Solutions to a Pair of Diophantine Equations

```
R. Gulecha<sup>1</sup> S. Guo<sup>2</sup> N. Johnson<sup>3</sup> Y. Shin<sup>4</sup> Mentors: H. V. Chu<sup>5</sup>, S. J. Miller<sup>6</sup>
```

¹rishabhg@tamu.edu ²sophiasg@umich.edu

³ nathan.erikson.9701@gmail.com ⁴ yejushin0324@gmail.com

⁵hchu@wlu.edu ⁶sjm1@williams.edu

ICCGNFRT-2025: Oct 7, 2025

https://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/talks.html

We gratefully acknowledge support from the National Science Foundation DMS2341670

Polymath Junior Program

- Provide research opportunities to undergraduates.
- Online, runs in the spirit of the Polymath Project.
- Projects run by researcher with experience in undergraduate mentoring.
- Most 15-25 students, a main mentor, grad students / postdocs assisting.

https://geometrynyc.wixsite.com/polymathreu

Outline

- Introduction and results from Polymath Jr. 24
- What we did in Polymath Jr. 25
- Back to Polymath Jr. 23
- Future investigation

Introduction and Polymath Jr. 24 What we did in Polymath Jr. 25 Back to Polymath Jr. 23

Introduction

A pair of equations

For relatively prime $a, b \in \mathbb{N}$, consider

$$ax + by = \frac{(a-1)(b-1)}{2}$$
 and $1 + ax + by = \frac{(a-1)(b-1)}{2}$.

A pair of equations

For relatively prime $a, b \in \mathbb{N}$, consider

$$ax + by = \frac{(a-1)(b-1)}{2}$$
 and $1 + ax + by = \frac{(a-1)(b-1)}{2}$.

Theorem (Beiter (1964), extended by Chu (2020))

Exactly one of the equations has a nonnegative integral solution (x, y). The solution is unique.

$$F_1 = 1, F_2 = 1, \text{ and } F_n = F_{n-1} + F_{n-2}, \text{ for } n \ge 3$$

$$F_1 = 1, F_2 = 1, \text{ and } F_n = F_{n-1} + F_{n-2}, \text{ for } n \ge 3$$

$$F_1=1,\ F_2=1,\ F_3=2,\ F_4=3,\ F_5=5,\ F_6=8,\dots$$

$$F_1 = 1$$
, $F_2 = 1$, and $F_n = F_{n-1} + F_{n-2}$, for $n \ge 3$
$$F_1 = 1$$
, $F_2 = 1$, $F_3 = 2$, $F_4 = 3$, $F_5 = 5$, $F_6 = 8$,...
$$\gcd(F_n, F_{n+1}) = 1$$

$$F_1 = 1$$
, $F_2 = 1$, and $F_n = F_{n-1} + F_{n-2}$, for $n \ge 3$
$$F_1 = 1$$
, $F_2 = 1$, $F_3 = 2$, $F_4 = 3$, $F_5 = 5$, $F_6 = 8$,...
$$\gcd(F_n, F_{n+1}) = 1$$

$$ax + by = \frac{(a-1)(b-1)}{2}$$

1+ $ax + by = \frac{(a-1)(b-1)}{2}$

$$F_1=1,\ F_2=1,\ F_3=2,\ F_4=3,\ F_5=5,\ F_6=8,\dots$$

$$\gcd(\emph{F}_n,\emph{F}_{n+1})\ =\ 1$$

$$F_{n}[x] + F_{n+1}[y] = \frac{(F_{n} - 1)(F_{n+1} - 1)}{2}$$
$$1 + F_{n}[x] + F_{n+1}[y] = \frac{(F_{n} - 1)(F_{n+1} - 1)}{2}$$

$$F_1=1,\ F_2=1,\ F_3=2,\ F_4=3,\ F_5=5,\ F_6=8,\dots$$

$$\gcd(\digamma_n,\digamma_{n+1})\ =\ 1$$

$$F_{n}[x] + F_{n+1}[y] = \frac{(F_{n} - 1)(F_{n+1} - 1)}{2}$$
$$1 + F_{n}[x] + F_{n+1}[y] = \frac{(F_{n} - 1)(F_{n+1} - 1)}{2}$$

$$(x, y) = ?$$

Chu's six cases (2020)

$$F_{6k} \cdot \frac{F_{6k-1} - 1}{2} + F_{6k+1} \cdot \frac{F_{6k-1} - 1}{2} = \frac{(F_{6k} - 1)(F_{6k+1} - 1)}{2}$$

$$F_{6k+1} \cdot \frac{F_{6k+1} - 1}{2} + F_{6k+2} \cdot \frac{F_{6k-1} - 1}{2} = \frac{(F_{6k+1} - 1)(F_{6k+2} - 1)}{2}$$

$$F_{6k+2} \cdot \frac{F_{6k+1} - 1}{2} + F_{6k+3} \cdot \frac{F_{6k+1} - 1}{2} = \frac{(F_{6k+2} - 1)(F_{6k+3} - 1)}{2}$$

$$1 + F_{6k+3} \cdot \frac{F_{6k+2} - 1}{2} + F_{6k+4} \cdot \frac{F_{6k+2} - 1}{2} = \frac{(F_{6k+3} - 1)(F_{6k+4} - 1)}{2}$$

$$1 + F_{6k+4} \cdot \frac{F_{6k+4} - 1}{2} + F_{6k+5} \cdot \frac{F_{6k+2} - 1}{2} = \frac{(F_{6k+4} - 1)(F_{6k+5} - 1)}{2}$$

$$1 + F_{6k+5} \cdot \frac{F_{6k+4} - 1}{2} + F_{6k+6} \cdot \frac{F_{6k+4} - 1}{2} = \frac{(F_{6k+5} - 1)(F_{6k+6} - 1)}{2}$$

Fibonacci Squared (Polymath Jr. 2024)

