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Goals

Review classical random matrix theory.

See how the structure of the ensembles affects
limiting behavior.

Discuss the tools and techniques needed to prove the
results.
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Introduction
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Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at
t1, t2, t3, . . . .

Question: What rules govern the spacings between the ti?

Examples:

Spacings b/w Energy Levels of Nuclei.
Spacings b/w Eigenvalues of Matrices.
Spacings b/w Primes.
Spacings b/w nk� mod 1.
Spacings b/w Zeros of L-functions.
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Sketch of proofs

In studying many statistics, often three key steps:

1 Determine correct scale for events.

2 Develop an explicit formula relating what we want to
study to something we understand.

3 Use an averaging formula to analyze the quantities
above.

It is not always trivial to figure out what is the correct
statistic to study!
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Classical
Random Matrix Theory
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.

Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into
nucleus, see what comes out.

Fundamental Equation:

H n = En n

H : matrix, entries depend on system
En : energy levels
 n : energy eigenfunctions
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Origins of Random Matrix Theory

Statistical Mechanics: for each configuration,
calculate quantity (say pressure).
Average over all configurations – most configurations
close to system average.
Nuclear physics: choose matrix at random, calculate
eigenvalues, average over matrices (real Symmetric
A = AT , complex Hermitian A

T
= A).
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Random Matrix Ensembles

A =

⎛
⎜⎜⎝

a11 a12 a13 ⋅ ⋅ ⋅ a1N

a12 a22 a23 ⋅ ⋅ ⋅ a2N
...

...
...

. . .
...

a1N a2N a3N ⋅ ⋅ ⋅ aNN

⎞
⎟⎟⎠ = AT , aij = aji

Fix p, define

Prob(A) =
∏

1≤i≤j≤N

p(aij).

This means

Prob (A : aij ∈ [�ij , �ij ]) =
∏

1≤i≤j≤N

∫ �ij

xij=�ij

p(xij)dxij .

Want to understand eigenvalues of A.
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Eigenvalue Distribution

�(x − x0) is a unit point mass at x0:∫
f (x)�(x − x0)dx = f (x0).
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Eigenvalue Distribution

�(x − x0) is a unit point mass at x0:∫
f (x)�(x − x0)dx = f (x0).

To each A, attach a probability measure:

�A,N(x) =
1
N

N∑

i=1

�

(
x − �i(A)

2
√

N

)
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Eigenvalue Distribution

�(x − x0) is a unit point mass at x0:∫
f (x)�(x − x0)dx = f (x0).

To each A, attach a probability measure:

�A,N(x) =
1
N

N∑

i=1

�

(
x − �i(A)

2
√

N

)

∫ b

a
�A,N(x)dx =

#
{
�i :

�i(A)
2
√

N
∈ [a, b]

}

N
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Eigenvalue Distribution

�(x − x0) is a unit point mass at x0:∫
f (x)�(x − x0)dx = f (x0).

To each A, attach a probability measure:

�A,N(x) =
1
N

N∑

i=1

�

(
x − �i(A)

2
√

N

)

∫ b

a
�A,N(x)dx =

#
{
�i :

�i(A)
2
√

N
∈ [a, b]

}

N

kth moment =

∑N
i=1 �i(A)k

2k N
k
2+1

=
Trace(Ak )

2kN
k
2+1

.
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Wigner’s Semi-Circle Law

Wigner’s Semi-Circle Law

N × N real symmetric matrices, entries i.i.d.r.v. from a
fixed p(x) with mean 0, variance 1, and other moments
finite. Then for almost all A, as N → ∞

�A,N(x) −→
{

2
�

√
1 − x2 if ∣x ∣ ≤ 1

0 otherwise.
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SKETCH OF PROOF: Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but it is the
matrix elements that are chosen randomly and
independently.

