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Polymath Junior Program

/r?'w?* 3
e Provide research opportunities to undergraduates. =

e Online, runs in the spirit of the Polymath Project.
e Projects run by researcher with experience in undergraduate mentoring.

e Most 15-25 students, a main mentor, grad students / postdocs assisting.

https://geometrynyc.wixsite.com/polymathreu
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A pair of equations

For relatively prime a, b € N, consider

-1 -1
1+ax+ by = (a )2(b )
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A pair of equations

For relatively prime a, b € N, consider

-1 -1
1+ax+ by = (a )2(b )

Theorem (Beiter (1964), extended by Chu (2020))

Exactly one of the equations has a nonnegative integral solution
(x,y). The solution is unique.
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Fibonacci numbers

Fi=1 F,=1, and F,=F,_1+ F,_», forn>3
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Fibonacci numbers

Fi=1 F,=1, and F,=F,_1+ F,_», forn>3

Fi=1 Fo=1 F=2 F,=3, Fs=5, Fe=8,...
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Fibonacci numbers

Fi=1 F,=1, and F,=F,_1+ F,_», forn>3

Fi=1 Fo=1 F=2 F,=3, Fs=5, Fe=8,...

ng(Fn,Fn+1) =1

Solutions to a Pair of Diophantine Equations
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Fibonacci numbers

Fi=1 F,=1, and F,=F,_1+ F,_», forn>3
Fi=1 Fo=1, F3=2, F4=3, Fs =5, Fo—8,...

ng(Fn,Fn+1) =1

J[®)+ b[7] — (3—1)2(b—1)

—1)(b-1
1+a[x]+b[y] = (3)2()

Solutions to a Pair of Diophantine Equations
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Fibonacci numbers

=1 F=1 F=2 F,=3, Fs=5, Fg=28,...

gcd(Fp, Fry1) = 1

Fp—1)(Fpy1 — 1
Fn+Fn+1: ( )(2+ )

Fo—1)(Fs1 — 1
1+ Fo[x]+ Fopa[y] = ( )(2n+1 )

Solutions to a Pair of Diophantine Equations
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Fibonacci numbers

=1 F=1 F=2 F,=3, Fs=5, Fg=28,...

gcd(Fp, Fry1) = 1

Fp—1)(Fpy1 — 1
Fn+Fn+1: ( )(2+ )

Fo—1)(Fs1 — 1
1+ Fo[x]+ Fopa[y] = ( )(2n+1 )

(X7y) =7

Solutions to a Pair of Diophantine Equations
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Chu's six cases (2020)

Fox—1—1
Fox - 7&(21

Féky1 -

F6k+2 :

1+ Fokes -

1+ Fekra -

14 Ferys -

Fokr1—1
2
Foxyr — 1
2
Forio — 1
2
Foria — 1
2
Fokya — 1
2

+ Fokr1 -

+ Fory2 -

+ Fok+s -

+ Feékta -

+ Fokys -

+ Fok+e -

Forr —1| _ (Fex — 1)(Fek+1 — 1)
2 2

Fer—1—1 _ (Fok+1 — 1)(Feks2 — 1)
2 2

Fory1 — 1|  (Feki2 — 1)(Fokiz — 1)
2 o 2

Forio — 1 _ (Fek+3 — 1)(Fek+a — 1)
2 2

Feri2 —1 _ (Fok+s — 1)(Fekss — 1)
2 2

F6k+4 -1 _ (F6k+5 - 1)(F6k+6 - 1)
2 2
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Fibonacci Squared (Polymath Jr. 2024)

If n=0,2,3,5 mod 6,

£ <F2_F3_1+1> = Fri—1|  (FZ—1)(F.-1)
n n 2 n+
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Fibonacci Squared (Polymath Jr. 2024)

If n=0,2,3,5 mod 6,

FPi+1 Fri—1 (F7 —1)(F71—1)
F2 . 2 _''n 1 2 X n—1 _ n n+1 .
n (Fn 2 + Fn+1 2 2
If n=1 mod 6,
FZ—3 Fr—Fr -1 (F? —1)(F,—1)
2 . n 2 X n n—1 _ n n+1
1+Fn 2 +Fn+1 2 2 .