If $n \equiv 0, 2, 3, 5 \mod 6$,

$$|F_n^2| \cdot \left| \left(F_n^2 - \frac{F_{n-1}^2 + 1}{2} \right) \right| + F_{n+1}^2 \cdot \left| \frac{F_{n-1}^2 - 1}{2} \right| = \frac{(F_n^2 - 1)(F_{n+1}^2 - 1)}{2}.$$

Fibonacci Squared (Polymath Jr. 2024)

If $n \equiv 0, 2, 3, 5 \mod 6$,

$$|F_n^2| \cdot \left| \left(F_n^2 - \frac{F_{n-1}^2 + 1}{2} \right) \right| + |F_{n+1}^2| \cdot \left| \frac{F_{n-1}^2 - 1}{2} \right| = \frac{(F_n^2 - 1)(F_{n+1}^2 - 1)}{2}.$$

If $n \equiv 1 \mod 6$,

$$1 + \mathbf{F}_n^2 \cdot \boxed{\frac{F_n^2 - 3}{2}} + \mathbf{F}_{n+1}^2 \cdot \boxed{\frac{F_n^2 - F_{n-1}^2 - 1}{2}} = \frac{(\mathbf{F}_n^2 - 1)(F_{n+1}^2 - 1)}{2}.$$

Fibonacci Squared (Polymath Jr. 2024)

If $n \equiv 0, 2, 3, 5 \mod 6$,

$$F_n^2 \cdot \left[\left(F_n^2 - \frac{F_{n-1}^2 + 1}{2} \right) \right] + F_{n+1}^2 \cdot \left[\frac{F_{n-1}^2 - 1}{2} \right] = \frac{(F_n^2 - 1)(F_{n+1}^2 - 1)}{2}.$$

If $n \equiv 1 \mod 6$,

$$1 + \mathbf{F}_n^2 \cdot \left| \frac{\mathbf{F}_n^2 - 3}{2} \right| + \mathbf{F}_{n+1}^2 \cdot \left| \frac{\mathbf{F}_n^2 - \mathbf{F}_{n-1}^2 - 1}{2} \right| = \frac{(\mathbf{F}_n^2 - 1)(\mathbf{F}_{n+1}^2 - 1)}{2}.$$

If $n \equiv 4 \mod 6$.

$$1 + {\textit{\textbf{F}}_{\textit{n}}^2} \cdot \left\lceil \frac{{\textit{\textbf{F}}_{\textit{n}}^2} + 1}{2} \right\rceil + {\textit{\textbf{F}}_{\textit{n}+1}^2} \cdot \left\lceil \frac{{\textit{\textbf{F}}_{\textit{n}}^2} - {\textit{\textbf{F}}_{\textit{n}-1}^2} - 1}{2} \right\rceil \; = \; \frac{({\textit{\textbf{F}}_{\textit{n}}^2} - 1)({\textit{\textbf{F}}_{\textit{n}+1}^2} - 1)}{2}.$$

Fibonacci Cubed (Polymath Jr. 2024)

For n > 2,

$$F_{2n-1}^3 \cdot \left| \sum_{i=1}^{2n-1} (-1)^{i-1} F_i^3 \right| + F_{2n}^3 \cdot \left| \sum_{i=2}^{2n-2} F_i^3 \right| = \frac{(F_{2n-1}^3 - 1)(F_{2n}^3 - 1)}{2};$$

$$1 + {\it F}_{2n}^{3} \cdot \left[\left(\sum_{i=1}^{2n} (-1)^{i} {\it F}_{i}^{3} - 1 \right) \right] + {\it F}_{2n+1}^{3} \cdot \left[\sum_{i=2}^{2n-1} {\it F}_{i}^{3} \right] = \frac{({\it F}_{2n}^{3} - 1)({\it F}_{2n+1}^{3} - 1)}{2}.$$

Problem 1

For $(i,j) \in \mathbb{N}^2$, find the nonnegative integral solution (x,y) to

$$F_n^i \cdot x + F_{n+1}^j \cdot y = \frac{(F_n^i - 1)(F_{n+1}^j - 1)}{2}$$

$$1 + F_n^i \cdot x + F_{n+1}^j \cdot y = \frac{(F_n^i - 1)(F_{n+1}^j - 1)}{2}.$$

A positive integer n is called balancing if there is $d \ge 0$ with

$$1+2+\cdots+(n-1) = (n+1)+\cdots+(n+d).$$

A positive integer n is called balancing if there is $d \ge 0$ with

$$1+2+\cdots+(n-1) = (n+1)+\cdots+(n+d).$$

Balancing numbers:

$$B_1 = 1$$
, $B_2 = 6$, $B_n = 6B_{n-1} - B_{n-2}$

A positive integer n is called balancing if there is $d \ge 0$ with

$$1+2+\cdots+(n-1) = (n+1)+\cdots+(n+d).$$

Balancing numbers:

$$B_1 = 1$$
, $B_2 = 6$, $B_n = 6B_{n-1} - B_{n-2}$

Lucas-balancing numbers:

$$C_1 = 3, C_2 = 17, C_n = 6C_{n-1} - C_{n-2}$$

A positive integer n is called balancing if there is $d \ge 0$ with

$$1+2+\cdots+(n-1) = (n+1)+\cdots+(n+d).$$

Balancing numbers:

$$B_1 = 1$$
, $B_2 = 6$, $B_n = 6B_{n-1} - B_{n-2}$

Lucas-balancing numbers:

$$C_1 = 3, C_2 = 17, C_n = 6C_{n-1} - C_{n-2}$$

$$(B_n)_{n=1}^{\infty} \sim (C_n)_{n=1}^{\infty}$$
 resembles $(F_n)_{n=1}^{\infty} \sim (L_n)_{n=1}^{\infty}$