Eigenvalue Trace Lemma

Let A be an N × N matrix with eigenvalues �i(A). Then

Trace(Ak ) =
N∑

n=1

�i(A)k ,

where

Trace(Ak) =
N∑

i1=1

⋅ ⋅ ⋅
N∑

ik=1

ai1i2ai2i3 ⋅ ⋅ ⋅aiN i1.
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SKETCH OF PROOF: Correct Scale

Trace(A2) =
N∑

i=1

�i(A)2.

By the Central Limit Theorem:

Trace(A2) =

N∑

i=1

N∑

j=1

aijaji =

N∑

i=1

N∑

j=1

a2
ij ∼ N2

N∑

i=1

�i(A)2 ∼ N2

Gives NAve(�i(A)2) ∼ N2 or Ave(�i(A)) ∼
√

N.

16



Intro Classical RMT Fat-Thin Toeplitz PT HPT Period m Circulant Refs

SKETCH OF PROOF: Averaging Formula

Recall k -th moment of �A,N(x) is Trace(Ak )/2kNk/2+1.

Average k -th moment is
∫

⋅ ⋅ ⋅
∫

Trace(Ak)

2kNk/2+1

∏

i≤j

p(aij)daij .

Proof by method of moments: Two steps

Show average of k -th moments converge to moments
of semi-circle as N → ∞;
Control variance (show it tends to zero as N → ∞).
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SKETCH OF PROOF: Averaging Formula for Second Moment

Substituting into expansion gives

1
22N2

∫ ∞

−∞
⋅ ⋅ ⋅
∫ ∞

−∞

N∑

i=1

N∑

j=1

a2
ji ⋅ p(a11)da11 ⋅ ⋅ ⋅p(aNN)daNN

Integration factors as
∫ ∞

aij=−∞
a2

ij p(aij)daij ⋅
∏

(k,l) ∕=(i,j)
k<l

∫ ∞

akl=−∞
p(akl)dakl = 1.

Higher moments involve more advanced combinatorics
(Catalan numbers).
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SKETCH OF PROOF: Averaging Formula for Higher Moments

Higher moments involve more advanced combinatorics
(Catalan numbers).

1
2k Nk/2+1

∫ ∞

−∞
⋅ ⋅ ⋅
∫ ∞

−∞

N∑

i1=1

⋅ ⋅ ⋅
N∑

ik=1

ai1i2 ⋅ ⋅ ⋅aik i1 ⋅
∏

i≤j

p(aij)daij .

Main contribution when the aiℓiℓ+1 ’s matched in pairs, not
all matchings contribute equally (if did would get a
Gaussian and not a semi-circle; this is seen in Real
Symmetric Palindromic Toeplitz matrices).

19



Intro Classical RMT Fat-Thin Toeplitz PT HPT Period m Circulant Refs

Numerical examples

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.005

0.01

0.015

0.02

0.025
Distribution of eigenvalues−−Gaussian, N=400, 500 matrices

500 Matrices: Gaussian 400 × 400
p(x) = 1√

2�
e−x2/2
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Numerical examples

−300 −200 −100 0 100 200 300
0

500

1000

1500

2000

2500

 
The eigenvalues of the Cauchy
distribution are NOT semicirular. 

Cauchy Distribution: p(x) = 1
�(1+x2)
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GOE Conjecture

GOE Conjecture:
As N → ∞, the probability density of the spacing b/w
consecutive normalized eigenvalues approaches a limit
independent of p.

Until recently only known if p is a Gaussian.

GOE(x) ≈ �
2 xe−�x2/4.
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Numerical Experiment: Uniform Distribution

Let p(x) = 1
2 for ∣x ∣ ≤ 1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

 

The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 uniform matrices, normalized in batches
of 20. 

5000: 300 × 300 uniform on [−1, 1]
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Cauchy Distribution

Let p(x) = 1
�(1+x2)

.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2000

4000

6000

8000

10000

12000

 
 

The local spacings of the central 3/5 of the eigenvalues
of 5000 100x100 Cauchy matrices, normalized in batches
of 20. 

