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Basics

• Will explore simple probabilities.

• Problems from card games, dice, ….

• In many situations each event is equally likely, so the probability an event A 
happens is the number of ways A can happen, divided by the number of ways 
something can happen.

• Example: Imagine we roll a fair die; our result is in the set {1, 2, 3, 4, 5, 6}.

• What is the probability we roll a 6? 

• What is the probability we roll an even number?
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Basics

• Will explore simple probabilities.

• Problems from card games, dice, ….

• In many situations each event is equally likely, so the probability an event A 
happens is the number of ways A can happen, divided by the number of ways 
something can happen.

• Example: Imagine we roll a fair die; our result is in the set {1, 2, 3, 4, 5, 6}.

• What is the probability we roll a 6? 1/6 (six possible rolls, only one is a 6)

• What is the probability we roll an even number? 3/6 or 1/2 (six possible rolls, 
and 2, 4 and 6 are even while the rest are odd).
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Factorial Function n!
One of the most useful functions in probability is the factorial function. We 
denote the factorial of an integer n by writing n! (so n followed by an 
exclamation point).

It has a nice meaning: n! is the number of ways to arrange n objects when order 
matters.

Thus if we want to order the elements of {a} there is just one way.

If we want to order the elements of {a,b} there are two ways: ab and ba.

If we want to order the elements of {a,b,c} there are six ways:

abc, acb, bac, bca, cab, cba (why did we list this way?)
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Factorial Function n!

It has a nice meaning: n! is the number of ways to arrange n objects when 
order matters.

If we want to order the elements of {a,b,c} there are six ways:

abc, acb, bac, bca, cab, cba (why did we list this way?)

We want to make sure we do not miss any cases. We first do all the ways with a
as the first element, and then use the PREVIOUS result about how to order a
set of two elements. Then we do all the ways with b as the first element, then
all the ways with c first.
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Factorial Function n!

It has a nice meaning: n! is the number of ways to arrange n objects when 
order matters. If we want to order the elements of {a,b,c} there are six ways:

abc, acb, bac, bca, cab, cba (why did we list this way?)
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Factorial Function n!

It has a nice meaning: n! is the number of ways to arrange n objects when 
order matters.

How many ways are there to order {a,b,c,d}? 
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Factorial Function n!

It has a nice meaning: n! is the number of ways to arrange n objects when 
order matters.

How many ways are there to order {a,b,c,d}? 

9



Factorial Function n!

The factorial function grows very rapidly.

• The number of ways to order a deck of 52 cards is 52!, which is  
80658175170943878571660636856403766975289505440883277824000000000000 (or about 
1068). To put in perspective, there are about 1080 to 1090 objects in the universe! 

• The number of ways to order the standard alphabet is 26! which is  
403291461126605635584000000 (or about 1026).
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Factorial Function n!

What should 0! equal?

4! = 24 3! = 6 2! =  2 1! = 1

We have the interpretation that n! is the number of ways to order n objects 
when order matters.

How many ways are there to order zero objects?
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Factorial Function n!

What should 0! equal?

4! = 24 3! = 6 2! =  2 1! = 1

We have the interpretation that n! is the number of ways to order n objects 
when order matters.

How many ways are there to order zero objects?

We DEFINE 0! to be 1; there is one way to do nothing (you can’t do nothing in 
more than one way). This turns out to be a VERY useful definition.
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Factorial Function and Recursion
Note 4! = 4 ∗ 3 ∗ 2 ∗ 1 = 4 ∗ 3 ∗ 2 ∗ 1 = 4 ∗ 3!.

Similarly 5! = 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 5 ∗ 4!.

If you know n! it is very easy to find (n+1)!

𝑛 + 1 ! = 𝑛 + 1 ∗ 𝑛 ∗ … ∗ 3 ∗ 2 ∗ 1

= 𝑛 + 1 ∗ 𝑛 ∗ 𝑛 − 1 ∗ … ∗ 3 ∗ 2 ∗ 1
= 𝑛 + 1 ∗ 𝑛!

