KOD KARD KED KE YA GAR

Hyper-Bishops, Hyper-Rooks, and Hyper-Queens: Percentage of Safe Squares on Higher Dimensional Chess Boards

Jenna Shuffelton

jms13@williams.edu Williams College

SMALL REU 2024

Advances in Interdisciplinary Statistics and Combinatorics, October 12th, 2024

K ロ ▶ K @ ▶ K 할 > K 할 > | 할 > 9 Q Q*

Question

What is the percentage of safe squares on an $n \times n$ board with *n* rooks placed?

KEEK (FER KERK EN 1990)

Question

What is the percentage of safe squares on an $n \times n$ board with *n* rooks placed? What about *n* bishops? Or queens?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q Q*

Question

What is the percentage of safe squares on an $n \times n$ board with *n* rooks placed? What about *n* bishops? Or queens? What do these problems look like with higher dimensions?

Chess Problems

Many combinatoric questions related to chess such as the *n*-queens problem.

Question

What is the percentage of safe squares on an $n \times n$ board with *n* rooks placed? What about *n* bishops? Or queens? What do these problems look like with higher dimensions?

Miller, Sheng, and Turek found that when placing *n* rooks on an $n \times n$ board, the percentage of safe squares converged to $1/e^2$ as $n \to \infty$.

Use *n* for sidelength, *k* for number of dimensions. Have a board configuration B be attacking pieces placed on a board.

K ロ > K @ > K 할 > K 할 > 1 할 > 9 Q Q*

Notation and Definitions

Use *n* for sidelength, *k* for number of dimensions. Have a board configuration β be attacking pieces placed on a board.

$$
X_{x_1,\ldots,x_k}(\mathcal{B}) \ := \ \begin{cases} 1 & (x_1,\ldots,x_k) \text{ is safe under } \mathcal{B} \\ 0 & \text{otherwise.} \end{cases}
$$

Notation and Definitions

Use *n* for sidelength, *k* for number of dimensions. Have a board configuration β be attacking pieces placed on a board.

$$
X_{x_1,\ldots,x_k}(\mathcal{B}) \ := \ \begin{cases} 1 & (x_1,\ldots,x_k) \text{ is safe under } \mathcal{B} \\ 0 & \text{otherwise.} \end{cases}
$$

$$
S_n(\mathcal{B}) := \sum_{x_1,...,x_n=1}^n X_{x_1,...,x_n}(\mathcal{B}).
$$

$$
\mathbb{E}[S_n] = \sum_{x_1,...,x_n=1}^n \mathbb{E}[X_{x_1,...,x_n}(\mathcal{B})].
$$

$$
\mu_n := \frac{1}{n^k} \sum_{x_1,...,x_n=1}^n \mathbb{E}[X_{x_1,...,x_n}(\mathcal{B})].
$$

Higher Dimension Chessboards

Definition

A *k*-dimensional board has *k* dimensions with equal integer side length *n*. Boards are created by stacking alternating boards in the $(k - 1)$ -dimensional subspace so that no two adjacent squares are the same color.

Figure: Depiction of a $5 \times 5 \times 5$ chessboard.

KOD KARD KED KE YA GAR

Combinatoric Preliminaries

Combinatorial Limit

Miller, Sheng, and Turek showed that for $a, b \in \mathbb{Z}$, with a positive,

$$
\lim_{n\to\infty}\binom{n^2-an-b}{n}\bigg/\binom{n^2}{n}=\frac{1}{e^a}.
$$

Combinatoric Preliminaries

Combinatorial Limit

Miller, Sheng, and Turek showed that for $a, b \in \mathbb{Z}$, with a positive,

$$
\lim_{n\to\infty}\binom{n^2-an-b}{n}\bigg/\binom{n^2}{n}=\frac{1}{e^a}.
$$

This represents placing *n* pieces that each see *an* + *b* squares on an $n \times n$ chessboard.

A O A A GRAND A BANDA A GRANDA

Combinatoric Preliminaries

Combinatorial Limit

Miller, Sheng, and Turek showed that for $a, b \in \mathbb{Z}$, with a positive,

$$
\lim_{n\to\infty}\binom{n^2-an-b}{n}\bigg/\binom{n^2}{n}=\frac{1}{e^a}.
$$

This represents placing *n* pieces that each see *an* + *b* squares on an *n* × *n* chessboard.