5000: 100 × 100 Cauchy
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Cauchy Distribution

Let p(x) = 1
�(1+x2)

.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 Cauchy matrices, normalized in batches
of 20. 

5000: 300 × 300 Cauchy
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Fat-Thin
Families
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Fat-Thin Families

Need a family FAT enough to do averaging and THIN
enough so that everything isn’t averaged out.

Real Symmetric Matrices have N(N+1)
2 independent

entries.

Examples of Fat-Thin sub-families:

Band Matrices
Random Graphs
Special Matrices (Toeplitz)
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Band Matrices

Example of a Band 1 Matrix:
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 0 0 ⋅ ⋅ ⋅ 0
a12 a22 a23 0 ⋅ ⋅ ⋅ 0
0 a23 a33 a24 ⋅ ⋅ ⋅ 0
...

...
...

...
. . .

...
...

...
...

... ⋅ ⋅ ⋅ aN−1,N

0 0 0 ⋅⋅ aN−1,N aNN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

For Band 0 (Diagonal Matrices):

Density of Eigenvalues: p(x)
Spacings b/w eigenvalues: Poissonian.
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Random Graphs

   1

2
3

4

Degree of a vertex = number of edges leaving the vertex.
Adjacency matrix: aij = number edges b/w Vertex i and
Vertex j .

A =

⎛
⎜⎜⎝

0 0 1 1
0 0 1 0
1 1 0 2
1 0 2 0

⎞
⎟⎟⎠

These are Real Symmetric Matrices.
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McKay’s Law (Kesten Measure) with d = 3

Density of Eigenvalues for d-regular graphs

f (x) =

{
d

2�(d2−x2)

√
4(d − 1)− x2 ∣x ∣ ≤ 2

√
d − 1

0 otherwise.
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McKay’s Law (Kesten Measure) with d = 6

Fat-Thin: fat enough to average, thin enough to get
something different than semi-circle (though as d → ∞
recover semi-circle).
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3-Regular Graph with 2000 Vertices: Comparison with the GOE

Spacings between eigenvalues of 3-regular graphs and
the GOE:

0.5 1. 1.5 2. 2.5 3.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
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Real Symmetric Toeplitz Matrices
Chris Hammond and Steven J. Miller
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Toeplitz Ensembles

Toeplitz matrix is of the form
⎛
⎜⎜⎜⎜⎝

b0 b1 b2 ⋅ ⋅ ⋅ bN−1

b−1 b0 b1 ⋅ ⋅ ⋅ bN−2

b−2 b−1 b0 ⋅ ⋅ ⋅ bN−3
...

...
...

. . .
...

b1−N b2−N b3−N ⋅ ⋅ ⋅ b0

⎞
⎟⎟⎟⎟⎠

Will consider Real Symmetric Toeplitz matrices.
Main diagonal zero, N − 1 independent parameters.
Normalize Eigenvalues by

√
N.
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Eigenvalue Density Measure

�A,N(x)dx =
1
N

N∑

i=1

�

(
x − �i(A)√

N

)
dx .

The k th moment of �A,N(x) is

Mk(A,N) =
1

N
k
2+1

N∑

i=1

�k
i (A) =

Trace(Ak)

N
k
2+1

.

Let
Mk(N) = lim

N→∞
Mk(A,N).
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Moments: k = 2 and k odd

Lemma: M2(N) → 1: As aij = b∣i−j ∣:

M2(N) =
1

N2

∑

1≤i1,i2≤N

E(b∣i1−i2∣b∣i2−i1∣)

=
1

N2

∑

1≤i1,i2≤N

E(b2
∣i1−i2∣).

N2 − N times get 1, N times 0, thus M2(N) = 1 − 1
N . □

Lemma: M2k+1(N) → 0: Follows from trivial counting.
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Even Moments

M2k(N) =
1

Nk+1

∑

1≤i1,⋅⋅⋅ ,i2k≤N

E(b∣i1−i2∣b∣i2−i3∣ ⋅ ⋅ ⋅b∣i2k−i1∣).