(If you have seen Fibonacci numbers, another example of a recurrence.)
13



Part II: Permutations
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Permutations: nPr or nPr

The factorial function is great for ordering n objects; what if we only want to 
order some of them?

For example, imagine we have five people: {a, b, c, d, e}. How many ways are
there to choose two people where order matters (so the first chosen is
president, the second is vice-president)? How many ways are there to choose
three people where order matters?

15



Permutations: nPr
The factorial function is great for ordering n objects; what if we only want to order
some of them? nPr or nPr is the number of ways to choose r people from n when
order matters. P stands for permutations.

For example, imagine we have five people: {a, b, c, d, e}.

How many ways are there to choose two people where order matters (so the first
chosen is president, the second is vice-president)?

• 20 ways: We have 5 choices for the first spot, and then 4 for the second: 5 * 4 = 20.

How many ways are there to choose three people where order matters?
• 60 ways: We have 5 choices for the first spot, 4 for the second, then 3 for the third:

5 * 4 * 3 = 60.

We denote the first 5P2 or 5P2 and the second 5P3 or 5P3.
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Permutations: nPr
The factorial function is great for ordering n objects; what if we only want to
order some of them? nPr or nPr is the number of ways to choose r people from
n when order matters. P stands for permutations.

What if we want to choose 4 people from 11, order matters?

We have 11 choices for the first, then 10 for the second, then 9 for the third,
then 8 for the fourth, or 11 ∗ 10 ∗ 9 ∗ 8.

How can you write using factorials? Hint: you must do one of the most
important algebraic attacks in mathematics: you multiply by 1. This doesn’t
change the answer, but allows you to re-write the algebra.
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Permutations: nPr
The factorial function is great for ordering n objects; what if we only want to
order some of them? nPr or nPr is the number of ways to choose r people from
n when order matters. P stands for permutations.

What if we want to choose 4 people from 11, order matters?

We have 11 choices for the first, then 10 for the second, then 9 for the third,
then 8 for the fourth, or 11 ∗ 10 ∗ 9 ∗ 8.

HINT: Note 11 ∗ 10 ∗ 9 ∗ 8 looks a lot like 11!; what would we need to
multiply it by to get 11!? You can’t multiply by anything other than 1 or you
change the value, so what should we multiply it by?
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Permutations: nPr
The factorial function is great for ordering n objects; what if we only want to
order some of them? nPr or nPr is the number of ways to choose r people from
n when order matters. P stands for permutations.

What if we want to choose 4 people from 11, order matters?

We have 11 choices for the first, then 10 for the second, then 9 for the third,
then 8 for the fourth, or 11 ∗ 10 ∗ 9 ∗ 8.

HINT: Note 11 ∗ 10 ∗ 9 ∗ 8 looks a lot like 11!; what would we need to
multiply it by to get 11!? You can’t multiply by anything other than 1 or you
change the value, so what should we multiply it by? Multiply by 7!/7!, so

11 ∗ 10 ∗ 9 ∗ 8 = 11 ∗ 10 ∗ 9 ∗ 8 ∗
7!

7!
=

11 ∗ 10 ∗ 9 ∗ 8 ∗ 7!

7!
=

11!

7! 19



Permutations: nPr
The factorial function is great for ordering n objects; what if we only want to
order some of them? nPr or nPr is the number of ways to choose r people from
n when order matters. P stands for permutations.

What if we want to choose 4 people from 11, order matters?

11 ∗ 10 ∗ 9 ∗ 8 = 11 ∗ 10 ∗ 9 ∗ 8 ∗
7!

7!
=

11 ∗ 10 ∗ 9 ∗ 8 ∗ 7!

7!
=

11!

7!

More generally, what if we want to choose r people from n, order matters?
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Permutations: nPr
The factorial function is great for ordering n objects; what if we only want to
order some of them? nPr or nPr is the number of ways to choose r people from
n when order matters. P stands for permutations.