Davala (2023)

$$B_{4n-3} \cdot \left[\sum_{i=1}^{n-1} C_{4i} \right] + B_{4n-1} \cdot \left[\sum_{i=1}^{n-1} C_{4i} \right] = \frac{(B_{4n-3} - 1)(B_{4n-1} - 1)}{2}$$

$$1 + B_{4n-1} \cdot \left[\sum_{i=1}^{n} C_{4i} \right] + B_{4n+1} \cdot \left[\sum_{i=1}^{n-1} C_{4i} \right] = \frac{(B_{4n-1} - 1)(B_{4n+1} - 1)}{2}$$

$$\frac{B_{4n-2}}{6} \cdot \left[\sum_{i=1}^{n-1} C_{4i} \right] + \frac{B_{4n}}{6} \cdot \left[\sum_{i=1}^{2n-2} (-1)^{i} C_{2i} \right] = \frac{(B_{4n-2}/6 - 1)(B_{4n}/6 - 1)}{2}$$

$$1 + \frac{B_{4n}}{6} \cdot \left[\sum_{i=1}^{2n} (-1)^{i} C_{2i} \right] + \frac{B_{4n+2}}{6} \cdot \left[\sum_{i=1}^{n-1} C_{4i} \right] = \frac{(B_{4n}/6 - 1)(B_{4n+2}/6 - 1)}{2}$$

ntroduction and Polymath Jr. 24 What we did in Polymath Jr. 25 Back to Polymath Jr. 23

What we did in Polymath Jr. 25

Let $(u, v) \in \mathbb{N}^2$ with gcd(u, v) = 1.

Let $(u, v) \in \mathbb{N}^2$ with gcd(u, v) = 1.

Define
$$(t_n^{(u,v)})_{n=1}^{\infty}: t_1^{(u,v)} = u, \quad t_2^{(u,v)} = v, \quad t_n^{(u,v)} = t_{n-1}^{(u,v)} + t_{n-2}^{(u,v)}.$$

Let $(u, v) \in \mathbb{N}^2$ with gcd(u, v) = 1.

Define
$$(t_n^{(u,v)})_{n=1}^{\infty}: t_1^{(u,v)} = u, \quad t_2^{(u,v)} = v, \quad t_n^{(u,v)} = t_{n-1}^{(u,v)} + t_{n-2}^{(u,v)}.$$

$$t_n^{(u,v)} = F_{n-2}u + F_{n-1}v$$

Let
$$(u, v) \in \mathbb{N}^2$$
 with $gcd(u, v) = 1$.

Define
$$(t_n^{(u,v)})_{n=1}^{\infty}: t_1^{(u,v)} = u, \quad t_2^{(u,v)} = v, \quad t_n^{(u,v)} = t_{n-1}^{(u,v)} + t_{n-2}^{(u,v)}.$$

$$t_n^{(u,v)} = F_{n-2}u + F_{n-1}v$$

$$\gcd(t_n^{(u,v)},t_{n+1}^{(u,v)})=1$$

Let $(u, v) \in \mathbb{N}^2$ with gcd(u, v) = 1.

Define
$$(t_n^{(u,v)})_{n=1}^{\infty}: t_1^{(u,v)} = u, \quad t_2^{(u,v)} = v, \quad t_n^{(u,v)} = t_{n-1}^{(u,v)} + t_{n-2}^{(u,v)}.$$

$$t_n^{(u,v)} = F_{n-2}u + F_{n-1}v$$

$$\gcd(t_n^{(u,v)},t_{n+1}^{(u,v)})=1$$

$$t_n^{(u,v)}x + t_{n+1}^{(u,v)}y = \frac{(t_n^{(u,v)} - 1)(t_{n+1}^{(u,v)} - 1)}{2}$$

$$t_n^{(u,v)}x + t_{n+1}^{(u,v)}y + 1 = \frac{(t_n^{(u,v)} - 1)(t_{n+1}^{(u,v)} - 1)}{2}$$

Nonnegative integral (x, y) = ?

Let $(u, v) \in \mathbb{N}^2$ with gcd(u, v) = 1.

Define
$$(t_n^{(u,v)})_{n=1}^{\infty}: t_1^{(u,v)} = u, \quad t_2^{(u,v)} = v, \quad t_n^{(u,v)} = t_{n-1}^{(u,v)} + t_{n-2}^{(u,v)}.$$

$$t_n^{(u,v)} = F_{n-2}u + F_{n-1}v$$

$$\gcd(t_n^{(u,v)},t_{n+1}^{(u,v)})=1$$

$$t_n^{(u,v)}x + t_{n+1}^{(u,v)}y = \frac{(t_n^{(u,v)} - 1)(t_{n+1}^{(u,v)} - 1)}{2}$$

$$t_n^{(u,v)}x + t_{n+1}^{(u,v)}y + 1 = \frac{(t_n^{(u,v)} - 1)(t_{n+1}^{(u,v)} - 1)}{2}$$

Nonnegative integral (x, y) = ? Depend on n modulo 6.

Why 6 cases?

Why 6 cases?

Cassini's identity (2):
$$F_{n+1}F_{n-1} - F_n^2 = (-1)^n$$

Why 6 cases?

Cassini's identity (2):
$$F_{n+1}F_{n-1} - F_n^2 = (-1)^n$$

Fibonacci pairs (3):
$$(F_{6n}, F_{6n+3}), (F_{6n+1}, F_{6n+4}), (F_{6n+2}, F_{6n+5})$$

Why 6 cases?

Cassini's identity (2):
$$F_{n+1}F_{n-1} - F_n^2 = (-1)^n$$

Fibonacci pairs (3):
$$(F_{6n}, F_{6n+3}), (F_{6n+1}, F_{6n+4}), (F_{6n+2}, F_{6n+5})$$

In each case, the solution (x, y) depends further on (u, v).