Solutions to a Pair of Diophantine Equations
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Fibonacci Squared (Polymath Jr. 2024)

If n=0,2,3,5 mod 6,

£ <F2_F3_1+1> = Fri—1|  (FZ—1)(F.-1)
n n n+ .

2 2 2
If n=1 mod 6,
FZ—3 Fr—Fr -1 (F? —1)(F,—1)
1 ,_—2 . n 2 X n n—1 _ n n+1 .
+ n 2 + Fn+1 2 2
If n=4 mod 6,
FZ+1 s |Fi—Fri—1 (F —1)(FZ, —1)
1 F2 3 n X n n — n n+1 )
+ n 2 + Fn+1 2 2

Solutions to a Pair of Diophantine Equations
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Fibonacci Cubed (Polymath Jr. 2024)

For n > 2,

2n—1 2n—2

i — o —1)(F, -1
Frs | )R |+ | S| = B DB D),
i i=2

2

2n 2n—1
i ¥ F, —1)(F34, — 1
1+ F5, - <§ (-1) Fl.3_1> FFE - Fl = (R )(22 +1 )
i i=2

Solutions to a Pair of Diophantine Equations
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Problem 1

For (i,j) € N2, find the nonnegative integral solution (x, y) to

F ot (Fh=D(Foy — 1)

1Y = 2
or
a (Fo = )(Fpes = 1)
Lt Fox o Flagy =~ M,

Solutions to a Pair of Diophantine Equations
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Balancing numbers and Lucas-balancing numbers

A positive integer n is called balancing if there is d > 0 with

1424 +(n—=1) = (n+1)+---+ (n+d).

Solutions to a Pair of Diophantine Equations
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Balancing numbers and Lucas-balancing numbers

A positive integer n is called balancing if there is d > 0 with
1424+---4+(n=1) = (n+1)+---+(n+d).

Balancing numbers:

Solutions to a Pair of Diophantine Equations
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Balancing numbers and Lucas-balancing numbers

A positive integer n is called balancing if there is d > 0 with
1424+---4+(n=1) = (n+1)+---+(n+d).
Balancing numbers:

B =1, B, =6, B, =6B,-1—B;2

Lucas-balancing numbers:

Cl = 37 C2 = 17) Cn = 6Cn—l_ Cn—2

Solutions to a Pair of Diophantine Equations
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Balancing numbers and Lucas-balancing numbers

A positive integer n is called balancing if there is d > 0 with
1424+---4+(n=1) = (n+1)+---+(n+d).
Balancing numbers:

B =1, B, =6, B, =6B,-1—B;2

Lucas-balancing numbers:

Cl = 37 C2 = 17) Cn = 6Cn—l_ Cn—2

(Bn)nZy ~ (Ch)pZy resembles (Fp)p2y ~ (Ln)32

n=1

Solutions to a Pair of Diophantine Equations
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Davala (2023)

Bin-s-| Y G

1+ Bap—1- Z (om

n—1
Bina ZCM +
i=1

B4n
6

B 2n
1+ . ~1)' Gy
+ 6 ;( ) 2

+ Ban—1 -

+ Bant1 -

n—1

Z Caj

i=1

(B4n73 - 1)(B4n71 - 1)

n—1
g Gai
i=1

(B4n71 - 1)(B4n+1 - 1)

2n—2

: Z(—l)iczf

2

(Ban—2/6 — 1)(Ban/6 — 1)

n—1
. E Cai
i=1

2

(Ban/6 = 1)(Bant2/6 — 1)

2
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What we did in Polymath Jr. 25 )
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Fibonacci-like sequences

Let (u,v) € N? with ged(u, v) = 1.
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Fibonacci-like sequences

Let (u,v) € N? with ged(u, v) = 1.