Main Term: bj ’s matched in pairs, say

b∣im−im+1∣ = b∣in−in+1∣, xm = ∣im − im+1∣ = ∣in − in+1∣.

Two possibilities:

im − im+1 = in − in+1 or im − im+1 = −(in − in+1).

(2k − 1)!! ways to pair, 2k choices of sign.
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Main Term: All Signs Negative (else lower order contributio n)

M2k(N) =
1

Nk+1

∑

1≤i1,⋅⋅⋅ ,i2k≤N

E(b∣i1−i2∣b∣i2−i3∣ ⋅ ⋅ ⋅b∣i2k−i1∣).

Let x1, . . . , xk be the values of the ∣ij − ij+1∣’s, �1, . . . , �k the
choices of sign. Define x̃1 = i1 − i2, x̃2 = i2 − i3, . . . .

i2 = i1 − x̃1

i3 = i1 − x̃1 − x̃2
...

i1 = i1 − x̃1 − ⋅ ⋅ ⋅ − x̃2k

x̃1 + ⋅ ⋅ ⋅+ x̃2k =

k∑

j=1

(1 + �j)�jxj = 0, �j = ±1.
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Even Moments: Summary

Main Term: paired, all signs negative.

M2k(N) ≤ (2k − 1)!! + Ok

(
1
N

)
.

Bounded by Gaussian.
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The Fourth Moment

ij ij ij

klkl
kl

jk jk jk
lilili

M4(N) =
1

N3

∑

1≤i1,i2,i3,i4≤N

E(b∣i1−i2∣b∣i2−i3∣b∣i3−i4∣b∣i4−i1∣)

Let xj = ∣ij − ij+1∣.
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The Fourth Moment

Case One: x1 = x2, x3 = x4:

i1 − i2 = −(i2 − i3) and i3 − i4 = −(i4 − i1).

Implies
i1 = i3, i2 and i4 arbitrary.

Left with E[b2
x1

b2
x3
]:

N3 − N times get 1, N times get p4 = E[b4
x1
].

Contributes 1 in the limit.
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The Fourth Moment

M4(N) =
1

N3

∑

1≤i1,i2,i3,i4≤N

E(b∣i1−i2∣b∣i2−i3∣b∣i3−i4∣b∣i4−i1∣)

Case Two: Diophantine Obstruction: x1 = x3 and x2 = x4.

i1 − i2 = −(i3 − i4) and i2 − i3 = −(i4 − i1).

This yields

i1 = i2 + i4 − i3, i1, i2, i3, i4 ∈ {1, . . . ,N}.

If i2, i4 ≥ 2N
3 and i3 < N

3 , i1 > N: at most (1 − 1
27)N

3 valid
choices.
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The Fourth Moment

Theorem: Fourth Moment: Let p4 be the fourth moment
of p. Then

M4(N) = 2
2
3
+ Op4

(
1
N

)
.

500 Toeplitz Matrices, 400 × 400.

-4 -2 0 2 4

250

500

750

1000

1250

1500
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Higher Moments: Brute Force Computations

For sixth moment, five configurations occurring
(respectively) 2, 6, 3, 3 and 1 times.

M6(N) = 11 (Gaussian’s is 15).
M8(N) = 64 4

15 (Gaussian’s is 105).

Lemma: For 2k ≥ 4, limN→∞ M2k(N) < (2k − 1)!!.
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Higher Moments: Unbounded support

Lemma: Moments’ growth implies unbounded support.

Proof: Main idea:

i2 = i1 − x̃1

i3 = i1 − x̃1 − x̃2
...

i2k = i1 − x̃1 − ⋅ ⋅ ⋅ − x̃2k .