Generalized Combinatorial Limit - Cashman, Cooper, Marquez, Miller, Shuffelton

For positive integers *a*, *k*, *m*, *c*, *d* and any integer *b*, with $k > m > k - c$, we have

$$
\lim_{n\to\infty}\binom{n^k-an^m+bn^{k-c}}{dn^{k-m}}\bigg/\binom{n^k}{dn^{k-m}}=\frac{1}{e^{da}}.
$$

Generalized Combinatorial Limit

For positive integers *a*, *k*, *m*, *c*, *d* and any integer *b*, with $k > m > k - c$, we have

$$
\lim_{n\to\infty}\binom{n^k-an^m+bn^{k-c}}{dn^{k-m}}\bigg/\binom{n^k}{dn^{k-m}}=\frac{1}{e^{da}}.
$$

Count setups where a space is safe, divide by total configurations, end with probability the space is safe on a random configuration.

Combinatoric Limit Proof

We have two parts. First is

$$
\binom{n^{k} - an^{m} + bn^{k-c}}{dn^{k-m}} / \binom{n^{k}}{dn^{k-m}} = \prod_{i=0}^{an^{m} - bn^{k-c-1}} \left(1 - \frac{dn^{k-m}}{n^{k} - i}\right)
$$

$$
= \prod_{i=0}^{an^{m} - bn^{k-c-1}} \left(1 - \frac{d}{n^{m}} - \frac{di}{n^{m}(n^{k} - i)}\right).
$$

K ロ ▶ K @ ▶ K 할 > K 할 > | 할 > 9 Q Q*

Combinatoric Limit Proof

We have two parts. First is

$$
\binom{n^{k} - an^{m} + bn^{k-c}}{dn^{k-m}} / \binom{n^{k}}{dn^{k-m}} = \prod_{i=0}^{an^{m} - bn^{k-c-1}} \left(1 - \frac{dn^{k-m}}{n^{k} - i}\right)
$$

$$
= \prod_{i=0}^{an^{m} - bn^{k-c-1}} \left(1 - \frac{d}{n^{m}} - \frac{di}{n^{m}(n^{k} - i)}\right).
$$

Know that lim $_{n\to\infty}(1-d/n^m)^{an^m}=1/e^{da}.$ Use this to bound the limit.

KEIKARIKEIKEI DRA

Combinatoric Limit Proof Continued

Take extremes of the product, for

$$
\left(1 - \frac{d}{n^m} - \frac{d(an^m - bn^{k-c} - 1)}{n^m(n^k - an^m + bn^{k-c} + 1)}\right)^{an^m - bn^{k-c}}
$$
\n
$$
\leq \prod_{i=0}^{an^m - bn^{k-c} - 1} \left(1 - \frac{dn^{k-m}}{n^k - i}\right) \leq \left(1 - \frac{d}{n^m}\right)^{an^m - bn^{k-c}}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > | 할 > 9 Q Q*

.

Combinatoric Limit Proof Continued

Take extremes of the product, for

$$
\left(1 - \frac{d}{n^m} - \frac{d(an^m - bn^{k-c} - 1)}{n^m(n^k - an^m + bn^{k-c} + 1)}\right)^{an^m - bn^{k-c}}
$$
\n
$$
\leq \prod_{i=0}^{an^m - bn^{k-c} - 1} \left(1 - \frac{dn^{k-m}}{n^k - i}\right) \leq \left(1 - \frac{d}{n^m}\right)^{an^m - bn^{k-c}}
$$

.

K ロ ▶ K @ ▶ K 할 > K 할 > | 할 > 9 Q Q*

Both upper and lower bounds converge to $\frac{1}{e^{da}}$ after some algebra.

Theorem: Cashman, Cooper, Marquez, Miller, Shuffelton

Let *n*, *k*, *m*, *d*, *a* ∈ $\mathbb{Z}_{>0}$. Define μ_n as before, with *dn*^{*k*−*m*} attacking pieces placed, each of which attack *an^m* spaces. Then, the variance of the random variable with mean μ_n approaches 0 as *n* approaches infinity.

