Line-Pieces

Hyper-Pieces

Conclusion

Appendix 0000

Hyper-Bishops, Hyper-Rooks, and Hyper-Queens: Percentage of Safe Squares on Higher Dimensional Chess Boards

Jenna Shuffelton

jms13@williams.edu Williams College

SMALL REU 2024

Advances in Interdisciplinary Statistics and Combinatorics, October 12th, 2024

Introduction •oooooooo	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix 0000
Chess F	Problems				

Introduction ●○○○○○○○○	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix 0000
Chess F	Problems				

Question

What is the percentage of safe squares on an $n \times n$ board with n rooks placed?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction ●00000000	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix 0000
Chess F	Problems				

Question

What is the percentage of safe squares on an $n \times n$ board with n rooks placed? What about n bishops? Or queens?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction ●○○○○○○○○	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix 0000
Chess F	Problems				

Question

What is the percentage of safe squares on an $n \times n$ board with n rooks placed? What about n bishops? Or queens? What do these problems look like with higher dimensions?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction ●00000000	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix 0000
Chess F	Problems				

Question

What is the percentage of safe squares on an $n \times n$ board with n rooks placed? What about n bishops? Or queens? What do these problems look like with higher dimensions?

Miller, Sheng, and Turek found that when placing *n* rooks on an $n \times n$ board, the percentage of safe squares converged to $1/e^2$ as $n \to \infty$.

Notation and Definitions							
Introduction 2d Bishops And Queens Line-Pieces Hyper-Pieces	Conclusion	Appendix 0000					

Notation and Definitions

Use *n* for sidelength, *k* for number of dimensions. Have a board configuration \mathcal{B} be attacking pieces placed on a board.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Notation and Definitions

Use *n* for sidelength, *k* for number of dimensions. Have a board configuration \mathcal{B} be attacking pieces placed on a board.

$$X_{x_1,\ldots,x_k}(\mathcal{B}) \ := \ egin{cases} 1 & (x_1,\ldots,x_k) ext{ is safe under } \mathcal{B} \ 0 & ext{ otherwise.} \end{cases}$$

▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト つくぐ

Notation and Definitions

Use *n* for sidelength, *k* for number of dimensions. Have a board configuration \mathcal{B} be attacking pieces placed on a board.

$$X_{x_1,...,x_k}(\mathcal{B}) \ := \ egin{cases} 1 & (x_1,\ldots,x_k) ext{ is safe under } \mathcal{B} \ 0 & ext{ otherwise.} \end{cases}$$

$$S_n(\mathcal{B}) := \sum_{x_1,\dots,x_n=1}^n X_{x_1,\dots,x_n}(\mathcal{B}).$$
$$\mathbb{E}[S_n] = \sum_{x_1,\dots,x_n=1}^n \mathbb{E}[X_{x_1,\dots,x_n}(\mathcal{B})].$$
$$\mu_n := \frac{1}{n^k} \sum_{x_1,\dots,x_n=1}^n \mathbb{E}[X_{x_1,\dots,x_n}(\mathcal{B})].$$

▲□▶▲□▶▲□▶▲□▶ □ ● ○○○

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix 0000
Linhard		haabaa	welle.		

Higher Dimension Chessboards

Definition

A *k*-dimensional board has *k* dimensions with equal integer side length *n*. Boards are created by stacking alternating boards in the (k - 1)-dimensional subspace so that no two adjacent squares are the same color.

Figure: Depiction of a $5 \times 5 \times 5$ chessboard.

Combinatoric Preliminaries

Combinatorial Limit

Miller, Sheng, and Turek showed that for $a, b \in \mathbb{Z}$, with a positive,

$$\lim_{n\to\infty} \binom{n^2-an-b}{n} / \binom{n^2}{n} = \frac{1}{e^a}.$$

▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト つくぐ

Combinatoric Preliminaries

Combinatorial Limit

Miller, Sheng, and Turek showed that for $a, b \in \mathbb{Z}$, with a positive,

$$\lim_{n\to\infty} \binom{n^2-an-b}{n} / \binom{n^2}{n} = \frac{1}{e^a}.$$

This represents placing *n* pieces that each see an + b squares on an $n \times n$ chessboard.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Combinatoric Preliminaries

Combinatorial Limit

Miller, Sheng, and Turek showed that for $a, b \in \mathbb{Z}$, with a positive,

$$\lim_{n\to\infty} \binom{n^2-an-b}{n} / \binom{n^2}{n} = \frac{1}{e^a}.$$

This represents placing *n* pieces that each see an + b squares on an $n \times n$ chessboard.