Sample case: $n \equiv 4 \mod 6$

Polymath Jr. 25 Diophantine Group

Given $(u, v, n, r) \in \mathbb{Z}^4$ with even n, it holds that

$$1 + \frac{1}{2} \left((u - r) F_{n-1} + \frac{(u - r)v + 1}{u} F_n - 1 \right) t_n^{(u,v)} +$$

$$\frac{1}{2} \left(r F_{n-2} + \frac{vr - 1}{u} F_{n-1} - 1 \right) t_{n+1}^{(u,v)} = \frac{(t_n^{(u,v)} - 1)(t_{n+1}^{(u,v)} - 1)}{2}$$

and

Sample case: $n \equiv 4 \mod 6$

Polymath Jr. 25 Diophantine Group

Given $(u, v, n, r) \in \mathbb{Z}^4$ with even n, it holds that

$$1 + \frac{1}{2} \left((u - r) F_{n-1} + \frac{(u - r)v + 1}{u} F_n - 1 \right) t_n^{(u,v)} +$$

$$\frac{1}{2} \left(r F_{n-2} + \frac{vr - 1}{u} F_{n-1} - 1 \right) t_{n+1}^{(u,v)} = \frac{(t_n^{(u,v)} - 1)(t_{n+1}^{(u,v)} - 1)}{2}$$

and

$$\begin{split} &\frac{1}{2}\left((u-r)\textit{F}_{n-1}+\frac{(u-r)\textit{v}-1}{\textit{u}}\textit{F}_{n}-1\right)t_{n}^{(u,\textit{v})}+\\ &\frac{1}{2}\left(\textit{r}\textit{F}_{n-2}+\frac{\textit{v}\textit{r}+1}{\textit{u}}\textit{F}_{n-1}-1\right)t_{n+1}^{(u,\textit{v})} = \frac{(t_{n}^{(u,\textit{v})}-1)(t_{n+1}^{(u,\textit{v})}-1)}{2}. \end{split}$$

For even n,

$$1 + \frac{1}{2} \left((u - r) F_{n-1} + \frac{(u - r)v + 1}{u} F_n - 1 \right) t_n^{(u,v)} +$$

$$\frac{1}{2} \left(r F_{n-2} + \frac{vr - 1}{u} F_{n-1} - 1 \right) t_{n+1}^{(u,v)} = \frac{(t_n^{(u,v)} - 1)(t_{n+1}^{(u,v)} - 1)}{2}.$$

Proof:

For even n,

$$\begin{split} 1 + \frac{1}{2} \left((u-r) F_{n-1} + \frac{(u-r)v + 1}{u} F_n - 1 \right) t_n^{(u,v)} + \\ \frac{1}{2} \left(r F_{n-2} + \frac{vr - 1}{u} F_{n-1} - 1 \right) t_{n+1}^{(u,v)} \ = \ \frac{(t_n^{(u,v)} - 1)(t_{n+1}^{(u,v)} - 1)}{2}. \end{split}$$

Proof:

$$t_n^{(u,v)} = F_{n-2}u + F_{n-1}v$$

For even n,

$$\begin{split} 1 + \frac{1}{2} \left((u-r) F_{n-1} + \frac{(u-r)v+1}{u} F_n - 1 \right) t_n^{(u,v)} + \\ \frac{1}{2} \left(r F_{n-2} + \frac{vr-1}{u} F_{n-1} - 1 \right) t_{n+1}^{(u,v)} \ = \ \frac{(t_n^{(u,v)}-1)(t_{n+1}^{(u,v)}-1)}{2}. \end{split}$$

Proof:

$$t_n^{(u,v)} = F_{n-2}u + F_{n-1}v$$

$$F_{n-1}F_{n+1} - F_n^2 = 1$$
 (for even *n*)

$$\begin{split} 1 + \frac{1}{2} \left((u - r) F_{n-1} + \frac{(u - r)v + 1}{u} F_n - 1 \right) t_n^{(u,v)} + \\ \frac{1}{2} \left(r F_{n-2} + \frac{vr - 1}{u} F_{n-1} - 1 \right) t_{n+1}^{(u,v)} \end{split}$$

$$1 + \frac{1}{2} \left((u - r)F_{n-1} + \frac{(u - r)v + 1}{u}F_n - 1 \right) t_n^{(u,v)} +$$

$$\frac{1}{2} \left(rF_{n-2} + \frac{vr - 1}{u}F_{n-1} - 1 \right) t_{n+1}^{(u,v)}$$

$$= \frac{1}{2} + \frac{1}{2} \left((u - r)F_{n-1} + \frac{(u - r)v + 1}{u}F_n \right) (F_{n-2}u + F_{n-1}v) +$$

$$\frac{1}{2} \left(rF_{n-2} + \frac{vr - 1}{u}F_{n-1} \right) (F_{n-1}u + F_nv) - \frac{1}{2} (t_n^{(u,v)} + t_{n+1}^{(u,v)} - 1)$$

$$1 + \frac{1}{2} \left((u - r)F_{n-1} + \frac{(u - r)v + 1}{u}F_n - 1 \right) t_n^{(u,v)} +$$

$$\frac{1}{2} \left(rF_{n-2} + \frac{vr - 1}{u}F_{n-1} - 1 \right) t_{n+1}^{(u,v)}$$

$$= \frac{1}{2} + \frac{1}{2} \left((u - r)F_{n-1} + \frac{(u - r)v + 1}{u}F_n \right) (F_{n-2}u + F_{n-1}v) +$$

$$\frac{1}{2} \left(rF_{n-2} + \frac{vr - 1}{u}F_{n-1} \right) (F_{n-1}u + F_nv) - \frac{1}{2} (t_n^{(u,v)} + t_{n+1}^{(u,v)} - 1)$$

$$= \frac{1}{2} \left(1 + F_{n-2}F_n - F_{n-1}^2 \right) + \frac{1}{2} \underbrace{\left(uF_{n-2} + vF_{n-1} \right)}_{t_n^{(u,v)}} \underbrace{\left(uF_{n-1} + vF_n \right)}_{t_{n+1}^{(u,v)}} - \frac{1}{2} (t_n^{(u,v)} + t_{n+1}^{(u,v)} - 1)$$