Define (tn (v ))n 1! t{u’v) =u, té”’v) v, t) = t(u Yy t(u ),
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Fibonacci-like sequences

Let (u,v) € N? with ged(u, v) = 1.
Define (tn (v ))n 1! t{u’v) =u, té”’v) v, t) = t(u Yy t(u ),

t,(1u,v) = Fpou+ Fpqv
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Fibonacci-like sequences

Let (u,v) € N? with ged(u, v) = 1.
Define (tn (v ))n 1! t{u’v) =u, té”’v) v, t) = t(u Yy t(u ),
t,(1u,v) = Fpou+ Fh1v

ged(e{"), ey =1

Solutions to a Pair of Diophantine Equations
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Fibonacci-like sequences

Let (u,v) € N? with ged(u, v) = 1.
Define (tn (v ))n 1! t{u’v) =u, tzu’v) v, t) = t(u Yy t(u ),
t,(1u,v) = Fpou+ Fpqv

ged(e{"), ey =1

(6"~ 1)(ty2y 1)

(u v)X_i_t’(#;)y _ n+1
(u,v) (u v)
y ty —1)(¢, -1
x4y 41 = ( )2( i —1)

Nonnegative integral (x,y) =7

Solutions to a Pair of Diophantine Equations
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Fibonacci-like sequences

Let (u,v) € N? with ged(u, v) = 1.
Define (tn (v ))n 1! t{u’v) =u, tzu’v) v, t) = t(u Yy t(u ),
t,(1u,v) = Fpou+ Fpqv

ged(e{"), ey =1

(65" 1)ty 1)

' x+ ey = 2

(65" = 1)ty — 1)

£ x + tr(1+1)y +1 = > et

Nonnegative integral (x,y) =7 Depend on n modulo 6.

Solutions to a Pair of Diophantine Equations
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The solution (x, y)

Why 6 cases?
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The solution (x, y)

Why 6 cases?

Cassini's identity (2): Fpp1Fp1 — F2 = (=1)"
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The solution (x, y)

Why 6 cases?
Cassini's identity (2): Fpp1Fp1 — F2 = (=1)"

Fibonacci pairs (3): (Fen, Fon+3); (Fent1, Font4), (Fent2, Fonis)

Solutions to a Pair of Diophantine Equations
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The solution (x, y)

Why 6 cases?
Cassini's identity (2): Fpp1Fp1 — F2 = (=1)"
Fibonacci pairs (3): (Fen, Fon+3); (Fent1, Font4), (Fent2, Fonis)

In each case, the solution (x,y) depends further on (u, v).

Solutions to a Pair of Diophantine Equations
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Sample case: n=4 mod 6

Polymath Jr. 25 Diophantine Group

Given (u, v, n,r) € Z* with even n, it holds that

141 <(,,_,)FH+ %

2
(u,v) (u,v)
—1 t, ' —1)(t -1
vr - 1) t,(yi;) _ ( )2(n+1 )

Fn — 1> £l

-

5 (an72 ap

and

Solutions to a Pair of Diophantine Equations
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Sample case: n=4 mod 6

Polymath Jr. 25 Diophantine Group

Given (u, v, n,r) € Z* with even n, it holds that

(u—rjv+1
u

1
1+ 5 <(u —r)Fo—1 +

Fn — 1> £l

(u,v) (u,v)

- ty ) —1)(¢ -1
: (rFH L= e 1) o) _ )tri1” —1)
2 2

and

1 (u—r)jv—1 ()
2<(u_r)Fn—l+ T Fn_]-)tn —+
1 vr + 1 () (t,g“~V) _ 1)(t(u,;) ~1)
5 <an—2 aF F._1— 1) tni’f = > nt .