What if we want to choose 4 people from 11?

11 ∗ 10 ∗ 9 ∗ 8 = 11 ∗ 10 ∗ 9 ∗ 8 ∗
7!

7!
=

11 ∗ 10 ∗ 9 ∗ 8 ∗ 7!

7!
=

11!

7!

More generally, what if we want to choose r people from n, order matters? It is

𝑛 ∗ 𝑛 − 1 ∗ … ∗ (𝑛 − 𝑟 − 1 ) = 𝑛 ∗ 𝑛 − 1 ∗ … ∗ (𝑛 − 𝑟 − 1 ) ∗
(𝑛−𝑟)!

(𝑛−𝑟)!

We thus find nPr or nPr equals
𝑛!

(𝑛−𝑟)!
21



Permutations: nPr
We thus find nPr or nPr equals

𝑛!

(𝑛−𝑟)!
. Grows a lot slower than n!

r = 1 r = 2 r = 3

What do these growth rates look like? They look like …..
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Permutations: nPr
We thus find nPr or nPr equals

𝑛!

(𝑛−𝑟)!
. Grows a lot slower than n!

r = 1 r = 2 r = 3

What do these growth rates look like? They look like polynomials.

First looks linear, others are harder but are quadratics and then cubics.

Can we prove? Can we find formulas for these? 23



Permutations: nPr
We thus find nPr or nPr equals

𝑛!

(𝑛−𝑟)!
. Grows a lot slower than n!

r = 1 r = 2 r = 3

nP1 or nP1 is n!/(n-1)!. As n! = n * (n-1)! we have it equals n, so linear!

nP2 or nP2 is n!/(n-2)!. As n! = n * (n-1) * (n-2)! we have it equals n * (n-1),
which equals n2 – n, so quadratic!

In general, nPr is a polynomial of degree r. Good exercise to prove this.
24



Part III: Combinations
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Permutation Review: nPr or nPr

We saw n! is the number of ways of order n objects when order matters.

Then nPr or nPr is the number of ways of choosing r objects from n, when order 
matters. Note n! is nPr for some r – what r is it?
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Permutation Review: nPr or nPr
We saw n! is the number of ways of order n objects when order matters.

Then nPr or nPr is the number of ways of choosing r objects from n, when order
matters. Note n! is nPr for some r – it is r = n.

We saw we could write 11P4 as 11 ∗ 10 ∗ 9 ∗ 8 𝑂𝑅
11!

7!
.

Both have advantages. We can see what is going on with 11 ∗ 10 ∗ 9 ∗ 8, BUT
if we have a factorial function defined then we can compute 11!/7! faster;
imagine having to write out the product of 2020P1010.

Additionally, the ratio of factorials will help us see connections later in nCr.27



Combinations: nCr or nCr
We saw n! is the number of ways of order n objects when order matters.

Then nPr or nPr is the number of ways of choosing r objects from n, when order
matters. Note n! is nPr for some r – it is r = n.

We now introduce a new function: nCr or nCr is the number of ways to choose r
objects from n when order DOES NOT matter; the C stands for combinations.

Let’s evaluate nCr for some r; can you think of some r where it is easy to figure
out what nCr is? Try r = ….
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Combinations: nCr or nCr

We saw n! is the number of ways to order n objects when order matters.

Then nPr or nPr is the number of ways of choosing r objects from n, when order
matters. Note n! is nPr for some r – it is r = n.

We now introduce a new function: nCr or nCr is the number of ways to choose r
objects from n when order DOES NOT matter; the C stands for combinations.

Let’s evaluate nCr for some r; can you think of some r where it is easy to figure
out what nCr is? Hint: Try r = 0 or n. Then we find….

29



Combinations: nCr or nCr

We saw n! is the number of ways to order n objects when order matters.

Then nPr or nPr is the number of ways of choosing r objects from n, when order
matters. Note n! is nPr for some r – it is r = n.

We now introduce a new function: nCr or nCr is the number of ways to choose r
objects from n when order DOES NOT matter; the C stands for combinations.