Once specify i1 and x̃1 through x̃2k , all indices fixed.
If matched in pairs and each ij ∈ {1, . . . ,N}, have a valid
configuration, contributes +1.
Problem: a running sum i1 − x̃1 − ⋅ ⋅ ⋅ − x̃m ∕∈ {1, . . . ,N}.
Lots of freedom in locating positive and negative signs,
use CLT to show “most” configurations are valid.
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Main Result

Types of Convergence: Define the random variable Xm;N on Ωℕ by

Xm;N(A) =

∫ ∞

−∞

xmdF AN/
√

N(x);

note this is the mth moment of the measure �AN .

1 Almost sure convergence: For each m, Xm;N → Xm almost surely
if ℙℕ ({A ∈ Ωℕ : Xm;N (A) → Xm(A) as N → ∞}) = 1;

2 In probability: For each m, Xm;N → Xm in probability if for all
� > 0, limN→∞ ℙℕ(∣Xm;N (A) − Xm(A)∣ > �) = 0;

3 Weak convergence: For each m, Xm;N → Xm weakly if

ℙℕ(Xm;N (A) ≤ x) → ℙ(Xm(A) ≤ x)

as N → ∞ for all x at which FXm(x) = ℙ(Xm(A) ≤ x) is
continuous.
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Main Result

Alternate notations are to say with probability 1 for almost
sure convergence and in distribution for weak
convergence; both almost sure convergence and
convergence in probability imply weak convergence. For
our purposes we take Xm as the random variable which is
identically Mm (thus Xm(A) = Mm for all A ∈ Ωℕ).

Theorem: HM ’05
For real symmetric Toeplitz matrices, the limiting spectral
measure converges in probability to a unique measure of
unbounded support which is not the Gaussian. If p is
even have strong convergence).
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Poissonian Behavior?

1 2 3 4 5

0.2

0.4

0.6

0.8

1

Not rescaled. Looking at middle 11 spacings, 1000
Toeplitz matrices (1000 × 1000), entries iidrv from the
standard normal.
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Real Symmetric Palindromic Toeplitz Matrices
Adam Massey, Steven J. Miller, Jon Sinsheimer
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Real Symmetric Palindromic Toeplitz matrices

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0 b1 b2 b3 ⋅ ⋅ ⋅ b3 b2 b1 b0

b1 b0 b1 b2 ⋅ ⋅ ⋅ b4 b3 b2 b1

b2 b1 b0 b1 ⋅ ⋅ ⋅ b5 b4 b3 b2

b3 b2 b1 b0 ⋅ ⋅ ⋅ b6 b5 b4 b3
...

...
...

...
. . .

...
...

...
...

b3 b4 b5 b6 ⋅ ⋅ ⋅ b0 b1 b2 b3

b2 b3 b4 b5 ⋅ ⋅ ⋅ b1 b0 b1 b2

b1 b2 b3 b4 ⋅ ⋅ ⋅ b2 b1 b0 b1

b0 b1 b2 b3 ⋅ ⋅ ⋅ b3 b2 b1 b0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Extra symmetry fixes Diophantine Obstructions.
Always have eigenvalue at 0.
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Real Symmetric Palindromic Toeplitz (cont)

-4 -2 2 4

0.1

0.2

0.3

0.4

500 Real Symmetric Palindromic Toeplitz, 1000 × 1000.

Note the bump at the zeroth bin is due to the forced
eigenvalues at 0.
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Effects of Palindromicity on Matchings

aim im+1 paired with ain in+1 implies one of the following hold:

im+1 − im = ±(in+1 − in)
im+1 − im = ±(in+1 − in) + (N − 1)
im+1 − im = ±(in+1 − in)− (N − 1).

Concisely: There is a C ∈ {0, ±(N − 1)} such that

im+1 − im = ±(in+1 − in) + C.
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Fourth Moment

Highlights the effect of palindromicity.

Still matched in pairs, but more diagonals now lead to
valid matchings.
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Fourth Moment

Highlights the effect of palindromicity.