KELK (@ K K E K K E K G K O K OK K

Kロト K個 K K ミト K ミト - ミー の R (M)

- Begin with $\mathsf{Var}(S_n/n^k) = \mathsf{Var}(S_n)/n^{2k}$.
- Split into variance and covariance of the $X_{i_1,...,i_k}$.

• Find
$$
Var(X_{i_1,\ldots,i_k}) = \mu_n - \mu_n^2
$$
.

- Begin with $\mathsf{Var}(S_n/n^k) = \mathsf{Var}(S_n)/n^{2k}$.
- Split into variance and covariance of the $X_{i_1,...,i_k}$.

• Find
$$
Var(X_{i_1,\ldots,i_k}) = \mu_n - \mu_n^2
$$
.

Covariance when pieces can't attack each other cancels out.

4 ロ ト イ ヨ ト ィ ヨ ト ィ ヨ ト - ヨ - イ ワ 9 Q Q

- Begin with $\mathsf{Var}(S_n/n^k) = \mathsf{Var}(S_n)/n^{2k}$.
- Split into variance and covariance of the $X_{i_1,...,i_k}$.

• Find
$$
Var(X_{i_1,\ldots,i_k}) = \mu_n - \mu_n^2
$$
.

- Covariance when pieces can't attack each other cancels out.
- Times that pieces can attack each other is infinitesimal as $n \rightarrow \infty$.

- Begin with $\mathsf{Var}(S_n/n^k) = \mathsf{Var}(S_n)/n^{2k}$.
- Split into variance and covariance of the $X_{i_1,...,i_k}$.

• Find
$$
Var(X_{i_1,\ldots,i_k}) = \mu_n - \mu_n^2
$$
.

- Covariance when pieces can't attack each other cancels out.
- Times that pieces can attack each other is infinitesimal as $n \rightarrow \infty$.

4 ロ ト イ ヨ ト ィ ヨ ト ィ ヨ ト - ヨ - イ ワ 9 Q Q

Conclude that $\textsf{Var}(\mathcal{S}_n / n^k) \to 0$ as $n \to \infty$ for any board setup studied.

Harder to work with Bishops than Rooks, as Bishops see a variable number of squares.

A Bishop at the outer edge sees *n* squares, while a bishop at the center sees $2n - 1$ squares.

A bishop placed at $(3, 1)$ on a 7×7 chessboard.

KEEK (FER KERK EN 1990)

To more efficiently count, we define "rings" on the chessboard, starting with the $0th$ ring being the center square, and working outwards. (We assume an odd *n* for easier calculation).

To more efficiently count, we define "rings" on the chessboard, starting with the $0th$ ring being the center square, and working outwards. (We assume an odd *n* for easier calculation).

A bishop placed in the *i*th ring sees 2*n* − 2*i* − 1 squares, and there are 8*r* squares in each ring.

Have $(n - 1)/2$ rings, for

$$
\mu_n = \frac{1}{n^2} \cdot \frac{\binom{n^2-2n+1}{n}}{\binom{n^2}{n}} + \sum_{r=1}^{(n-1)/2} \frac{4(2r)}{n^2} \frac{\binom{n^2-2n+2r+1}{n}}{\binom{n^2}{n}}.
$$

KOD KARD KED KE YA GAR

2d Bishop Results

Can assume that *n* is odd, and the center term is an infinitesimal part of the final result. Lower terms in # of squares seen also vanish, for

$$
\lim_{n \to \infty} \mu_n = \lim_{n \to \infty} \sum_{r=1}^{(n-1)/2} \left(\frac{8r}{n^2} \frac{\binom{n^2 - 2n + 2r}{n}}{\binom{n^2}{n}} \right)
$$

=
$$
\lim_{n \to \infty} \sum_{r=1}^{(n-1)/2} \left(\frac{8r}{n^2} \prod_{\alpha=0}^{2n - 2r} \frac{n^2 - n - \alpha}{n^2 - \alpha} \right).
$$

2d Bishop Results

Can assume that *n* is odd, and the center term is an infinitesimal part of the final result. Lower terms in # of squares seen also vanish, for

$$
\lim_{n \to \infty} \mu_n = \lim_{n \to \infty} \sum_{r=1}^{(n-1)/2} \left(\frac{8r}{n^2} \frac{\binom{n^2 - 2n + 2r}{n}}{\binom{n^2}{n}} \right)
$$