Let’s evaluate nCr for some r; can you think of some r where it is easy to figure
out what nCr is? Hint: Try r = 0 or n. Then we find nC0 = nCn = 1.

30



Combinations: nCr or nCr

We now introduce a new function: nCr or nCr is the number of ways to choose r
objects from n when order DOES NOT matter; the C stands for combinations.

Let’s evaluate nCr for some r; can you think of some r where it is easy to figure
out what nCr is? We find nC0 = nCn = 1.

What would nCr be when r = 1 or n-1? Note this is different than most
presentations; we have NOT given the formula for nCr but instead are trying to
find it….
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Combinations: nCr or nCr
We now introduce a new function: nCr or nCr is the number of ways to choose r
objects from n when order DOES NOT matter; the C stands for combinations.

Let’s evaluate nCr for some r. We find nC0 = nCn = 1.

What would nCr be when r = 1 or n-1?

• If r = 1 we choose just one person. There are n ways to choose one person so
nC1 = n.

• If r = n-1 we choose everyone but one person for our set. There are n ways to
choose a person to exclude, so nCn-1 = n.

Hmm. Notice nC0 = nCn = 1 and nC1 = nCn-1 = n. Any thoughts on what might be
true more generally? Maybe compare the values at r and at what?
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Combinations: nCr or nCr
We now introduce a new function: nCr or nCr is the number of ways to choose r
objects from n when order DOES NOT matter; the C stands for combinations.

Let’s evaluate nCr for some r. We find nC0 = nCn = 1.

What would nCr be when r = 1 or n-1?

• If r = 1 we choose just one person. There are n ways to choose one person so
nC1 = n.

• If r = n-1 we choose everyone but one person for our set. There are n ways to
choose a person to exclude, so nCn-1 = n.

Hmm. Notice nC0 = nCn = 1 and nC1 = nCn-1 = n. Any thoughts on what might be
true more generally? Maybe compare the values at r and n-r. Are these equal?
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Combinations: nCr or nCr
We now introduce a new function: nCr or nCr is
the number of ways to choose r objects from n
when order DOES NOT matter; the C stands for
combinations.

Let’s evaluate nCr for some r. We find nC0 = nCn = 1
and nC1 = nCn-1 = n.

Compare the values at r and n-r. Are these equal?

Note choosing r from n to BE in the group is the
same as choosing n-r to EXCLUDE.
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Combinations: nCr or nCr
nCr or nCr is the number of ways to choose r objects from n when order DOES
NOT matter; the C stands for combinations.

The factorial function is great for ordering n objects; what if we only want to
order some of them? nPr or nPr is the number of ways to choose r people from n
when order matters. P stands for permutations.

How do you think 𝑛𝐶𝑟, 𝑟! 𝑎𝑛𝑑 𝑛𝑃𝑟 =
𝑛!

𝑛−𝑟 !
are related?

• r! is the number of ways to order r objects.

• nPr is the number of ways to choose r objects from n when order matters.

• nCr is the number of ways to choose r objects from n when order doesn’t
matter.
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Combinations: nCr or nCr
nCr or nCr is the number of ways to choose r objects from n when order DOES
NOT matter; the C stands for combinations.

The factorial function is great for ordering n objects; what if we only want to
order some of them? nPr or nPr is the number of ways to choose r people from n
when order matters. P stands for permutations.

Claim: 𝑛𝐶𝑟 ∗ 𝑟! = 𝑛𝑃𝑟 =
𝑛!

𝑛−𝑟 !
, thus 𝑛𝐶𝑟 =

𝑛!

𝑟! 𝑛−𝑟 !
.

Proof: 𝑛𝑃𝑟 is the number of ways to choose r objects from n when order
MATTERS.

• How many ways are there to order r objects? This is just r!.

• Thus each UNORDERED group of size r contributes r! ORDERED sets.
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Comparing nCr and nPr
nCr or nCr is the number of ways to choose r objects from n when order DOES
NOT matter, while nPr or nPr is the number of ways to choose r people from n
when order matters. P stands for permutations.