Generalized Combinatorial Limit - Cashman, Cooper, Marquez, Miller, Shuffelton

For positive integers a, k, m, c, d and any integer b, with k > m > k - c, we have

$$\lim_{n \to \infty} \binom{n^k - an^m + bn^{k-c}}{dn^{k-m}} / \binom{n^k}{dn^{k-m}} = \frac{1}{e^{da}}$$

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix
	ting the Oom				

Interpreting the Combinitorial Limit

Generalized Combinatorial Limit

For positive integers a, k, m, c, d and any integer b, with k > m > k - c, we have

$$\lim_{n\to\infty} \binom{n^k - an^m + bn^{k-c}}{dn^{k-m}} / \binom{n^k}{dn^{k-m}} = \frac{1}{e^{da}}.$$

$ $ n^k	Total spaces on chess board.
an ^m – bn ^k	^c Spaces attacked by piece.
dn ^{k-m}	Pieces placed on board.

Count setups where a space is safe, divide by total configurations, end with probability the space is safe on a random configuration.

Combinatoric Limit Proof

We have two parts. First is

$$\binom{n^{k}-an^{m}+bn^{k-c}}{dn^{k-m}} / \binom{n^{k}}{dn^{k-m}} = \prod_{i=0}^{an^{m}-bn^{k-c}-1} \left(1-\frac{dn^{k-m}}{n^{k}-i}\right)$$
$$= \prod_{i=0}^{an^{m}-bn^{k-c}-1} \left(1-\frac{d}{n^{m}}-\frac{di}{n^{m}(n^{k}-i)}\right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Combinatoric Limit Proof

We have two parts. First is

$$\binom{n^{k}-an^{m}+bn^{k-c}}{dn^{k-m}} / \binom{n^{k}}{dn^{k-m}} = \prod_{i=0}^{an^{m}-bn^{k-c}-1} \left(1-\frac{dn^{k-m}}{n^{k}-i}\right)$$
$$= \prod_{i=0}^{an^{m}-bn^{k-c}-1} \left(1-\frac{d}{n^{m}}-\frac{di}{n^{m}(n^{k}-i)}\right).$$

Know that $\lim_{n\to\infty} (1 - d/n^m)^{an^m} = 1/e^{da}$. Use this to bound the limit.

・ロト・西ト・ヨト ・ヨト・ 白・ ろくぐ

Combinatoric Limit Proof Continued

Take extremes of the product, for

$$\left(1 - \frac{d}{n^m} - \frac{d(an^m - bn^{k-c} - 1)}{n^m(n^k - an^m + bn^{k-c} + 1)}\right)^{an^m - bn^{k-c}}$$

$$\leq \prod_{i=0}^{an^m - bn^{k-c} - 1} \left(1 - \frac{dn^{k-m}}{n^k - i}\right) \leq \left(1 - \frac{d}{n^m}\right)^{an^m - bn^{k-c}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

.

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix 0000
<u> </u>					

Combinatoric Limit Proof Continued

Take extremes of the product, for

$$\left(1 - \frac{d}{n^m} - \frac{d(an^m - bn^{k-c} - 1)}{n^m(n^k - an^m + bn^{k-c} + 1)}\right)^{an^m - bn^{k-c}}$$

$$\leq \prod_{i=0}^{an^m - bn^{k-c} - 1} \left(1 - \frac{dn^{k-m}}{n^k - i}\right) \leq \left(1 - \frac{d}{n^m}\right)^{an^m - bn^{k-c}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Both upper and lower bounds converge to $\frac{1}{e^{da}}$ after some algebra.