Solutions to a Pair of Diophantine Equations
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Sample case: n=4 mod 6

For even n,

1+% ((U o I‘)anl + (U — ,3V+1Fn i 1>t'(1u,v)+

(u,v) (u,v)
tn —1)(t -1
1 an X ]>t(uv ( )( n+1 )

2

n+1 2

(an—Z +

Proof:

Solutions to a Pair of Diophantine Equations
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Sample case: n=4 mod 6

For even n,

1+% ((U o I‘)anl + (U — ,3V+1Fn i 1>t'(1u,v)+

(u,v) (u,v)
— tn —1)(t -1
(an ) vr 1 Fn X 1> t(u,v) ( )( n+1 )

[y

5 n+1 2
Proof:

t,(,u’v) =F,2u+ F1v

Solutions to a Pair of Diophantine Equations
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Sample case: n=4 mod 6

For even n,

+% ((U o I‘)anl + (U — ,3V+1Fn i 1>t'(1u,v)+

() (u,7)
th —1)(t -1
1<an_z+ ; —1lp 1—1>t<“v _ Wt = 1),

5 n+1 2

Proof:
t,(,u’v) =F,2u+ F1v

Fo_1Fpi1 — F2 =1 (for even n)

Solutions to a Pair of Diophantine Equations
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Sample case: n=4 mod 6

Solutions to a Pair of Diophantine Equations
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Sample case: n=4 mod 6

1+ % <(u — r)Fo1+ %F" — 1>t£“'”+

1 -1

5 (an72+ Vr Fn 1_1> ,,+1
11 1
§+2((u—r)Fn vkl )(F ut Fav)+
L 1F F, Fa () g gle)
5 rFn— 2+ n—1 ( n—1U + V) ( +tn+1 - )

Solutions to a Pair of Diophantine Equations
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Sample case: n=4 mod 6

1+ % <(u — r)Fa_1 + (u=rjv+1 ru)v tle 1> o) 4

1 -1

§<an72+vr Fn 1_1> ,,+1
1 1 1
§+2<(u—r)Fn 1+¢ )(F —ou+ Fpoqv)+
Ll 1F F, Fa () gl _q
5 rFn— 2+ n—1 ( n—1U + V) ( +tn+l - )

1
= + 5 (UFaa + VFa1) (uFn 1+an)—7( My — 1)

4 Be

Solutions to a Pair of Diophantine Equations
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Sample case: n=4 mod 6

1+ % <(u — r)Fa_1 + (u=rjv+1 ru)v tle 1> o) 4

1 -1
§<an72+vr Fn 1_1> ,,+1
1 1 1
:§+2((u—r)Fn l+( r)v+ >(Fn 2U+Fn IV)
Ll 1F F, Fa () gl _q
5 rFn— 2+ n—1 (n 1u+ V) ( +tn+l - )

1
= + 5 (UFaa + VFa1) (uFn 1+an)—7( My — 1)

4 Be

o G L)

Solutions to a Pair of Diophantine Equations
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Sample case: n=4 mod 6

Polymath Jr. 25 Diophantine Group

14t %((u—r)FH+7(“_’3V+1Fn—1) +

(u,v)
tn+1 .

vr — 1"__n_1 _ 1) _ o 1)(@(1”#;) -1

(an—2+ == 2

N =

Solutions to a Pair of Diophantine Equations
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Sample case: n=4 mod 6

Polymath Jr. 25 Diophantine Group

14t %((u—r)FH+7(“_’3V+1Fn—1) +

(u,v) (u,v)
_ it —1)(t -1
tﬁi;) : % (an_z aF vr=1 Foo1— 1) = ( )2( Bl )
x =1 ((u —r)F_1+ 7(”_'3”'1 Fn— 1) 5
y :%(an72+Vru_1Fn71_1) .

Solutions to a Pair of Diophantine Equations
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Sample case: n=4 mod 6

Polymath Jr. 25 Diophantine Group

14t %((u—r)FH+7(“_’3V+1Fn—1) +

(u,v) (u,v)
uv 1 -1 iy —1)(t -1
ey > (an_z Ny S 1) = ( )2( el )
x =1 ((u —rF, (Calolany . 1)
= 3 n—1 + u n 2
y = 3(rFo2t+ ¥ Fa 1) '

Need r such that the boxed are nonnegative integers

Solutions to a Pair of Diophantine Equations
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Choose r when n =4 mod 6

Given (u,v) € N2 with gcd(u,v) = 1 and odd u,

3 odd r € [1, u] with vi =+1 mod u.
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Choose r when n =4 mod 6

Given (u,v) € N2 with gcd(u,v) = 1 and odd u,

3 odd r € [1, u] with vi =+1 mod u.