• How many ways are there to choose 13 cards from a deck of 52 cards when
order matters?

• How many ways are there to choose 13 cards from a deck of 52 cards when
order does not matter?

• What is the probability of getting a given set of 13 cards?
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Comparing nCr and nPr
nCr or nCr is the number of ways to choose r objects from n when order DOES
NOT matter, while nPr or nPr is the number of ways to choose r people from n
when order matters. P stands for permutations.

• How many ways are there to choose 13 cards from a deck of 52 cards when
order matters? 52P13 = 3,954,242,643,911,239,680,000 (about 1021.6).

• How many ways are there to choose 13 cards from a deck of 52 cards when
order does not matter? 52C13 = 635,013,559,600 (about 1011.8)

• What is the probability of getting a given set of 13 cards? 1/52C13 or about
1/1011.8.
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Distinct Deals in Bridge
nCr or nCr is the number of ways to choose r objects from n when order DOES
NOT matter, while nPr or nPr is the number of ways to choose r people from n
when order matters. P stands for permutations.

In a hand of bridge, each of the four players is dealt 13 cards. It does not matter
what order you get the cards, only which cards you get.

• How many ways are there to deal the cards?
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Distinct Deals in Bridge
nCr or nCr is the number of ways to choose r objects from n when order DOES
NOT matter, while nPr or nPr is the number of ways to choose r people from n
when order matters. P stands for permutations.

In a hand of bridge, each of the four players is dealt 13 cards. It does not matter
what order you get the cards, only which cards you get.

• How many ways are there to deal the cards?

Answer: 52𝐶13 ∗ 39𝐶13 ∗ 26𝐶13 ∗ 13𝐶13

Equals 53,644,737,765,488,792,839,237,440,000 (about 1028.7)

Do you think in all of human history there have ever been two deals the same?
40



Distinct Deals in Bridge
In a hand of bridge, each of the four players is dealt 13 cards. It does not matter
what order you get the cards, only which cards you get.

• How many ways are there to deal the cards?

Answer: 52𝐶13 ∗ 39𝐶13 ∗ 26𝐶13 ∗ 13𝐶13

Equals 53,644,737,765,488,792,839,237,440,000 (about 1028.7295)

Do you think in all of human history there have ever been two deals the same?

Number of seconds since the universe began:

60 ∗ 60 ∗ 24 ∗ 366 ∗ 14,000,000,000 or about 1017.6.

About 108,000,000,000 people have been born, if each deals a hand a second
since the dawn of time get up to about 1028.6795.
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Part IV: 
May the Fourth Probabilities
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Happy Star Wars Day!

In honor of today being Star Wars Day (May the Fourth be with you),
will discuss some probabilities inspired by Star Wars.

Pre-requisite: The Geometric Series Formula (covered in an earlier
lecture: Induction and Sums: Part III: From the Geometric Series
Formula to Primes https://youtu.be/UWNM8EtzoMI, assuming algebra
I, 22 minutes):

𝐼𝑓 𝑟 < 1 𝑡ℎ𝑒𝑛 1 + 𝑟 + 𝑟2 + 𝑟3 + 𝑟4 + ∙∙∙ =
1

1 − 𝑟
43
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The Geometric Series Formula (Review)

The Geometric Series Formula is one of the most important in
mathematics. It is one of the few sums we can evaluate exactly.

If |r| < 1 then 1 + r + r2 + r3 + r4 + … =
1

1−𝑟
.

This is often proved by first computing the finite sum, up to rn, and
taking a limit. Note since |r| < 1 that each term rn gets small fast…..
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The Geometric Series Converges if |r| < 1: Review

1 + 𝑟 + 𝑟2 + 𝑟3 + 𝑟4 + ⋯ = 
1

1−𝑟
.