$$1 + \frac{1}{2} \left((u - r)F_{n-1} + \frac{(u - r)v + 1}{u}F_n - 1 \right) t_n^{(u,v)} +$$

$$\frac{1}{2} \left(rF_{n-2} + \frac{vr - 1}{u}F_{n-1} - 1 \right) t_{n+1}^{(u,v)}$$

$$= \frac{1}{2} + \frac{1}{2} \left((u - r)F_{n-1} + \frac{(u - r)v + 1}{u}F_n \right) (F_{n-2}u + F_{n-1}v) +$$

$$\frac{1}{2} \left(rF_{n-2} + \frac{vr - 1}{u}F_{n-1} \right) (F_{n-1}u + F_nv) - \frac{1}{2} (t_n^{(u,v)} + t_{n+1}^{(u,v)} - 1)$$

$$= \frac{1}{2} \left(1 + F_{n-2}F_n - F_{n-1}^2 \right) + \frac{1}{2} \underbrace{\left(uF_{n-2} + vF_{n-1} \right)}_{t_n^{(u,v)}} \underbrace{\left(uF_{n-1} + vF_n \right)}_{t_{n+1}^{(u,v)}} - \frac{1}{2} (t_n^{(u,v)} + t_{n+1}^{(u,v)} - 1)$$

$$= \frac{1}{2} (t_n^{(u,v)} - 1) (t_{n+1}^{(u,v)} - 1)$$

Polymath Jr. 25 Diophantine Group

$$1 + t_{n}^{(u,v)} \cdot \left[\frac{1}{2} \left((u-r)F_{n-1} + \frac{(u-r)v+1}{u}F_{n} - 1 \right) \right] + t_{n+1}^{(u,v)} \cdot \left[\frac{1}{2} \left(rF_{n-2} + \frac{vr-1}{u}F_{n-1} - 1 \right) \right] = \frac{(t_{n}^{(u,v)} - 1)(t_{n+1}^{(u,v)} - 1)}{2}$$

Polymath Jr. 25 Diophantine Group

$$1 + t_{n}^{(u,v)} \cdot \left[\frac{1}{2} \left((u-r)F_{n-1} + \frac{(u-r)v+1}{u}F_{n} - 1 \right) \right] + t_{n+1}^{(u,v)} \cdot \left[\frac{1}{2} \left(rF_{n-2} + \frac{vr-1}{u}F_{n-1} - 1 \right) \right] = \frac{(t_{n}^{(u,v)} - 1)(t_{n+1}^{(u,v)} - 1)}{2}$$

$$\begin{cases} x &= \frac{1}{2} \left((u - r) F_{n-1} + \frac{(u - r)v + 1}{u} F_n - 1 \right) \\ y &= \frac{1}{2} \left(r F_{n-2} + \frac{vr - 1}{u} F_{n-1} - 1 \right) \end{cases}$$
 NOT YET!

Polymath Jr. 25 Diophantine Group

$$1 + t_{n}^{(u,v)} \cdot \left[\frac{1}{2} \left((u-r)F_{n-1} + \frac{(u-r)v+1}{u}F_{n} - 1 \right) \right] + t_{n+1}^{(u,v)} \cdot \left[\frac{1}{2} \left(rF_{n-2} + \frac{vr-1}{u}F_{n-1} - 1 \right) \right] = \frac{(t_{n}^{(u,v)} - 1)(t_{n+1}^{(u,v)} - 1)}{2}$$

$$\begin{cases} x = \frac{1}{2} \left((u - r) F_{n-1} + \frac{(u - r)v + 1}{u} F_n - 1 \right) \\ y = \frac{1}{2} \left(r F_{n-2} + \frac{vr - 1}{u} F_{n-1} - 1 \right) \end{cases}$$
 NOT YET!

Need r such that the boxed are nonnegative integers

Lemma

Given $(u, v) \in \mathbb{N}^2$ with gcd(u, v) = 1 and odd u,

 $\exists ! \text{ odd } r \in [1, u] \text{ with } vr \equiv \pm 1 \mod u.$

Lemma

Given $(u, v) \in \mathbb{N}^2$ with gcd(u, v) = 1 and odd u,

 $\exists ! \text{ odd } r \in [1, u] \text{ with } vr \equiv \pm 1 \mod u.$

Lemma

Given $(u, v) \in \mathbb{N}^2$ with gcd(u, v) = 1 and even u,

 $\exists ! \text{ odd } r \in [1, u] \text{ with } vr \equiv \pm 1 \mod 2u.$

Lemma

Given $(u, v) \in \mathbb{N}^2$ with gcd(u, v) = 1 and odd u,

 $\exists ! \text{ odd } r \in [1, u] \text{ with } vr \equiv \pm 1 \mod u.$

Lemma

Given $(u, v) \in \mathbb{N}^2$ with gcd(u, v) = 1 and even u,

 $\exists ! \text{ odd } r \in [1, u] \text{ with } vr \equiv \pm 1 \mod 2u.$

Denote \mathbf{r} by $\mathbb{O}(u, v)$.

Lemma

Given $(u, v) \in \mathbb{N}^2$ with gcd(u, v) = 1 and odd u,

 $\exists ! \text{ odd } r \in [1, u] \text{ with } vr \equiv \pm 1 \mod u.$

Lemma

Given $(u, v) \in \mathbb{N}^2$ with gcd(u, v) = 1 and odd u,

 $\exists ! \text{ odd } r \in [1, u] \text{ with } vr \equiv \pm 1 \mod u.$

Assume u > 3.

 $gcd(u, v) = 1 \Longrightarrow \{1 \cdot v, 2 \cdot v, \dots, u \cdot v\}$ is a complete modulo system of u.

Lemma

Given $(u, v) \in \mathbb{N}^2$ with gcd(u, v) = 1 and odd u,

 $\exists ! \text{ odd } r \in [1, u] \text{ with } vr \equiv \pm 1 \mod u.$

Assume u > 3.