Introduction ○○○○○○○●○	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix 0000
Varianc	е				

Theorem: Cashman, Cooper, Marquez, Miller, Shuffelton

Let $n, k, m, d, a \in \mathbb{Z}_{>0}$. Define μ_n as before, with dn^{k-m} attacking pieces placed, each of which attack an^m spaces. Then, the variance of the random variable with mean μ_n approaches 0 as n approaches infinity.

・ロト・西ト・山田・山田・山下

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix
Varianc	e Proof Sket	ch			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- Begin with $Var(S_n/n^k) = Var(S_n)/n^{2k}$.
- Split into variance and covariance of the $X_{i_1,...,i_k}$.

• Find Var
$$(X_{i_1,...,i_k}) = \mu_n - \mu_n^2$$
.

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix
Varianc	e Proof Sket	ch			

- Begin with $Var(S_n/n^k) = Var(S_n)/n^{2k}$.
- Split into variance and covariance of the $X_{i_1,...,i_k}$.

• Find Var
$$(X_{i_1,\ldots,i_k}) = \mu_n - \mu_n^2$$
.

 Covariance when pieces can't attack each other cancels out.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix 0000
Varianc	e Proof Sketo	ch			

- Begin with $Var(S_n/n^k) = Var(S_n)/n^{2k}$.
- Split into variance and covariance of the $X_{i_1,...,i_k}$.

• Find Var
$$(X_{i_1,...,i_k}) = \mu_n - \mu_n^2$$
.

- Covariance when pieces can't attack each other cancels out.
- Times that pieces can attack each other is infinitesimal as $n \rightarrow \infty$.

▲ロト ▲ 理 ト ▲ 三 ト ▲ 三 ト つ Q (~

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix 0000
Varianc	e Proof Sketo	ch			

- Begin with $Var(S_n/n^k) = Var(S_n)/n^{2k}$.
- Split into variance and covariance of the $X_{i_1,...,i_k}$.

• Find Var
$$(X_{i_1,...,i_k}) = \mu_n - \mu_n^2$$
.

- Covariance when pieces can't attack each other cancels out.
- Times that pieces can attack each other is infinitesimal as $n \rightarrow \infty$.

• Conclude that $Var(S_n/n^k) \rightarrow 0$ as $n \rightarrow \infty$ for any board setup studied.

Introduction	2d Bishops And Queens ●000	Line-Pieces	Hyper-Pieces	Conclusion	Appendix 0000
Bishop	Counting				

Harder to work with Bishops than Rooks, as Bishops see a variable number of squares.

A Bishop at the outer edge sees *n* squares, while a bishop at the center sees 2n - 1 squares.

A bishop placed at (3, 1) on a 7 \times 7 chessboard.

▲ロト ▲ 理 ト ▲ 三 ト ▲ 三 ト つ Q (~

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix 0000
Bishop	s and Rings				

To more efficiently count, we define "rings" on the chessboard, starting with the 0^{th} ring being the center square, and working outwards. (We assume an odd *n* for easier calculation).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

To more efficiently count, we define "rings" on the chessboard, starting with the 0^{th} ring being the center square, and working outwards. (We assume an odd *n* for easier calculation).

A bishop placed in the *i*th ring sees 2n - 2i - 1 squares, and there are 8r squares in each ring.

Have (n-1)/2 rings, for

$$\mu_n = \frac{1}{n^2} \cdot \frac{\binom{n^2 - 2n + 1}{n}}{\binom{n^2}{n}} + \sum_{r=1}^{(n-1)/2} \frac{4(2r)}{n^2} \frac{\binom{n^2 - 2n + 2r + 1}{n}}{\binom{n^2}{n}}.$$

くちゃく 明 (小田) (日) (日)

2d Bishop Results

Can assume that n is odd, and the center term is an infinitesimal part of the final result. Lower terms in # of squares seen also vanish, for

$$\lim_{n \to \infty} \mu_n = \lim_{n \to \infty} \sum_{r=1}^{(n-1)/2} \left(\frac{8r}{n^2} \frac{\binom{n^2 - 2n + 2r}{n}}{\binom{n^2}{n}} \right)$$
$$= \lim_{n \to \infty} \sum_{r=1}^{(n-1)/2} \left(\frac{8r}{n^2} \prod_{\alpha=0}^{2n-2r} \frac{n^2 - n - \alpha}{n^2 - \alpha} \right)$$

.