Why does this converge? Take r = ½. We then have 1 + ½ + ¼ + …. = 
1

1 −
1

2

= 2, 

and we can view this as we start at 0, and each step covers half the distance 
to 2. We thus never reach it in finitely many steps, but we cover half the 
ground each time.  
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The Geometric Series Converges if |r| < 1: Review

1 + 𝑟 + 𝑟2 + 𝑟3 + 𝑟4 + ⋯ = 
1

1−𝑟
.

Why does this converge? Take r = ½. We then have 1 + ½ + ¼ + …. = 
1

1 −
1

2

= 2, 

and we can view this as we start at 0, and each step covers half the distance 
to 2. We thus never reach it in finitely many steps, but we cover half the 
ground each time.  
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The Geometric Series Converges if |r| < 1: Review

1 + 𝑟 + 𝑟2 + 𝑟3 + 𝑟4 + ⋯ = 
1

1−𝑟
.

Why does this converge? Take r = ½. We then have 1 + ½ + ¼ + …. = 
1

1 −
1

2

= 2, 

and we can view this as we start at 0, and each step covers half the distance 
to 2. We thus never reach it in finitely many steps, but we cover half the 
ground each time.  
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The Geometric Series Converges if |r| < 1: Review

1 + 𝑟 + 𝑟2 + 𝑟3 + 𝑟4 + ⋯ = 
1

1−𝑟
.

Why does this converge? Take r = ½. We then have 1 + ½ + ¼ + …. = 
1

1 −
1

2

= 2, 

and we can view this as we start at 0, and each step covers half the distance 
to 2. We thus never reach it in finitely many steps, but we cover half the 
ground each time.  
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The Geometric Series Formula: Review
The Geometric Series Formula is one of the most important in mathematics. It 
is one of the few sums we can evaluate exactly.

Lemma: If |r| < 1 then 1 + r + r2 + r3 + r4 + … + rn = 
1 −𝑟𝑛+1

1−𝑟
.

Proof: Let Sn = 1 + r + r2 + r3 + r4 + … + rn

Then       r Sn =       r + r2 + r3 + r4 + … + rn + rn+1

What should we do now?
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The Geometric Series Formula: Review
The Geometric Series Formula is one of the most important in mathematics. It 
is one of the few sums we can evaluate exactly.

Lemma: If |r| < 1 then 1 + r + r2 + r3 + r4 + … + rn = 
1 −𝑟𝑛+1

1−𝑟
.

Proof: Let Sn = 1 + r + r2 + r3 + r4 + … + rn

Then       r Sn =       r + r2 + r3 + r4 + … + rn + rn+1

Subtract: Sn – r Sn = 1 – rn+1, 

So (1-r) Sn = 1 – rn+1,  or Sn

50



The Geometric Series Formula: Review
The Geometric Series Formula is one of the most important in mathematics. It 
is one of the few sums we can evaluate exactly.

Lemma: If |r| < 1 then 1 + r + r2 + r3 + r4 + … + rn = 
1 −𝑟𝑛+1

1−𝑟
.

Proof: Let Sn = 1 + r + r2 + r3 + r4 + … + rn

Then       r Sn =       r + r2 + r3 + r4 + … + rn + rn+1

Subtract: Sn – r Sn = 1 – rn+1, 

So (1-r) Sn = 1 – rn+1,  or Sn =  
1 −𝑟𝑛+1

1−𝑟
.

If we let n go to infinity, we see rn+1 goes to
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The Geometric Series Formula: Review
The Geometric Series Formula is one of the most important in mathematics. It 
is one of the few sums we can evaluate exactly.

Lemma: If |r| < 1 then 1 + r + r2 + r3 + r4 + … + rn = 
1 −𝑟𝑛+1

1−𝑟
.

Proof: Let Sn = 1 + r + r2 + r3 + r4 + … + rn

Then       r Sn =       r + r2 + r3 + r4 + … + rn + rn+1

Subtract: Sn – r Sn = 1 – rn+1, 

So (1-r) Sn = 1 – rn+1,  or Sn =  
1 −𝑟𝑛+1

1−𝑟
.