 $gcd(u, v) = 1 \Longrightarrow \{1 \cdot v, 2 \cdot v, \dots, u \cdot v\}$ is a complete modulo system of u.

 $\exists x_1, x_2 \in [1, u-1] \text{ s.t. } vx_1 \equiv 1 \mod u \text{ and } vx_2 \equiv -1 \mod u.$

Lemma

Given $(u, v) \in \mathbb{N}^2$ with gcd(u, v) = 1 and odd u,

 $\exists ! \text{ odd } r \in [1, u] \text{ with } vr \equiv \pm 1 \mod u.$

Assume u > 3.

 $gcd(u, v) = 1 \Longrightarrow \{1 \cdot v, 2 \cdot v, \dots, u \cdot v\}$ is a complete modulo system of u.

 $\exists x_1, x_2 \in [1, u-1] \text{ s.t. } vx_1 \equiv 1 \mod u \text{ and } vx_2 \equiv -1 \mod u.$

$$\implies u \mid v(x_1 + x_2) \implies u \mid (x_1 + x_2) \implies x_1 + x_2 = u.$$

Solutions when $n \equiv 4 \mod 6$

If u is odd and $v\mathbb{O}(u,v)\equiv 1 \mod u$ or u is even and $v\mathbb{O}(u,v)\equiv 1 \mod 2u$,

$$\begin{split} 1 + t_n^{(u,v)} \cdot \left[\frac{1}{2} \left((u - \mathbb{O}(u,v)) F_{n-1} + \frac{(u - \mathbb{O}(u,v))v + 1}{u} F_n - 1 \right) \right] + \\ t_{n+1}^{(u,v)} \cdot \left[\frac{1}{2} \left(\mathbb{O}(u,v) F_{n-2} + \frac{v \mathbb{O}(u,v) - 1}{u} F_{n-1} - 1 \right) \right] &= \frac{(t_n^{(u,v)} - 1)(t_{n+1}^{(u,v)} - 1)}{2}. \end{split}$$

Solutions when $n \equiv 4 \mod 6$

If u is odd and $v\mathbb{O}(u,v)\equiv 1 \mod u$ or u is even and $v\mathbb{O}(u,v)\equiv 1 \mod 2u$,

$$\begin{split} 1 + \frac{t_n^{(u,v)}}{v} \cdot \left[\frac{1}{2} \left((u - \mathbb{O}(u,v)) F_{n-1} + \frac{(u - \mathbb{O}(u,v))v + 1}{u} F_n - 1 \right) \right] + \\ t_{n+1}^{(u,v)} \cdot \left[\frac{1}{2} \left(\mathbb{O}(u,v) F_{n-2} + \frac{v \mathbb{O}(u,v) - 1}{u} F_{n-1} - 1 \right) \right] &= \frac{(t_n^{(u,v)} - 1)(t_{n+1}^{(u,v)} - 1)}{2}. \end{split}$$

If u is odd, $u \ge 3$, and $v\mathbb{O}(u,v) \equiv -1 \mod u$ or u is even and $v\mathbb{O}(u,v) \equiv -1 \mod 2u$,

$$\begin{aligned} & t_{n}^{(u,v)} \cdot \left[\frac{1}{2} \left((u - \mathbb{O}(u,v)) F_{n-1} + \frac{(u - \mathbb{O}(u,v))v - 1}{u} F_{n} - 1 \right) \right] + \\ & t_{n+1}^{(u,v)} \cdot \left[\frac{1}{2} \left(\mathbb{O}(u,v) F_{n-2} + \frac{v \mathbb{O}(u,v) + 1}{u} F_{n-1} - 1 \right) \right] = \frac{(t_{n}^{(u,v)} - 1)(t_{n+1}^{(u,v)} - 1)}{2}. \end{aligned}$$

Nonnegative, integral solutions for $n \equiv 4 \mod 6$

u is odd and $v\mathbb{O}(u,v)\equiv 1\mod u$:

$$1 + t_{n}^{(u,v)} \cdot \frac{1}{2} \left((u - \mathbb{O}(u,v)) \underbrace{F_{n-1}}_{\text{even}} + \underbrace{\frac{(u - \mathbb{O}(u,v))v + 1}{u}}_{\text{odd}} \underbrace{F_{n}}_{\text{odd}} - 1 \right) + t_{n+1}^{(u,v)} \cdot \frac{1}{2} \left(\underbrace{\mathbb{O}(u,v)}_{\text{odd}} \underbrace{F_{n-2}}_{\text{odd}} + \underbrace{v\mathbb{O}(u,v) - 1}_{u} \underbrace{F_{n-1}}_{\text{even}} - 1 \right) = \underbrace{(t_{n}^{(u,v)} - 1)(t_{n+1}^{(u,v)} - 1)}_{2}$$

Application: u = v = 1 (Fibonacci) and n = 6k + 4

$$u = v = 1 \implies \mathbb{O}(u, v) = 1$$

Application: u = v = 1 (Fibonacci) and n = 6k + 4

$$u = v = 1 \implies \mathbb{O}(u, v) = 1$$

$$1 + F_{6k+4} \cdot \frac{1}{2} \underbrace{\left((u - \mathbb{O}(u, v)) F_{6k+3} + \frac{(u - \mathbb{O}(u, v)) v + 1}{u} F_{6k+4} - 1 \right)}_{F_{6k+4} - 1} + F_{6k+5} \cdot \frac{1}{2} \underbrace{\left(\mathbb{O}(u, v) F_{6k+2} + \frac{v \mathbb{O}(u, v) - 1}{u} F_{6k+3} - 1 \right)}_{F_{6k+2} - 1} = \underbrace{\frac{\left(F_{6k+4} - 1 \right) \left(F_{6k+5} - 1 \right)}{2}}_{2}$$