2d Bishop Results

Can assume that n is odd, and the center term is an infinitesimal part of the final result. Lower terms in # of squares seen also vanish, for

$$\lim_{n \to \infty} \mu_n = \lim_{n \to \infty} \sum_{r=1}^{(n-1)/2} \left(\frac{8r}{n^2} \frac{\binom{n^2 - 2n + 2r}{n}}{\binom{n^2}{n}} \right)$$
$$= \lim_{n \to \infty} \sum_{r=1}^{(n-1)/2} \left(\frac{8r}{n^2} \prod_{\alpha=0}^{2n-2r} \frac{n^2 - n - \alpha}{n^2 - \alpha} \right)$$

Then, we bound the product using extreme values of α , which lets us find bounds for the sum, giving us

$$\lim_{n\to\infty}\mu_n = \frac{2}{e^2} \approx 27.067\%.$$

▲ロト ▲□ ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix 0000
Queen	Results				

• Queens can be modeled as combination of Bishops and Rooks.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix 0000
Queen	Results				

- Queens can be modeled as combination of Bishops and Rooks.
- Combining the two pieces gives

$$\mu_n = \sum_{r=0}^{(n-1)/2} \frac{4(2r)}{n^2} \cdot \frac{\binom{n^2-4n+2r+1}{n}}{\binom{n^2}{n}}$$

• Evaluating gives a convergence to $\frac{2}{e^4}$ percent of squares being safe.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Introduction	2d Bishops And Queens	Line-Pieces ●੦੦੦	Hyper-Pieces	Conclusion	Appendix 0000
Line Ro	oks				

Definition

A line-rook attacks any square that shares n^{k-1} planes with it, which is equivalent to having all but one coordinate be equal.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	2d Bishops And Queens	Line-Pieces ●੦੦੦	Hyper-Pieces	Conclusion	Appendix 0000
Line Ro	oks				

Definition

A line-rook attacks any square that shares n^{k-1} planes with it, which is equivalent to having all but one coordinate be equal.

Figure: Movement of a line-rook placed at (3,3,3) on a $5\times5\times5$ chessboard.

Introduction 000000000	2d Bishops And Queens	Line-Pieces o●oo	Hyper-Pieces	Conclusion	Appendix 0000
l ine-Ro	ooks Limit				

Line-Rooks see kn - k + 1 spaces, anywhere on the board.

Line-Rooks Limit

Line-Rooks see kn - k + 1 spaces, anywhere on the board.

Result

For n^{k-1} line-rooks on an $n \times n$ board, have

$$\lim_{n \to \infty} \binom{n^k - kn + k - 1}{n^{k-1}} / \binom{n^k}{n^{k-1}} = \frac{1}{e^k}$$

This means the probability a square is safe tends towards $\frac{1}{e^k}$ as *n* grows large.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Line-Rooks Limit

Line-Rooks see kn - k + 1 spaces, anywhere on the board.

Result

For n^{k-1} line-rooks on an $n \times n$ board, have

$$\lim_{n \to \infty} \binom{n^k - kn + k - 1}{n^{k-1}} / \binom{n^k}{n^{k-1}} = \frac{1}{e^k}$$

This means the probability a square is safe tends towards $\frac{1}{e^k}$ as *n* grows large.

• n^{k-1} line-rooks more than covers a *k*-dimensional board with *n* spaces to a side.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Line-Rooks Limit

Line-Rooks see kn - k + 1 spaces, anywhere on the board.

Result

For n^{k-1} line-rooks on an $n \times n$ board, have

$$\lim_{n \to \infty} \binom{n^k - kn + k - 1}{n^{k-1}} / \binom{n^k}{n^{k-1}} = \frac{1}{e^k}$$

This means the probability a square is safe tends towards $\frac{1}{e^k}$ as *n* grows large.