Still matched in pairs, but more diagonals now lead to
valid matchings.

Non-adjacent case was x1 = x3 and x2 = x4:

i1 − i2 = −(i3 − i4) and i2 − i3 = −(i4 − i1).

This yields

i1 = i2 + i4 − i3, i1, i2, i3, i4 ∈ {1, . . . ,N}.
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Fourth Moment

Highlights the effect of palindromicity.

Still matched in pairs, but more diagonals now lead to
valid matchings.

Non-adjacent case now x1 = x3 and x2 = x4:

j − i = −(l − k) + C1 k − j = −(i − l) + C2,

or equivalently

j = i + k − l + C1 = i + k − l − C2.

We see that C1 = −C2, or C1 + C2 = 0.
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Results

Theorem: MMS ’07
For real symmetric palindromic matrices, converge in
probability to the Gaussian (if p is even have strong
convergence).
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Results

Theorem: MMS ’07
Let X0, . . . ,XN−1 be iidrv (with Xj = XN−j ) from a
distribution p with mean 0, variance 1, and finite higher
moments. For ! = (x0, x1, . . . ) set Xℓ(!) = xℓ, and

S(k)
N (!) =

1√
N

N−1∑

ℓ=0

Xℓ(!) cos(2�kℓ/N).

Then as n → ∞

Prob

({
! ∈ Ω : sup

x∈ℝ

∣∣∣∣∣
1
N

N−1∑

k=0

IS(k)
N (!)≤x − Φ(x)

∣∣∣∣∣→ 0

})
= 1;

I the indicator fn, Φ CDF of standard normal.
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Summary

Ensemble order D.F. Density Spacings
Real Symm N2 Semi-Circle GOE

Diagonal N p(x) Poisson
d-Regular dN Kesten GOE
Toeplitz N Toeplitz Poisson

Palindromic Toeplitz N Gaussian

Red is conjectured
Blue is recent
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Real Symmetric Highly Palindromic Toeplitz Matrices
Steven Jackson, Steven J. Miller, Vincent Pham
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Notation: Real Symmetric Highly Palindromic Toeplitz matr ices

For fixed n, we consider N × N real symmetric Toeplitz
matrices in which the first row is 2n copies of a
palindrome, entries are iidrv from a p with mean 0,
variance 1 and finite higher moments.

For instance, a doubly palindromic Toeplitz matrix is of the
form:

AN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0 b1 ⋅ ⋅ ⋅ b1 b0 b0 b1 ⋅ ⋅ ⋅ b1 b0

b1 b0 ⋅ ⋅ ⋅ b2 b1 b0 b0 ⋅ ⋅ ⋅ b2 b1

b2 b1 ⋅ ⋅ ⋅ b3 b2 b1 b0 ⋅ ⋅ ⋅ b3 b2
...

...
. . .

...
...

...
...

. . .
...

...
b2 b3 ⋅ ⋅ ⋅ b0 b1 b2 b3 ⋅ ⋅ ⋅ b1 b2

b1 b2 ⋅ ⋅ ⋅ b0 b0 b1 b2 ⋅ ⋅ ⋅ b0 b1

b0 b1 ⋅ ⋅ ⋅ b1 b0 b0 b1 ⋅ ⋅ ⋅ b1 b0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Main Results

Theorem: JMP ’09
Let n be a fixed positive integer, N a multiple of 2n,
consider the ensemble of real symmetric N × N
palindromic Toeplitz matrices whose first row is 2n copies
of a fixed palindrome (independent entries iidrv from p
with mean 0, variance 1 and finite higher moments).

1 As N → ∞ the measures �n,AN converge in probability
to a limiting spectral measure which is even and has
unbounded support.

2 If p is even, then converges almost surely.
3 The limiting measure has fatter tails than the

Gaussian (or any previously seen distribution).
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Key Lemmas

Much of analysis similar to previous ensembles (though
combinatorics more involved).