Application: u = v = 1 (Fibonacci) and n = 6k + 4

$$u = v = 1 \implies \mathbb{O}(u, v) = 1$$

$$1 + F_{6k+4} \cdot \frac{1}{2} \underbrace{\left((u - \mathbb{O}(u, v)) F_{6k+3} + \frac{(u - \mathbb{O}(u, v)) v + 1}{u} F_{6k+4} - 1 \right)}_{F_{6k+4} - 1} + \underbrace{F_{6k+4} - 1}_{F_{6k+4} - 1} + \underbrace{V\mathbb{O}(u, v) - 1}_{F_{6k+4} - 1} F_{6k+3} - 1 \right) - \underbrace{\left(F_{6k+4} - 1 \right) \left(F_{6k+5} - 1 \right)}_{F_{6k+4} - 1}$$

$$F_{6k+5} \cdot \frac{1}{2} \underbrace{\left(\mathbb{O}(u,v) F_{6k+2} + \frac{v \mathbb{O}(u,v) - 1}{u} F_{6k+3} - 1 \right)}_{F_{6k+2} - 1} = \underbrace{\frac{\left(F_{6k+4} - 1\right)\left(F_{6k+5} - 1\right)}{2}}_{2}$$

This matches Chu's (2020) 🗸 :

$$1 + \frac{F_{6k+4}}{2} \cdot \left[\frac{F_{6k+4} - 1}{2} \right] + \frac{F_{6k+5}}{2} \cdot \left[\frac{F_{6k+2} - 1}{2} \right] = \frac{(F_{6k+4} - 1)(F_{6k+5} - 1)}{2}$$

Problem 2

Find the formula for the solutions (x, y) to

$$a \cdot x + b \cdot y = \frac{(a-1)(b-1)}{2}$$
or
$$1 + a \cdot x + b \cdot y = \frac{(a-1)(b-1)}{2},$$

where a and b are taken from other recursively defined sequences.

Introduction and Polymath Jr. 24 What we did in Polymath Jr. 25 Back to Polymath Jr. 23

Back to Polymath Jr. 23

Define $\Gamma: \mathbb{N}^2 \to \{0,1\}$ as follows: $\Gamma(a,b) = 0$ if

$$\frac{a}{\gcd(a,b)}x + \frac{b}{\gcd(a,b)}y = \frac{1}{2}\left(\frac{a}{\gcd(a,b)} - 1\right)\left(\frac{b}{\gcd(a,b)} - 1\right)$$

has a nonnegative integral solution, and $\Gamma(a,b)=1$ if

$$1 + \frac{a}{\gcd(a,b)}x + \frac{b}{\gcd(a,b)}y = \frac{1}{2}\left(\frac{a}{\gcd(a,b)} - 1\right)\left(\frac{b}{\gcd(a,b)} - 1\right)$$

has a nonnegative integral solution.

Define $\Gamma: \mathbb{N}^2 \to \{0,1\}$ as follows: $\Gamma(a,b) = 0$ if

$$\frac{a}{\gcd(a,b)}x + \frac{b}{\gcd(a,b)}y = \frac{1}{2}\left(\frac{a}{\gcd(a,b)} - 1\right)\left(\frac{b}{\gcd(a,b)} - 1\right)$$

has a nonnegative integral solution, and $\Gamma(a,b)=1$ if

$$1 + \frac{a}{\gcd(a,b)}x + \frac{b}{\gcd(a,b)}y = \frac{1}{2}\left(\frac{a}{\gcd(a,b)} - 1\right)\left(\frac{b}{\gcd(a,b)} - 1\right)$$

has a nonnegative integral solution.

Given an integer sequence $(a_n)_{n=1}^{\infty}$, what is the sequence $(\Gamma(a_n, a_{n+1}))_{n=1}^{\infty}$?

Theorem (Polymath Jr. 23)

Let $a, b \in \mathbb{N}$. If a|b or b|a, then $\Gamma(a, b) = 0$. Otherwise:

- a) When $a/\gcd(a,b)$ is odd, then $\Gamma(a,b)=0$ if and only if $\Theta(b,a)$ is odd.
- b) When $a/\gcd(a,b)$ is even, then $\Gamma(a,b)=0$ if and only if $\Theta(a,b)$ is odd.

 $\Theta(a, b)$: the unique multiplicative inverse of $a/\gcd(a, b) \mod b/\gcd(a, b)$

Theorem (Polymath Jr. 23)

Let $a, b \in \mathbb{N}$. If a|b or b|a, then $\Gamma(a, b) = 0$. Otherwise:

- a) When $a/\gcd(a,b)$ is odd, then $\Gamma(a,b)=0$ if and only if $\Theta(b,a)$ is odd.
- b) When $a/\gcd(a,b)$ is even, then $\Gamma(a,b)=0$ if and only if $\Theta(a,b)$ is odd.

 $\Theta(a, b)$: the unique multiplicative inverse of $a/\gcd(a, b) \mod b/\gcd(a, b)$

Theorem (Polymath Jr. 23)

① For each $k \in \mathbb{N}$, the sequence $(\Gamma(n^k,(n+1)^k))_{n=1}^{\infty}$ is eventually $0,1,0,1,\ldots$

Theorem (Polymath Jr. 23)

Let $a, b \in \mathbb{N}$. If a|b or b|a, then $\Gamma(a, b) = 0$. Otherwise:

- a) When $a/\gcd(a,b)$ is odd, then $\Gamma(a,b)=0$ if and only if $\Theta(b,a)$ is odd.
- b) When $a/\gcd(a,b)$ is even, then $\Gamma(a,b)=0$ if and only if $\Theta(a,b)$ is odd.