- n^{k-1} line-rooks more than covers a *k*-dimensional board with *n* spaces to a side.
- In 3 dimensions, $n^2/2$ enough to cover the board.
- Unknown in higher dimensions.

Line-Rooks Limit

Line-Rooks see kn - k + 1 spaces, anywhere on the board.

Result

For n^{k-1} line-rooks on an $n \times n$ board, have

$$\lim_{n \to \infty} \binom{n^k - kn + k - 1}{n^{k-1}} / \binom{n^k}{n^{k-1}} = \frac{1}{e^k}$$

This means the probability a square is safe tends towards $\frac{1}{e^k}$ as *n* grows large.

• n^{k-1} line-rooks more than covers a *k*-dimensional board with *n* spaces to a side.

- In 3 dimensions, $n^2/2$ enough to cover the board.
- Unknown in higher dimensions.
- In 3 dimensions, converges to $\frac{1}{e^{3/2}}$.

Introduction	2d Bishops And Queens	Line-Pieces ○○●○	Hyper-Pieces	Conclusion	Appendix 0000
l ine-Bi	shons				

Definition

In k dimensions, a k-dimensional line-bishop attacks as a normal bishop inside any plane it resides in, and does not attack any other spaces.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

duction	2d Bishops And Queens	Line-Pieces oo●o	Hyper-Pieces	Conclusion	Appendix 0000
ne-Ris	hons				

Definition

In k dimensions, a k-dimensional line-bishop attacks as a normal bishop inside any plane it resides in, and does not attack any other spaces.

Figure: Movement of a line-bishop placed at (3,3,5) on a $5 \times 5 \times 5$ chessboard, meaning that $r_2 = 0$ and $r_3 = 2$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Use generalization of rings to count the number of spaces seen:

$$s := nk! - 2r_2 - \sum_{i=3}^{k} (i! - (i-1)!)r_i.$$

Use generalization of rings to count the number of spaces seen:

$$s := nk! - 2r_2 - \sum_{i=3}^{k} (i! - (i-1)!)r_i.$$

Have percentage of safe spaces when placing n^{k-1} be

$$\mu_n = \frac{1}{n^k} \sum_{r_k=0}^{n/2} \sum_{r_{k-1}=0}^{r_k} \cdots \sum_{r_2=0}^{r_3} 2^{k-3} (k-1) k 8 r_2 \frac{\binom{n^k - (k! - \frac{s}{n})n}{n^{k-1}}}{\binom{n^k}{n^{k-1}}}.$$

Use generalization of rings to count the number of spaces seen:

$$s := nk! - 2r_2 - \sum_{i=3}^{k} (i! - (i-1)!)r_i.$$

Have percentage of safe spaces when placing n^{k-1} be

$$\mu_n = \frac{1}{n^k} \sum_{r_k=0}^{n/2} \sum_{r_{k-1}=0}^{r_k} \cdots \sum_{r_2=0}^{r_3} 2^{k-3} (k-1) k 8 r_2 \frac{\binom{n^k - (k! - \frac{s}{n})n}{n^{k-1}}}{\binom{n^k}{n^{k-1}}}.$$

In 3 dimensions,

$$\lim_{n\to\infty}\mu_n = \frac{-1+9e^2-2e^3}{3e^6} \approx 2.0929\%.$$

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces ●0000	Conclusion	Appendix 0000
Hyper-F	Rooks				

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition

A hyper-rook attacks any piece that shares at least one coordinate with it.

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces ●○○○○	Conclusion	Appendix 0000
Hyper-F	Rooks				

Definition

A hyper-rook attacks any piece that shares at least one coordinate with it.

Sees roughly $kn^{k-1} - an^{k-2}$ spaces, so with *n* hyper-rooks placed, average percentage of safe squares is

$$\mu_n = \binom{n^k - kn^{k-1} - an^{k-2}}{n} / \binom{n^k}{n}$$

Converges to $1/e^k$.

▲□▶▲□▶▲□▶▲□▶ □ のへで

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces ○●○○○	Conclusion	Appendix 0000
Hyper-l	Bishops				

Can define a regular Bishop as

$$(x-i) + (y-j) = 0,$$

 $(x-i) - (y-j) = 0.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

For higher dimensions, we add the new coordinates, in the possible diagonal subspaces.