For the fourth moment: both the adjacent and
non-adjacent matchings contribute the same.

Lemma: As N → ∞ the fourth moment tends to

M4,n = 2n+1 + 2−n.

Note: Number of palindromes is 2n; thus smallest is
20 = 1 (and do recover 3 for palindromic Toeplitz).
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Conjectures

Conjecture
In the limit, all matchings contribute equally.

Very hard to test; numerics hard to analyze.

To avoid simulating ever-larger matrices, noticed
Diophantine analysis suggests average 2mth moment of
N × N matrices should satisfy

M2m,n;N = M2m,n +
C1,n

N
+

C2,n

N2
+ ⋅ ⋅ ⋅+ Cm,n

Nm
.

Instead of simulating prohibitively large matrices, simulate
large numbers of several sizes of smaller matrices, do a
least squares analysis to estimate M2m,n.
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Conjectures

Table: Conjectured and observed moments for 1000 real symmetric
doubly palindromic 2048 × 2048 Toeplitz matrices. The conjectured
values come from assuming Conjecture.

Moment Conjectured Observed Observed/Predicted
2 1.000 1.001 1.001
4 4.500 4.521 1.005
6 37.500 37.887 1.010
8 433.125 468.53 1.082

10 6260.63 107717.3 17.206
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Conjectures

Table: Observed moments for doubly palindromic Toeplitz matrices.
Conjectured values from assuming Conjecture.

N #sims 2nd 4th 6th 8th 10th

8 1,000,000 1.000 8.583 150.246 3984.36 141270.00
12 1,000,000 1.000 7.178 110.847 2709.61 90816.60
16 1,000,000 1.001 6.529 93.311 2195.78 73780.00
20 1,000,000 1.001 6.090 80.892 1790.39 57062.50
24 1,000,000 1.000 5.818 73.741 1577.42 49221.50
28 1,000,000 1.000 5.621 68.040 1396.50 42619.90
64 250,000 1.001 4.992 50.719 858.58 22012.90
68 250,000 1.000 4.955 49.813 831.66 20949.60
72 250,000 1.000 4.933 49.168 811.50 20221.20
76 250,000 1.000 4.903 48.474 794.10 19924.10
80 250,000 1.000 4.888 47.951 773.31 18817.00
84 250,000 1.001 4.876 47.615 764.84 18548.00

128 125,000 1.000 4.745 44.155 659.00 14570.60
132 125,000 1.000 4.739 43.901 651.18 14325.30
136 125,000 0.999 4.718 43.456 637.70 13788.10
140 125,000 1.000 4.718 43.320 638.74 14440.40
144 125,000 1.001 4.727 43.674 647.05 14221.80
148 125,000 1.000 4.716 43.172 628.02 13648.10

Conjectured 1.000 4.500 37.500 433.125 6260.63
Best Fit M2m,2 1.000 4.496 38.186 490.334 6120.94
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Period m Circulant Matrices
Gene Kopp, Murat Koloğlu and Steven J. Miller
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Study circulant matrices periodic with period m on
diagonals.

6-by-6 real symmetric period 2-circulant matrix:
⎛
⎜⎜⎜⎜⎜⎝

c0 c1 c2 c3 c2 d1

c1 d0 d1 d2 c3 d2

c2 d1 c0 c1 c2 c3

c3 d2 c1 d0 d1 d2

c2 c3 c2 d1 c0 c1

d1 d2 c3 d2 c1 d0

⎞
⎟⎟⎟⎟⎟⎠
.