If we let n go to infinity, we see rn+1 goes to 0, so we get the infinite sum is  
1

1−𝑟
. 
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The Darth Vader Problem
Only the Emperor is less forgiving than Darth Vader; one mistake and you are 
dead! No one seems to fail him twice….

If your probability of failing him on a task is p, how many tasks till you die?
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The Darth Vader Problem
If your probability of failing him on a task is p, 

how many tasks till you die?

Could be unlucky and fail at the first task and die.

Could be very lucky and never fail and live a long, long time….

• What is the probability your first failure is on your first task?

• What is the probability your first failure is on your second task?

• What is the probability your first failure is on your third task?

• What is the probability your first failure is on your nth task?
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The Darth Vader Problem
If your probability of failing him on a task is p, 

how many tasks till you die?

Could be unlucky and fail at the first task and die.

Could be very lucky and never fail and live a long, long time….

• What is the probability your first failure is on your first task?                 p

• What is the probability your first failure is on your second task? (1-p)  p

• What is the probability your first failure is on your third task?     (1-p)2 p

• What is the probability your first failure is on your nth task?         (1-p)n-1 p
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The Darth Vader Problem
If your probability of failing him on a task is p, 

how many tasks till you die?

• What is the probability your first failure is on your first task?                 p

• What is the probability your first failure is on your second task? (1-p)  p

• What is the probability your first failure is on your third task?     (1-p)2 p

• What is the probability your first failure is on your nth task?       (1-p)n-1 p

The EXPECTED VALUE of a random variable is the sum of the product of each 
value it takes on times the probability it takes on that value.

Here it is : 1 ∗ 𝑃𝑟𝑜𝑏 𝑓𝑖𝑟𝑠𝑡 𝑓𝑎𝑖𝑙 𝑎𝑡 1 + 2 ∗ 𝑃𝑟𝑜𝑏 𝑓𝑖𝑟𝑠𝑡 𝑓𝑎𝑖𝑙 𝑎𝑡 2 + ∙∙∙
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The Darth Vader Problem
If your probability of failing him on a task is p, 

how many tasks till you die?

• What is the probability your first failure is on your first task?                 p

• What is the probability your first failure is on your second task? (1-p)  p

• What is the probability your first failure is on your third task?     (1-p)2 p

• What is the probability your first failure is on your nth task?        (1-p)n-1 p

The EXPECTED VALUE of a random variable is the sum of the product of each 
value it takes on times the probability it takes on that value.

Here it is : 1 ∗ 𝑝 + 2 ∗ 1 − 𝑝 𝑝 + 3 ∗ 1 − 𝑝 2 𝑝 + ∙∙∙ +𝑛 ∗ (1-p)n-1 𝑝 +∙∙∙
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The Darth Vader Problem: LOWER BOUND
If your probability of failing a task is p, how many tasks till you die?

The EXPECTED VALUE of a random variable is the sum of the product

of each value it takes on times the probability it takes on that value.

𝑆 𝑝 = 𝑝(1 + 2 ∗ 1 − 𝑝 + 3 ∗ 1 − 𝑝 2 + 4 1 − 𝑝 3 + ∙∙∙)

Note 𝑝(1 + 1 − 𝑝 + 1 − 𝑝 2 + 1 − 𝑝 3 + ∙∙∙) ≤ 𝑆 𝑝

Using the Geometric Series formula with r = ???
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The Darth Vader Problem: LOWER BOUND
If your probability of failing a task is p, how many tasks till you die?

The EXPECTED VALUE of a random variable is the sum of the product

of each value it takes on times the probability it takes on that value.