=
$$
\lim_{n \to \infty} \sum_{r=1}^{(n-1)/2} \left(\frac{8r}{n^2} \prod_{\alpha=0}^{2n - 2r} \frac{n^2 - n - \alpha}{n^2 - \alpha} \right).
$$

Then, we bound the product using extreme values of α , which lets us find bounds for the sum, giving us

$$
\lim_{n\to\infty}\mu_n = \frac{2}{e^2} \approx 27.067\%.
$$

A O A A GRAND A BANDA A GRANDA

Queens can be modeled as combination of Bishops and Rooks.

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ - 코 - Y 9 Q 0*

- Queens can be modeled as combination of Bishops and Rooks.
- Combining the two pieces gives

$$
\mu_n = \sum_{r=0}^{(n-1)/2} \frac{4(2r)}{n^2} \cdot \frac{\binom{n^2-4n+2r+1}{n}}{\binom{n^2}{n}}.
$$

Evaluating gives a convergence to $\frac{2}{e^4}$ percent of squares being safe.

K ロ ▶ K (日) X X B → K B → 2 B → 9 Q (9)

Definition

A line-rook attacks any square that shares *n ^k*−¹ planes with it, which is equivalent to having all but one coordinate be equal.

4 ロ ト イ ヨ ト ィ ヨ ト ィ ヨ ト - ヨ - イ ワ 9 Q Q

Definition

A line-rook attacks any square that shares *n ^k*−¹ planes with it, which is equivalent to having all but one coordinate be equal.

Figure: Movement of a line-rook placed at $(3, 3, 3)$ on a $5 \times 5 \times 5$ chessboard.

KOD KARD KED KE YA GAR

Line-Rooks see *kn* − *k* + 1 spaces, anywhere on the board.

Line-Rooks Limit

Line-Rooks see $kn - k + 1$ spaces, anywhere on the board.

Result

For *n k*−1 line-rooks on an *n* × *n* board, have

$$
\lim_{n\to\infty}\binom{n^k-kn+k-1}{n^{k-1}}\bigg/\binom{n^k}{n^{k-1}}=\frac{1}{e^k}.
$$

This means the probability a square is safe tends towards $\frac{1}{e^K}$ as *n* grows large.

KEEK (FER KERK EN 1990)

Line-Rooks Limit

Line-Rooks see $kn - k + 1$ spaces, anywhere on the board.

Result

For *n k*−1 line-rooks on an *n* × *n* board, have

$$
\lim_{n\to\infty}\binom{n^k-kn+k-1}{n^{k-1}}\bigg/\binom{n^k}{n^{k-1}}=\frac{1}{e^k}.
$$

This means the probability a square is safe tends towards $\frac{1}{e^K}$ as *n* grows large.

n k−1 line-rooks more than covers a *k*-dimensional board with *n* spaces to a side.

KEEK (FER KERK EN 1990)

Line-Rooks Limit

Line-Rooks see $kn - k + 1$ spaces, anywhere on the board.

Result

For *n k*−1 line-rooks on an *n* × *n* board, have

$$
\lim_{n\to\infty}\binom{n^k-kn+k-1}{n^{k-1}}\bigg/\binom{n^k}{n^{k-1}}=\frac{1}{e^k}.
$$

This means the probability a square is safe tends towards $\frac{1}{e^K}$ as *n* grows large.

- *n k*−1 line-rooks more than covers a *k*-dimensional board with *n* spaces to a side.
- In 3 dimensions, $n^2/2$ enough to cover the board.
- Unknown in higher dimensions.

Line-Rooks Limit

Line-Rooks see $kn - k + 1$ spaces, anywhere on the board.

Result

For *n k*−1 line-rooks on an *n* × *n* board, have

$$
\lim_{n\to\infty}\binom{n^k-kn+k-1}{n^{k-1}}\bigg/\binom{n^k}{n^{k-1}}=\frac{1}{e^k}.
$$

This means the probability a square is safe tends towards $\frac{1}{e^K}$ as *n* grows large.

n k−1 line-rooks more than covers a *k*-dimensional board with *n* spaces to a side.

