=0

r3∑
r2=0

48r2

6n−4r3−2r2∏
α=0

(
1 − n2

n3 − α

)
.

Evaluating, have

lim
n→∞

µn =
−1 + 9e2 − 2e3

3e6 ≈ 2.0929%.

Extremely messy expression. Does not improve for higher
dimensions.
Lower percentage than line-rooks.
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Line-Queens

Same approach as regular queens, of blending bishops
and rooks.

As a result, just as messy as line-bishops, just with an
extra kn − k spaces seen from the rook movement.
For k = 3, have

lim
n→∞

1
n3

n/2∑
r3=1

r3∑
r2=1

48r2

9n−4r3−2r∏
α=0

(
1 − n2

n3 − α

)

=
−1 + 9e2 − 2e3

3e9 ≈ 0.1042%.
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