Given (u, v) € N2 with gcd(u, v) = 1 and even u,

3l odd r € [1, u] with vi = £1 mod 2u.
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Choose r when n =4 mod 6

Given (u,v) € N2 with gcd(u,v) = 1 and odd u,

3 odd r € [1, u] with vi =+1 mod u.

Given (u, v) € N2 with gcd(u, v) = 1 and even u,

3l odd r € [1, u] with vi = £1 mod 2u.

Denote r by O(u, v).

Solutions to a Pair of Diophantine Equations
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Choose r when n =4 mod 6

Given (u,v) € N2 with gcd(u,v) = 1 and odd u,

3l odd r € [1, u] with vi = +1 mod w.

Solutions to a Pair of Diophantine Equations
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Choose r when n =4 mod 6

Given (u,v) € N2 with gcd(u,v) = 1 and odd u,

3l odd r € [1, u] with vi = +1 mod w.

Assume u > 3.

gced(u,v) =1={1-v,2-v,...,u- v} is a complete modulo
system of u.

Solutions to a Pair of Diophantine Equations
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Choose r when n =4 mod 6

Given (u,v) € N2 with gcd(u,v) = 1 and odd u,

3l odd r € [1, u] with vi = +1 mod w.

Assume u > 3.

gced(u,v) =1={1-v,2-v,...,u- v} is a complete modulo
system of u.
Ixi,x0 € [L,u—1] sit. vxy =1 mod v and vxp = —1 mod u.

Solutions to a Pair of Diophantine Equations
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Choose r when n =4 mod 6

Given (u,v) € N2 with gcd(u,v) = 1 and odd u,

3l odd r € [1, u] with vi = +1 mod w.

Assume u > 3.

gced(u,v) =1={1-v,2-v,...,u- v} is a complete modulo
system of u.
Ixi,x0 € [L,u—1] sit. vxy =1 mod v and vxp = —1 mod u.

= u|v(x1+x) = u|l(x1 + x) = x1+x = u.

Solutions to a Pair of Diophantine Equations



What we did in Polymath Jr. 25

Solutions when n=4 mod 6

If uis odd and vO(u,v) =1 mod u or uis even and vO(u,v) =1 mod 2u,

14t % ((u — O(u, v))Fos + (u—0O(u,v))v+1 o 1) N
u
(uv) ()
) — ty —1)(t -1
tl(1u+’;) : % <©(U V)Fn72 + Manl - 1) = ( )2( ntl )

Solutions to a Pair of Diophantine Equations
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Solutions when n=4 mod 6

If uis odd and vO(u,v) =1 mod u or uis even and vO(u,v) =1 mod 2u,

14t %((uf@(u, ) Fot + (u—O(u, V))V+1F,,71) N
u
(u.) (u,v)
vy |1 O(u,v) —1 ) — ey —1
o) §<@(UTV)FH72+%FH_1> _( )2( -1

If uisodd, u> 3, and vO(u,v) = —1 mod u or u is even and vO(u,v) = —1

mod 2u,
(o). % ((u — 0w, )P + Y @(“L’IV))" “lF- 1) +
( ) 1 V@(U V) + 1 (tlgu>V) - 1)(t(u’;) - 1)
tnif : E (@(LI, V)Fn—Q + _— Fn—l - 1> - 2 nt .
u

Solutions to a Pair of Diophantine Equations
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Nonnegative, integral solutions for n

uis odd and vO(u,v) =1 mod u:

1 - )
14+t 2 (u—0(u,v)) Fae1 + (u=O(u, v))v +1 F, -1+
2 ~—~ u
even oy odd
(u,v) (u,v)
u,v 1 O N —_ tn — 1 t _ 1
t£1+71) - = @(u. V) Frn_o +M F,_1—1 — ( )( n+1 )
2 —— "~ u 2
odd odd even

Solutions to a Pair of Diophantine Equations



What we did in Polymath Jr. 25

Application: u = v =1 (Fibonacci) and n = 6k + 4

Solutions to a Pair of Diophantine Equations
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Application: u = v =1 (Fibonacci) and n = 6k + 4