।
KELKARIK ELKELKARIK ELK

- In 3 dimensions, $n^2/2$ enough to cover the board.
- Unknown in higher dimensions.
- In 3 dimensions, converges to $\frac{1}{e^{3/2}}$.

Definition

In *k* dimensions, a *k*-dimensional line-bishop attacks as a normal bishop inside any plane it resides in, and does not attack any other spaces.

 $\mathsf{L} \square \rightarrow \mathsf{L} \mathsf{L} \mathsf{L} \rightarrow \mathsf{L} \mathsf{L} \rightarrow \mathsf{L} \mathsf{L} \mathsf{$

 OQ

Definition

In *k* dimensions, a *k*-dimensional line-bishop attacks as a normal bishop inside any plane it resides in, and does not attack any other spaces.

Figure: Movement of a line-bishop placed at $(3, 3, 5)$ on a $5 \times 5 \times 5$ chessboard, meaning that $r_2 = 0$ and $r_3 = 2$.

KEEK (FER KERK EN 1990)

[Introduction](#page-1-0) [2d Bishops And Queens](#page-23-0) [Line-Pieces](#page-30-0) [Hyper-Pieces](#page-42-0) [Conclusion](#page-54-0) [Appendix](#page-58-0) **Line-Bishop Results**

Use generalization of rings to count the number of spaces seen:

$$
s := nk! - 2r_2 - \sum_{i=3}^k (i! - (i-1)!)r_i.
$$

[Introduction](#page-1-0) [2d Bishops And Queens](#page-23-0) [Line-Pieces](#page-30-0) [Hyper-Pieces](#page-42-0) [Conclusion](#page-54-0) [Appendix](#page-58-0) **Line-Bishop Results**

Use generalization of rings to count the number of spaces seen:

$$
s := nk! - 2r_2 - \sum_{i=3}^k (i! - (i-1)!)r_i.
$$

Have percentage of safe spaces when placing *n ^k*−¹ be

$$
\mu_n=\frac{1}{n^k}\sum_{r_k=0}^{n/2}\sum_{r_{k-1}=0}^{r_k}\cdots\sum_{r_2=0}^{r_3}2^{k-3}(k-1)k8r_2\frac{\binom{n^k-(k!-\frac{s}{n})n}{n^{k-1}}}{\binom{n^k}{n^{k-1}}}.
$$

[Introduction](#page-1-0) [2d Bishops And Queens](#page-23-0) [Line-Pieces](#page-30-0) [Hyper-Pieces](#page-42-0) [Conclusion](#page-54-0) [Appendix](#page-58-0) **Line-Bishop Results**

Use generalization of rings to count the number of spaces seen:

$$
s := nk! - 2r_2 - \sum_{i=3}^k (i! - (i-1)!)r_i.
$$

Have percentage of safe spaces when placing *n ^k*−¹ be

$$
\mu_n=\frac{1}{n^k}\sum_{r_k=0}^{n/2}\sum_{r_{k-1}=0}^{r_k}\cdots\sum_{r_2=0}^{r_3}2^{k-3}(k-1)k8r_2\frac{\binom{n^k-(k!-\frac{s}{n})n}{n^{k-1}}}{\binom{n^k}{n^{k-1}}}.
$$

In 3 dimensions,

$$
\lim_{n\to\infty}\mu_n\,=\,\frac{-1+9e^2-2e^3}{3e^6}\,\approx\,2.0929\%.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > | 할 > 9 Q Q*

Definition

A hyper-rook attacks any piece that shares at least one coordinate with it.

Definition

A hyper-rook attacks any piece that shares at least one coordinate with it.

Sees roughly *knk*−¹ − *ank*−² spaces, so with *n* hyper-rooks placed, average percentage of safe squares is

$$
\mu_n = \binom{n^k - kn^{k-1} - an^{k-2}}{n} / \binom{n^k}{n}.
$$

Converges to 1/*e k* .

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q Q*

Can define a regular Bishop as

$$
(x - i) + (y - j) = 0,(x - i) - (y - j) = 0.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > | 할 > 9 Q Q*

For higher dimensions, we add the new coordinates, in the possible diagonal subspaces.