 $\Theta(a,b)$: the unique multiplicative inverse of $a/\gcd(a,b)\mod b/\gcd(a,b)$

Theorem (Polymath Jr. 23)

- **3** For each $k \in \mathbb{N}$, the sequence $(\Gamma(n^k, (n+1)^k))_{n=1}^{\infty}$ is eventually $0, 1, 0, 1, \ldots$
- ② For arithmetic progressions $a_n = a + (n-1)r$ with $a, r \in \mathbb{N}$, $(\Gamma(a_n, a_{n+1}))_{n=1}^{\infty}$ is either $0, 1, 0, 1, \ldots$ or $1, 0, 1, 0, \ldots$

Problem 3

Let $\mathcal{F} = \{(a_n)_{n=1}^{\infty} : (\Gamma(a_n, a_{n+1}))_{n=1}^{\infty} \text{ eventually alternates between 0 and 1}\}.$ Characterize sequences that are in \mathcal{F} .

Problem 4 (from Polymath Jr. 23)

$$H(x) := \frac{\#\{(a,b) \in \mathbb{N}^2 : 1 \leqslant a \leqslant b \leqslant x, \Gamma(a,b) = 1\}}{\#\{(a,b) \in \mathbb{N}^2 : 1 \leqslant a \leqslant b \leqslant x\}}$$

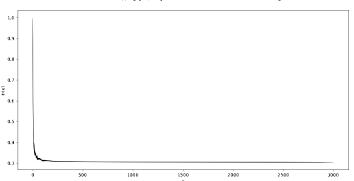


Figure: Plots of H(x) for $1 \le x \le 3000$ with 2000 sample points. In particular, $H(3000) \approx 0.30423059$.

The sequence $(\Gamma(k,n))_{n=1}^{\infty}$ and Problem 5

Theorem (Polymath Jr. 23)

Let $k \in \mathbb{N}$. The following hold.

- If k is odd, $(\Gamma(k, n))_{n=1}^{\infty}$ has period k. In each period, the number of 0's is one more than the number of 1's.
- ② If k is even, $(\Gamma(k, n))_{n=1}^{\infty}$ has period 2k. In each period, the number of 0's is two more than the number of 1's.

The sequence $(\Gamma(k,n))_{n=1}^{\infty}$ and Problem 5

Theorem (Polymath Jr. 23)

Let $k \in \mathbb{N}$. The following hold.

- If k is odd, $(\Gamma(k, n))_{n=1}^{\infty}$ has period k. In each period, the number of 0's is one more than the number of 1's.
- ② If k is even, $(\Gamma(k, n))_{n=1}^{\infty}$ has period 2k. In each period, the number of 0's is two more than the number of 1's.

Problem 5: Fix $k \in \mathbb{N}$. For which sequences $(a_n)_{n=1}^{\infty}$ is the sequence $(\Gamma(k, a_n))_{n=1}^{\infty}$ periodic?

Problem 1: For $(i,j) \in \mathbb{N}^2$, find the nonnegative integral solution (x,y) when $(a,b) = (F_n^i, F_{n+1}^j)$.

Problem 1: For $(i,j) \in \mathbb{N}^2$, find the nonnegative integral solution (x,y) when $(a,b) = (F_n^i, F_{n+1}^j)$.

Problem 2: Find the formula for the solutions (x, y) when a and b are taken from more general recursively defined sequences.

Problem 1: For $(i,j) \in \mathbb{N}^2$, find the nonnegative integral solution (x,y) when $(a,b) = (F_n^i, F_{n+1}^j)$.

Problem 2: Find the formula for the solutions (x, y) when a and b are taken from more general recursively defined sequences.

Problem 3: Let

 $\mathcal{F} = \{(a_n)_{n=1}^{\infty} : (\Gamma(a_n, a_{n+1}))_{n=1}^{\infty}$ eventually alternates between 0 and 1}. Characterize sequences that are in \mathcal{F} .

Problem 1: For $(i,j) \in \mathbb{N}^2$, find the nonnegative integral solution (x,y) when $(a,b) = (F_n^i, F_{n+1}^j)$.

Problem 2: Find the formula for the solutions (x, y) when a and b are taken from more general recursively defined sequences.

Problem 3: Let

 $\mathcal{F} = \{(a_n)_{n=1}^{\infty} : (\Gamma(a_n, a_{n+1}))_{n=1}^{\infty}$ eventually alternates between 0 and 1}. Characterize sequences that are in \mathcal{F} .

Problem 4: Let

$$H(x) := \frac{\#\{(a,b) \in \mathbb{N}^2 : 1 \leqslant a \leqslant b \leqslant x, \Gamma(a,b) = 1\}}{\#\{(a,b) \in \mathbb{N}^2 : 1 \leqslant a \leqslant b \leqslant x\}}.$$

Compute $\lim_{x\to\infty} H(x)$.

Problem 1: For $(i,j) \in \mathbb{N}^2$, find the nonnegative integral solution (x,y) when $(a,b) = (F_n^i, F_{n+1}^j)$.

Problem 2: Find the formula for the solutions (x, y) when a and b are taken from more general recursively defined sequences.

Problem 3: Let

 $\mathcal{F} = \{(a_n)_{n=1}^{\infty}: (\Gamma(a_n,a_{n+1}))_{n=1}^{\infty}$ eventually alternates between 0 and 1}. Characterize sequences that are in \mathcal{F} .

Problem 4: Let

$$H(x) := \frac{\#\{(a,b) \in \mathbb{N}^2 : 1 \leqslant a \leqslant b \leqslant x, \Gamma(a,b) = 1\}}{\#\{(a,b) \in \mathbb{N}^2 : 1 \leqslant a \leqslant b \leqslant x\}}.$$

Compute $\lim_{x\to\infty} H(x)$.

Problem 5: Fix $k \in \mathbb{N}$. For which sequences $(a_n)_{n=1}^{\infty}$ is the sequence $(\Gamma(k, a_n))_{n=1}^{\infty}$ periodic?

We thank the participants at Polymath Jr. 25 for helpful conversations.

We thank the participants at Polymath Jr. 25 for helpful conversations.

We gratefully acknowledge support from the National Science Foundation DMS2341670.

We thank the participants at Polymath Jr. 25 for helpful conversations.

We gratefully acknowledge support from the National Science Foundation DMS2341670.

Thank you!