Look at the expected value for the moments:

Mn(N) := E(Mn(A,N))

=
1

N
n
2+1

∑

1≤i1,...,in≤N

E(ai1 i2ai2i3 ⋅ ⋅ ⋅ain i1).
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Matchings

Rewrite:

Mn(N) =
1

N
n
2+1

∑

∼
�(∼)md1(∼) ⋅ ⋅ ⋅mdl (∼).

where the sum is over equivalence relations on
{(1, 2), (2, 3), ..., (n, 1)}. The dj(∼) denote the sizes of the
equivalence classes, and the md the moments of p.
Finally, the coefficient �(∼) is the number of solutions to
the system of Diophantine equations:
Whenever (s, s + 1) ∼ (t , t + 1),

is+1 − is ≡ it+1 − it (mod N) and is ≡ it (mod m), or
is+1 − is ≡ −(it+1 − it) (mod N) and is ≡ it+1 (mod m).
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is+1 − is ≡ it+1 − it (mod N) and is ≡ it (mod m), or
is+1 − is ≡ −(it+1 − it) (mod N) and is ≡ it+1 (mod m).

Figure: Red edges same orientation and blue, green opposite.
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Contributing Terms

As N → ∞, the only terms that contribute to this sum are
those in which the entries are matched in pairs and with
opposite orientation.
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Algebraic Topology

Think of pairings as topological identifications, the
contributing ones give rise to orientable surfaces.

Contribution from such a pairing is m−2g, where g is the
genus (number of holes) of the surface. Proof:
combinatorial argument involving Euler characteristic.
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Computing the Even Moments

Theorem: Even Moment Formula

M2k =

⌊k/2⌋∑

g=0

"g(k)m−2g + Ok

(
1
N

)
,

with "g(k) the number of pairings of the edges of a
(2k)-gon giving rise to a genus g surface.

J. Harer and D. Zagier (1986) gave generating functions
for the "g(k).
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Harer and Zagier
⌊k/2⌋∑

g=0

"g(k)r k+1−2g = (2k − 1)!! c(k , r)

where

1 + 2
∞∑

k=0

c(k , r)xk+1 =

(
1 + x
1 − x

)r

.

Thus, we write

M2k = m−(k+1)(2k − 1)!! c(k ,m).
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A multiplicative convolution and Cauchy’s residue formula
yields the characteristic function of the distribution
(inverse Fourier transform of the density).

�(t) =
∞∑

k=0

(it)2kM2k

(2k)!

=
1

2�im

∮

∣z∣=2

1
2z−1

((
1 + z−1

1 − z−1

)m

− 1

)
e−t2z/2m dz

z

=
1
m

e
−t2

2m

m∑

l=1

(
m
l

)
1

(l − 1)!

(−t2

m

)l−1
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Results

Fourier transform and algebra yields

Theorem: Kopp, Kolo ğlu and M–

The limiting spectral density function fm(x) of the real
symmetric m-circulant ensemble is given by the formula

fm(x) =
e−mx2

2

√
2�m

m∑

r=0

1
(2r)!

m−r∑

s=0

(
m

r + s + 1

)

(2r + 2s)!
(r + s)!s!

(
−1

2

)s

(mx2)r .

As m → ∞, the limiting spectral densities approach the
semicircle distribution.
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Results (continued)

Figure: Plot for f1 and histogram of eigenvalues of 100 circulant
matrices of size 400 × 400.
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Results (continued)

Figure: Plot for f2 and histogram of eigenvalues of 100 2-circulant
matrices of size 400 × 400.
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Results (continued)

Figure: Plot for f3 and histogram of eigenvalues of 100 3-circulant
matrices of size 402 × 402.
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Results (continued)

Figure: Plot for f4 and histogram of eigenvalues of 100 4-circulant
matrices of size 400 × 400.
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Results (continued)

Figure: Plot for f8 and histogram of eigenvalues of 100 8-circulant
matrices of size 400 × 400.

80



Intro Classical RMT Fat-Thin Toeplitz PT HPT Period m Circulant Refs

Results (continued)

Figure: Plot for f20 and histogram of eigenvalues of 100 20-circulant
matrices of size 400 × 400.
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Results (continued)

Figure: Plot of convergence to the semi-circle.
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