Can define a regular Bishop as

$$
(x - i) + (y - j) = 0,(x - i) - (y - j) = 0.
$$

For higher dimensions, we add the new coordinates, in the possible diagonal subspaces. For example in 3 dimensions, a hyper-bishop at (*i*, *j*, *k*) attacks

$$
(x - i) + (y - j) + (z - k) = 0,
$$

\n
$$
(x - i) + (y - j) - (z - k) = 0,
$$

\n
$$
(x - i) - (y - j) + (z - k) = 0,
$$

\n
$$
(x - i) - (y - j) - (z - k) = 0.
$$

KEEK (FER KERK EN 1990)

Definition

In general, for a *k*-dimensional chessboard, a hyper-bishop at (a_1, a_2, \ldots, a_k) can attack the areas defined by any possible version of

$$
(x_1-a_1)\pm (x_2-a_2)\pm \cdots \pm (x_k-a_k) = 0.
$$

 $\mathsf{L} \square \rightarrow \mathsf{L} \mathsf{L} \mathsf{L} \rightarrow \mathsf{L} \mathsf{L} \rightarrow \mathsf{L} \mathsf{L} \mathsf{$

 OQ

Definition

In general, for a *k*-dimensional chessboard, a hyper-bishop at (a_1, a_2, \ldots, a_k) can attack the areas defined by any possible version of

$$
(x_1-a_1)\pm (x_2-a_2)\pm \cdots \pm (x_k-a_k) = 0.
$$

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ 《 경 ...

 OQ

• Only attacks spaces of the same color.

Definition

In general, for a *k*-dimensional chessboard, a hyper-bishop at (a_1, a_2, \ldots, a_k) can attack the areas defined by any possible version of

$$
(x_1-a_1)\pm (x_2-a_2)\pm \cdots \pm (x_k-a_k) = 0.
$$

- Only attacks spaces of the same color.
- In a 2-dimensional subspace, moves like a 2-dimensional bishop.

KEEK (FER KERK EN 1990)

Definition

In general, for a *k*-dimensional chessboard, a hyper-bishop at (a_1, a_2, \ldots, a_k) can attack the areas defined by any possible version of

$$
(x_1-a_1)\pm (x_2-a_2)\pm \cdots \pm (x_k-a_k) = 0.
$$

- Only attacks spaces of the same color.
- In a 2-dimensional subspace, moves like a 2-dimensional bishop.
- Main weakness is being incredibly difficult to work with.

[Introduction](#page-1-0) [2d Bishops And Queens](#page-23-0) [Line-Pieces](#page-30-0) [Hyper-Pieces](#page-42-0) [Conclusion](#page-54-0) [Appendix](#page-58-0) **Hyper-Bishop Visualisation**

Figure: Spaces attacked by a hyper-bishop placed at (3, 3, 3) on a $5 \times 5 \times 5$ board.

Figure: Spaces attacked by a hyper-bishop placed at (1, 1, 1) on a $5 \times 5 \times 5$ board.

Lack a good way to count spaces attacked.

Lack a good way to count spaces attacked.

For $k = 3$, we found very bad bounds by looking at the most extreme cases of spaces seen in the corners and center.

$$
\frac{1}{e^3} \ \leq \ \lim_{n \to \infty} \mu_n \ \leq \ \frac{1}{e^{3/2}}.
$$

KEEK (FER KERK EN 1990)

Lack a good way to count spaces attacked.

For $k = 3$, we found very bad bounds by looking at the most extreme cases of spaces seen in the corners and center.

$$
\frac{1}{e^3} \ \leq \ \lim_{n \to \infty} \mu_n \ \leq \ \frac{1}{e^{3/2}}.
$$

As a result, hyper-queens are similarly difficult, with bounds of

$$
\frac{1}{e^6} \leq \lim_{n \to \infty} \mu_n \leq \frac{1}{e^{9/2}}.
$$

KEEK (FER KERK EN 1990)

- Alternative ways of describing higher dimensional bishops.
- Better methods of counting spaces seen by line-bishops and hyper-bishops, and the associated better bounds and easier to calculate limits.
- Bounds on the number of line-rooks needed to dominate in *k* dimensions for $k > 3$.

This work was done as part of the SMALL 2024 REU Program.

I thank my coauthors, Caroline Cashman, Joseph Cooper, and Raul Marquez, as well as our advisor, Prof. Steven J. Miller.