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces o●ooo	Conclusion	Appendix 0000
Hyper-	Bishops				

Can define a regular Bishop as

$$(x-i) + (y-j) = 0,$$

 $(x-i) - (y-j) = 0.$

For higher dimensions, we add the new coordinates, in the possible diagonal subspaces. For example in 3 dimensions, a hyper-bishop at (i, j, k) attacks

$$(x-i) + (y-j) + (z-k) = 0,$$

$$(x-i) + (y-j) - (z-k) = 0,$$

$$(x-i) - (y-j) + (z-k) = 0,$$

$$(x-i) - (y-j) - (z-k) = 0.$$

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces oo●oo	Conclusion	Appendix 0000

Definition

In general, for a *k*-dimensional chessboard, a hyper-bishop at (a_1, a_2, \ldots, a_k) can attack the areas defined by any possible version of

$$(x_1 - a_1) \pm (x_2 - a_2) \pm \cdots \pm (x_k - a_k) = 0.$$

<ロト <回 > < 回 > < 回 > < 回 > = 三

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces ००●००	Conclusion	Appendix

Definition

In general, for a *k*-dimensional chessboard, a hyper-bishop at (a_1, a_2, \ldots, a_k) can attack the areas defined by any possible version of

$$(x_1 - a_1) \pm (x_2 - a_2) \pm \cdots \pm (x_k - a_k) = 0.$$

<ロト <回 > < 回 > < 回 > < 回 > = 三

• Only attacks spaces of the same color.

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces ००●००	Conclusion	Appendix

Definition

In general, for a *k*-dimensional chessboard, a hyper-bishop at (a_1, a_2, \ldots, a_k) can attack the areas defined by any possible version of

$$(x_1 - a_1) \pm (x_2 - a_2) \pm \cdots \pm (x_k - a_k) = 0.$$

- Only attacks spaces of the same color.
- In a 2-dimensional subspace, moves like a 2-dimensional bishop.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces oo●oo	Conclusion	Appendix 0000

Definition

In general, for a *k*-dimensional chessboard, a hyper-bishop at (a_1, a_2, \ldots, a_k) can attack the areas defined by any possible version of

$$(x_1 - a_1) \pm (x_2 - a_2) \pm \cdots \pm (x_k - a_k) = 0.$$

- Only attacks spaces of the same color.
- In a 2-dimensional subspace, moves like a 2-dimensional bishop.
- Main weakness is being incredibly difficult to work with.

Figure: Spaces attacked by a hyper-bishop placed at (3,3,3) on a $5 \times 5 \times 5$ board.

Figure: Spaces attacked by a hyper-bishop placed at (1, 1, 1) on a $5 \times 5 \times 5$ board.

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces ○○○○●	Conclusion	Appendix 0000
Hyper-l	Bishop Boun	ds			

Lack a good way to count spaces attacked.

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces ○○○○●	Conclusion	Appendix 0000
Hyper-B	Bishop Boun	ds			

Lack a good way to count spaces attacked.

For k = 3, we found very bad bounds by looking at the most extreme cases of spaces seen in the corners and center.

$$\frac{1}{e^3} \leq \lim_{n \to \infty} \mu_n \leq \frac{1}{e^{3/2}}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Lack a good way to count spaces attacked.

For k = 3, we found very bad bounds by looking at the most extreme cases of spaces seen in the corners and center.

$$\frac{1}{e^3} \leq \lim_{n\to\infty} \mu_n \leq \frac{1}{e^{3/2}}.$$

As a result, hyper-queens are similarly difficult, with bounds of

$$\frac{1}{e^6} \leq \lim_{n \to \infty} \mu_n \leq \frac{1}{e^{9/2}}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion ●○○○	Appendix 0000
Future	Work				

- Alternative ways of describing higher dimensional bishops.
- Better methods of counting spaces seen by line-bishops and hyper-bishops, and the associated better bounds and easier to calculate limits.
- Bounds on the number of line-rooks needed to dominate in k dimensions for k > 3.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

This work was done as part of the SMALL 2024 REU Program.