(u—0O(u,v))v+1

1
1+ Fepsa - 5 ((U — O(u, v))Ferss +

Fokia — 1) +

Fok+a—1

1

vO(u,v)—1 F¢ — 1)(Fe —1
Foss - = (@(U V)’%uz-l—%/:ekﬂ—l) — (Fek+a — 1)(Fek+s — 1)

2

N

Fekr2—1

Solutions to a Pair of Diophantine Equations
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Application: u = v =1 (Fibonacci) and n = 6k + 4

1 u—0(u,v))v+1
14 Foa ((u — O, )Py + U A 1) +
Fok+a—1
1 vO(u,v)—1 F¢ — 1)(Fe -1
Forss - = [ O(u, v)Foisa + %Fﬁlaa _1) = (Fékta )(Fek+s )
2 u 2
Fok2—1
This matches Chu's (2020)
Foisa — 1 Forsz — 1 Forcra — 1)(Fors — 1
14 Fors - 6k+§ 4 Fopes 6k+§ _ (Fok+a )2( k15 — 1)

Solutions to a Pair of Diophantine Equations
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Problem 2

Find the formula for the solutions (x, y) to

a-x+b-y = —(a—l)(b—l)
2
or
—1)(b—-1
L taxib.y = @=DE-1)

2

where a and b are taken from other recursively defined sequences.

Solutions to a Pair of Diophantine Equations
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Back to Polymath Jr. 23 )
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Back to Polymath Jr. 23

Which equation to use

Define I : N? — {0, 1} as follows: '(a, b) = 0 if

a b 1 a b
gcd(a.6) T gcd(a,5)” "~ 2 (gcdu b) ~ 1) <gcd(a7 b) 1)

has a nonnegative integral solution, and ['(a, b) =1 if

a b 1 a b
L+ ged(a, b)XJr ged(a, b)y -2 (gcd(a7 b) 1) (gcd(a,b) B 1)

has a nonnegative integral solution.
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Which equation to use

Define I : N? — {0, 1} as follows: '(a, b) = 0 if

a b 1 a b
gcd(a.6) T gcd(a,5)” "~ 2 (gcdu b) ~ 1) <gcd(a7 b) 1)

has a nonnegative integral solution, and ['(a, b) =1 if

a b 1 a b
L+ ged(a, b)XJr ged(a, b)y -2 (gcd(a7 b) 1) (gcd(a,b) B 1)

has a nonnegative integral solution.

Given an integer sequence (an);2;, what is the sequence (I'(an, ant1))n21?
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Which equation to use

Theorem (Polymath Jr. 23)

Let a,b € N. If a|b or b|a, then '(a, b) = 0. Otherwise:
a) When a/ gcd(a, b) is odd, then '(a, b) = 0 if and only if ©(b, a) is odd.
b) When a/ gcd(a, b) is even, then I'(a, b) = 0 if and only if ©(a, b) is odd.

©(a, b): the unique multiplicative inverse of a/gcd(a, b) mod b/ gecd(a, b)
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Which equation to use

Theorem (Polymath Jr. 23)

Let a, b € N. If a|b or b|a, then I'(a, b) = 0. Otherwise:
a) When a/ gcd(a, b) is odd, then '(a, b) = 0 if and only if ©(b, a) is odd.
b) When a/ gcd(a, b) is even, then I'(a, b) = 0 if and only if ©(a, b) is odd.

©(a, b): the unique multiplicative inverse of a/gcd(a, b) mod b/ gecd(a, b)

Theorem (Polymath Jr. 23)

@ For each k € N, the sequence ((n*, (n+ 1)¥))32, is eventually
0,1,0,1,....
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Which equation to use

Theorem (Polymath Jr. 23)

Let a, b € N. If a|b or b|a, then I'(a, b) = 0. Otherwise:
a) When a/ gcd(a, b) is odd, then '(a, b) = 0 if and only if ©(b, a) is odd.
b) When a/ gcd(a, b) is even, then I'(a, b) = 0 if and only if ©(a, b) is odd.