We appreciate the support of Williams College, as well as funding from NSF grant number DMS-2241623, The William & Mary Charles Center, Emmanuel College Cambridge, and the Finnerty Fund.

KOD KARD KED KE YA GAR

Thank you!

Any questions?

- Thomas F. Banchoff. Beyond the Third Dimension. Third. W H Freeman & Co, 1996.
- Max Bezzel. "Proposal of 8-queens problem". In: Berliner Schachzeitung 3.363 (1848), p. 1848.
- Jordan Bell and Brett Stevens. "A survey of known results and research areas for n-queens". In: Discrete Mathematics 309.1 (2009), pp. 1-31. ISSN: 0012-365X. DOI: [https://doi.org/10.1016/j.disc.2007.12.043.](https://doi.org/10.1016/j.disc.2007.12.043) URL: [https://www.sciencedirect.com/science/article/pii/S0012365X07010394.](https://www.sciencedirect.com/science/article/pii/S0012365X07010394)
- Arthur Engel. Problem-Solving Strategies. New York: Springer, 1997, pp. 44-45.
- Bernard Lemaire and Pavel Vitushinkiy. "Placing *n* non dominating queens on the $n \times n$ chessboard. Part I". In: French Federation of Mathematical Games (2011).
- Steven J. Miller, Haoyu Sheng, and Daniel Turek. "When Rooks Miss: Probability through Chess". In: The College Mathematics Journal 52.2 (2021), pp. 82–93. DOI: [https://doi.org/10.1080/07468342.2021.1886774.](https://doi.org/10.1080/07468342.2021.1886774)
- Miodrag Petkovic. Mathematics and Chess. Dover Recreational Math, 2011.
- John J. Watkins. Across the Board: The Mathematics of Chessboard Problems. Princeton University Press, 2004.

KOD KARD KED KE YA GAR

• Rings become less nice, as each space sees a (mostly) unique number of other spaces.

K ロ ▶ K @ ▶ K 할 > K 할 > | 할 > 9 Q Q*

- Rings become less nice, as each space sees a (mostly) unique number of other spaces.
- Can still generalize, with our old two dimensional rings becoming r_2 .
- Now have $k 1$ dimensions of rings, from r_2 to r_k , with the *ri* rings existing within a *i*-dimensional subspace of the board.

KEEK (FER KERK EN 1990)

- Rings become less nice, as each space sees a (mostly) unique number of other spaces.
- Can still generalize, with our old two dimensional rings becoming r_2 .
- Now have $k 1$ dimensions of rings, from r_2 to r_k , with the *ri* rings existing within a *i*-dimensional subspace of the board.
- Increasing in $r_i \implies (i-1)^2(i-2)!$ fewer spaces attacked.
- For bishop in rings (r_2, \ldots, r_k) , sees

$$
nk! - 2r_2 - \sum_{i=3}^k (i! - (i-1)!)r_i
$$

spaces.

[Introduction](#page-1-0) [2d Bishops And Queens](#page-23-0) [Line-Pieces](#page-30-0) [Hyper-Pieces](#page-42-0) [Conclusion](#page-54-0) [Appendix](#page-58-0)
0000000000 0000 0000 0000 0000 0000 **Line-Bishop Limit**

To save space, we notate

$$
s := nk! - 2r_2 - \sum_{i=3}^k (i! - (i-1)!)r_i.
$$

イロトイ団トイミトイモト、モー

 OQ

To save space, we notate

$$
s := nk! - 2r_2 - \sum_{i=3}^k (i! - (i-1)!)r_i.
$$

This lets us define the percentage of safe spaces when placing *n k*−1 line-bishops as

$$
\mu_n=\frac{1}{n^k}\sum_{r_k=0}^{n/2}\sum_{r_{k-1}=0}^{r_k}\cdots\sum_{r_2=0}^{r_3}2^{k-3}(k-1)k8r_2\frac{\binom{n^k-(k!-\frac{s}{n})n}{n^{k-1}}}{\binom{n^k}{n^{k-1}}}.
$$

To save space, we notate

$$
s := nk! - 2r_2 - \sum_{i=3}^k (i! - (i-1)!)r_i.
$$

This lets us define the percentage of safe spaces when placing *n k*−1 line-bishops as

$$
\mu_n=\frac{1}{n^k}\sum_{r_k=0}^{n/2}\sum_{r_{k-1}=0}^{r_k}\cdots\sum_{r_2=0}^{r_3}2^{k-3}(k-1)k8r_2\frac{\binom{n^k-(k!-\frac{s}{n})n}{n^{k-1}}}{\binom{n^k}{n^{k-1}}}.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > | 할 > 9 Q Q*

Limit as $n \to \infty$ can be evaluated, but have not found a simplification for arbitrary *k*.