I thank my coauthors, Caroline Cashman, Joseph Cooper, and Raul Marquez, as well as our advisor, Prof. Steven J. Miller.

We appreciate the support of Williams College, as well as funding from NSF grant number DMS-2241623, The William & Mary Charles Center, Emmanuel College Cambridge, and the Finnerty Fund.

▲ロト ▲ 理 ト ▲ 三 ト ▲ 三 ト つ Q (~

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion ○○●○	Appendix 0000

Thank you!

Any questions?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix 0000
Referer	nces				

- Thomas F. Banchoff. Beyond the Third Dimension. Third. W H Freeman & Co, 1996.
- Max Bezzel. "Proposal of 8-queens problem". In: Berliner Schachzeitung 3.363 (1848), p. 1848.
- Jordan Bell and Brett Stevens. "A survey of known results and research areas for n-queens". In: Discrete Mathematics 309.1 (2009), pp. 1-31. ISSN: 0012-365X. DOI: https://doi.org/10.1016/j.disc.2007.12.043. URL: https://www.sciencedirect.com/science/article/pii/S0012365X07010394.
- Arthur Engel. Problem-Solving Strategies. New York: Springer, 1997, pp. 44-45.
- Bernard Lemaire and Pavel Vitushinkiy. "Placing *n* non dominating queens on the $n \times n$ chessboard, Part I". In: French Federation of Mathematical Games (2011).
- Steven J. Miller, Haoyu Sheng, and Daniel Turek. "When Rooks Miss: Probability through Chess". In: The College Mathematics Journal 52.2 (2021), pp. 82–93. DOI: https://doi.org/10.1080/07468342.2021.1886774.
- Miodrag Petkovic. Mathematics and Chess. Dover Recreational Math, 2011.
- John J. Watkins. Across the Board: The Mathematics of Chessboard Problems. Princeton University Press, 2004.

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix ●000
Line-Bi	shops Rings				

• Rings become less nice, as each space sees a (mostly) unique number of other spaces.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix ●000
Line-Bi	shops Rings				

- Rings become less nice, as each space sees a (mostly) unique number of other spaces.
- Can still generalize, with our old two dimensional rings becoming *r*₂.
- Now have k 1 dimensions of rings, from r₂ to r_k, with the r_i rings existing within a *i*-dimensional subspace of the board.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix ●000
Line-Bi	shops Rings				

- Rings become less nice, as each space sees a (mostly) unique number of other spaces.
- Can still generalize, with our old two dimensional rings becoming *r*₂.
- Now have k 1 dimensions of rings, from r₂ to r_k, with the r_i rings existing within a *i*-dimensional subspace of the board.
- Increasing in $r_i \implies (i-1)^2(i-2)!$ fewer spaces attacked.
- For bishop in rings (r_2, \ldots, r_k) , sees

$$nk! - 2r_2 - \sum_{i=3}^{k} (i! - (i-1)!)r_i$$

spaces.

To save space, we notate

$$s := nk! - 2r_2 - \sum_{i=3}^{k} (i! - (i-1)!)r_i.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

To save space, we notate

$$s := nk! - 2r_2 - \sum_{i=3}^{k} (i! - (i-1)!)r_i.$$

This lets us define the percentage of safe spaces when placing n^{k-1} line-bishops as

$$\mu_n = \frac{1}{n^k} \sum_{r_k=0}^{n/2} \sum_{r_{k-1}=0}^{r_k} \cdots \sum_{r_2=0}^{r_3} 2^{k-3} (k-1) k 8 r_2 \frac{\binom{n^k - (k! - \frac{s}{n})n}{n^{k-1}}}{\binom{n^k}{n^{k-1}}}.$$

To save space, we notate

$$s := nk! - 2r_2 - \sum_{i=3}^{k} (i! - (i-1)!)r_i.$$

This lets us define the percentage of safe spaces when placing n^{k-1} line-bishops as

$$\mu_n = \frac{1}{n^k} \sum_{r_k=0}^{n/2} \sum_{r_{k-1}=0}^{r_k} \cdots \sum_{r_2=0}^{r_3} 2^{k-3} (k-1) k 8 r_2 \frac{\binom{n^k - (k! - \frac{s}{n})n}{n^{k-1}}}{\binom{n^k}{n^{k-1}}}.$$

Limit as $n \to \infty$ can be evaluated, but have not found a simplification for arbitrary *k*.