©(a, b): the unique multiplicative inverse of a/gcd(a, b) mod b/ gecd(a, b)

Theorem (Polymath Jr. 23)

@ For each k € N, the sequence ((n*, (n+ 1)¥))32, is eventually
0,1,0,1,....

@ For arithmetic progressions a, = a+ (n— 1)r with a,r € N,
(T(an, @ant1))p2y is either 0,1,0,1,... 0r 1,0,1,0,....
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Problem 3

Let F = {(an)p21 : (M(an, ant1))521 eventually alternates between 0 and 1}.
Characterize sequences that are in F.
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Problem 4 (from Polymath Jr. 23)

#{(a,p) eN’:1<a<

b < x,[(a,b) =1}
#{(a,b)eN2:1<

X’
<b< x}

H(x) := f

0.9
0.8
0.7
0.6
0.5

0.3

0 500 1000 1500 2000 2500 3000
x

Figure: Plots of H(x) for 1 < x < 3000 with 2000 sample points. In
particular, H(3000) ~ 0.30423059.
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The sequence (I'(k, n))>2; and Problem 5

Theorem (Polymath Jr. 23)
Let k € N. The following hold.

Q If kis odd, (['(k,n))S2; has period k. In each period, the
number of Q's is one more than the number of 1's.

Q@ If k is even, (I'(k,n))?2; has period 2k. In each period, the
number of 0's is two more than the number of 1's.
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The sequence (I'(k, n))>2; and Problem 5

Theorem (Polymath Jr. 23)
Let k € N. The following hold.

Q If kis odd, (['(k,n))S2; has period k. In each period, the
number of Q's is one more than the number of 1's.

Q@ If k is even, (I'(k,n))?2; has period 2k. In each period, the
number of 0's is two more than the number of 1's.

Problem 5: Fix k € N. For which sequences (a,)%°, is the
sequence (I'(k, a,))72; periodic?
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Future investigation

Problem 1: For (i,j) € N?, find the nonnegative integral solution (x,y) when
(a,b) = (Fi Foya)-
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Future investigation

Problem 1: For (i,j) € N?, find the nonnegative integral solution (x,y) when
(a,b) = (Fi Foya)-

Problem 2: Find the formula for the solutions (x,y) when a and b are taken
from more general recursively defined sequences.
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Future investigation

Problem 1: For (/,j) € N?, find the nonnegative integral solution (x,y) when
(a,b) = (Fi Foya)-

Problem 2: Find the formula for the solutions (x,y) when a and b are taken
from more general recursively defined sequences.

Problem 3: Let

F ={(an)i21 : (T(an, ant1))s21 eventually alternates between 0 and 1}.
Characterize sequences that are in F.
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Future investigation

Problem 1: For (/,j) € N?, find the nonnegative integral solution (x,y) when
(a,b) = (Fi Foya)-

Problem 2: Find the formula for the solutions (x,y) when a and b are taken
from more general recursively defined sequences.

Problem 3: Let
F ={(an)i21 : (T(an, ant1))s21 eventually alternates between 0 and 1}.
Characterize sequences that are in F.

Problem 4: Let

#{(a,b) EN?:1<a<

b
Hx) = #{(a,b)eN? 1<

Compute limy_, o H(x).

Solutions to a Pair of Diophantine Equations



Back to Polymath Jr. 23

Future investigation

Problem 1: For (/,j) € N?, find the nonnegative integral solution (x,y) when
(a,b) = (Fi Foya)-

Problem 2: Find the formula for the solutions (x,y) when a and b are taken
from more general recursively defined sequences.

Problem 3: Let
F ={(an)i21 : (T(an, ant1))s21 eventually alternates between 0 and 1}.
Characterize sequences that are in F.

Problem 4: Let

#{(a,b) EN?:1<a<

b
H(x) = #HG b eN:1<

Compute limy_, o H(x).

Problem 5: Fix k € N. For which sequences (a,)52; is the sequence
(T(k, an))p2, periodic?
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