Line-Bishop Safe Spaces, $k = 3$

When $k = 3$, we find that the percentage of safe spaces with *n k*−1 line-bishops is

$$
\lim_{n\to\infty}\mu_n\;=\;\lim_{n\to\infty}\frac{1}{n^3}\sum_{r_3=0}^{n/2}\sum_{r_2=0}^{r_3}48r_2\prod_{\alpha=0}^{6n-4r_3-2r_2}\left(1-\frac{n^2}{n^3-\alpha}\right).
$$

Line-Bishop Safe Spaces, $k = 3$

When $k = 3$, we find that the percentage of safe spaces with *n k*−1 line-bishops is

$$
\lim_{n\to\infty}\mu_n\;=\;\lim_{n\to\infty}\frac{1}{n^3}\sum_{r_3=0}^{n/2}\sum_{r_2=0}^{r_3}48r_2\prod_{\alpha=0}^{6n-4r_3-2r_2}\left(1-\frac{n^2}{n^3-\alpha}\right).
$$

Evaluating, have

$$
\lim_{n\to\infty}\mu_n\ =\ \frac{-1+9e^2-2e^3}{3e^6}\ \approx\ 2.0929\%.
$$

Line-Bishop Safe Spaces, $k = 3$

When $k = 3$, we find that the percentage of safe spaces with *n k*−1 line-bishops is

$$
\lim_{n\to\infty}\mu_n\;=\;\lim_{n\to\infty}\frac{1}{n^3}\sum_{r_3=0}^{n/2}\sum_{r_2=0}^{r_3}48r_2\prod_{\alpha=0}^{6n-4r_3-2r_2}\left(1-\frac{n^2}{n^3-\alpha}\right).
$$

Evaluating, have

$$
\lim_{n\to\infty}\mu_n\ =\ \frac{-1+9e^2-2e^3}{3e^6}\ \approx\ 2.0929\%.
$$

Extremely messy expression. Does not improve for higher dimensions.

A O A A GRAND A BANDA A GRANDA

Line-Bishop Safe Spaces, $k = 3$

When $k = 3$, we find that the percentage of safe spaces with *n k*−1 line-bishops is

$$
\lim_{n\to\infty}\mu_n\;=\;\lim_{n\to\infty}\frac{1}{n^3}\sum_{r_3=0}^{n/2}\sum_{r_2=0}^{r_3}48r_2\prod_{\alpha=0}^{6n-4r_3-2r_2}\left(1-\frac{n^2}{n^3-\alpha}\right).
$$

Evaluating, have

$$
\lim_{n\to\infty}\mu_n\ =\ \frac{-1+9e^2-2e^3}{3e^6}\ \approx\ 2.0929\%.
$$

Extremely messy expression. Does not improve for higher dimensions.

A O A A GRAND A BANDA A GRANDA

• Lower percentage than line-rooks.

• Same approach as regular queens, of blending bishops and rooks.

K ロ > K 리 > K 코 > K 코 > - 코 - K 9 Q Q +

- Same approach as regular queens, of blending bishops and rooks.
- As a result, just as messy as line-bishops, just with an extra $kn - k$ spaces seen from the rook movement.

- Same approach as regular queens, of blending bishops and rooks.
- As a result, just as messy as line-bishops, just with an extra $kn - k$ spaces seen from the rook movement.
- For $k = 3$, have

$$
\lim_{n \to \infty} \frac{1}{n^3} \sum_{r_3=1}^{n/2} \sum_{r_2=1}^{r_3} 48r_2 \prod_{\alpha=0}^{9n-4r_3-2r} \left(1 - \frac{n^2}{n^3 - \alpha}\right)
$$

$$
= \frac{-1 + 9e^2 - 2e^3}{3e^9} \approx 0.1042\%.
$$