Line-Bishop Safe Spaces, k = 3

When k = 3, we find that the percentage of safe spaces with n^{k-1} line-bishops is

$$\lim_{n\to\infty}\mu_n = \lim_{n\to\infty}\frac{1}{n^3}\sum_{r_3=0}^{n/2}\sum_{r_2=0}^{r_3}48r_2\prod_{\alpha=0}^{6n-4r_3-2r_2}\left(1-\frac{n^2}{n^3-\alpha}\right).$$

Line-Bishop Safe Spaces, k = 3

When k = 3, we find that the percentage of safe spaces with n^{k-1} line-bishops is

$$\lim_{n\to\infty}\mu_n = \lim_{n\to\infty}\frac{1}{n^3}\sum_{r_3=0}^{n/2}\sum_{r_2=0}^{r_3}48r_2\prod_{\alpha=0}^{6n-4r_3-2r_2}\left(1-\frac{n^2}{n^3-\alpha}\right).$$

Evaluating, have

$$\lim_{n\to\infty}\mu_n = \frac{-1+9e^2-2e^3}{3e^6} \approx 2.0929\%.$$

Line-Bishop Safe Spaces, k = 3

When k = 3, we find that the percentage of safe spaces with n^{k-1} line-bishops is

$$\lim_{n\to\infty}\mu_n = \lim_{n\to\infty}\frac{1}{n^3}\sum_{r_3=0}^{n/2}\sum_{r_2=0}^{r_3}48r_2\prod_{\alpha=0}^{6n-4r_3-2r_2}\left(1-\frac{n^2}{n^3-\alpha}\right).$$

Evaluating, have

$$\lim_{n\to\infty}\mu_n = \frac{-1+9e^2-2e^3}{3e^6} \approx 2.0929\%.$$

 Extremely messy expression. Does not improve for higher dimensions.

▲ロト ▲ 理 ト ▲ 三 ト ▲ 三 ト つ Q (~

Line-Bishop Safe Spaces, k = 3

When k = 3, we find that the percentage of safe spaces with n^{k-1} line-bishops is

$$\lim_{n\to\infty}\mu_n = \lim_{n\to\infty}\frac{1}{n^3}\sum_{r_3=0}^{n/2}\sum_{r_2=0}^{r_3}48r_2\prod_{\alpha=0}^{6n-4r_3-2r_2}\left(1-\frac{n^2}{n^3-\alpha}\right).$$

Evaluating, have

$$\lim_{n\to\infty}\mu_n = \frac{-1+9e^2-2e^3}{3e^6} \approx 2.0929\%.$$

- Extremely messy expression. Does not improve for higher dimensions.
- Lower percentage than line-rooks.

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix ○○○●
Line-Q	ueens				

• Same approach as regular queens, of blending bishops and rooks.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix ○○○●
Line-Qu	ueens				

- Same approach as regular queens, of blending bishops and rooks.
- As a result, just as messy as line-bishops, just with an extra kn – k spaces seen from the rook movement.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction	2d Bishops And Queens	Line-Pieces	Hyper-Pieces	Conclusion	Appendix 000●
Line-Q	ueens				

- Same approach as regular queens, of blending bishops and rooks.
- As a result, just as messy as line-bishops, just with an extra kn – k spaces seen from the rook movement.
- For *k* = 3, have

$$\lim_{n \to \infty} \frac{1}{n^3} \sum_{r_3=1}^{n/2} \sum_{r_2=1}^{r_3} 48r_2 \prod_{\alpha=0}^{9n-4r_3-2r} \left(1 - \frac{n^2}{n^3 - \alpha}\right)$$
$$= \frac{-1 + 9e^2 - 2e^3}{3e^9} \approx 0.1042\%.$$