𝑆 𝑝 = 𝑝(1 + 2 ∗ 1 − 𝑝 + 3 ∗ 1 − 𝑝 2 + 4 1 − 𝑝 3 + ∙∙∙)

Note 𝑝(1 + 1 − 𝑝 + 1 − 𝑝 2 + 1 − 𝑝 3 + ∙∙∙) ≤ 𝑆 𝑝

Using the Geometric Series formula with r = 1-p we get  𝑝
1

1−(1−𝑝)
≤ 𝑆 𝑝

Gives the useless lower bound of S(p) is at least 1. 
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The Darth Vader Problem: UPPER BOUND
If your probability of failing a task is p, how many tasks till you die?

The EXPECTED VALUE of a random variable is the sum of the product

of each value it takes on times the probability it takes on that value.

𝑆 𝑝 = 𝑝(1 + 2 ∗ 1 − 𝑝 + 3 ∗ 1 − 𝑝 2 + 4 1 − 𝑝 3 + ∙∙∙)

Note 𝑝(1 + 2 1 − 𝑝 + 22 1 − 𝑝 2 + 23 1 − 𝑝 3 + ∙∙∙) ≥ 𝑆 𝑝

If (1-p) < ??? then we can use the geometric series with ratio r = ???.
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The Darth Vader Problem: UPPER BOUND
If your probability of failing a task is p, how many tasks till you die?

The EXPECTED VALUE of a random variable is the sum of the product

of each value it takes on times the probability it takes on that value.

𝑆 𝑝 = 𝑝(1 + 2 ∗ 1 − 𝑝 + 3 ∗ 1 − 𝑝 2 + 4 1 − 𝑝 3 + ∙∙∙)

Note 𝑝(1 + 2 1 − 𝑝 + 22 1 − 𝑝 2 + 23 1 − 𝑝 3 + ∙∙∙) ≥ 𝑆 𝑝

If (1-p) < ½ then 2(1-p) < 1 so can use the Geometric Series formula and get 

𝑝
1

1−2(1−𝑝)
≥ 𝑆 𝑝

For example, if p = ¾ gives an upper bound of 3/2 or 1.5.
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The Darth Vader Problem
If your probability of failing a task is p, how many tasks till you die?

The EXPECTED VALUE of a random variable is the sum of the product

of each value it takes on times the probability it takes on that value.

𝑆 𝑝 = 𝑝(1 + 2 ∗ 1 − 𝑝 + 3 ∗ 1 − 𝑝 2 + 4 1 − 𝑝 3 + ∙∙∙)

Bounds: 𝐼𝑓 1 − 𝑝 <
1

2
𝑠𝑜 𝑝 >

1

2

Then 1 ≤ 𝑆 𝑝 ≤
𝑝

1 −2 1−𝑝
.
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The Darth Vader Problem
If your probability of failing a task is p, how many tasks till you die?

The EXPECTED VALUE of a random variable is the sum of the product

of each value it takes on times the probability it takes on that value.

𝑆 𝑝 = 𝑝(1 + 2 ∗ 1 − 𝑝 + 3 ∗ 1 − 𝑝 2 + 4 1 − 𝑝 3 + ∙∙∙)

Using Calculus one can show S(p) = 1/p; is this formula reasonable?

Look at extreme cases: what happens as p goes to 0 or 1?
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The Darth Vader Problem
If your probability of failing a task is p, how many tasks till you die?

The EXPECTED VALUE of a random variable is the sum of the product

of each value it takes on times the probability it takes on that value.

𝑆 𝑝 = 𝑝(1 + 2 ∗ 1 − 𝑝 + 3 ∗ 1 − 𝑝 2 + 4 1 − 𝑝 3 + ∙∙∙)

Using Calculus one can show S(p) = 1/p; is this formula reasonable?

Look at extreme cases: what happens as p goes to 0 or infinity?

• As p goes to 1 you are a complete failure, and only do one tasks.

• As p goes to 0 you never fail, and tasks goes to infinity! 
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The Darth Vader Problem
Probability of failing a task is p, how many tasks till you die?

𝑆 𝑝 = 𝑝(1 + 2 ∗ 1 − 𝑝 + 3 ∗ 1 − 𝑝 2 + 4 1 − 𝑝 3 + ∙∙∙)

Let q = 1-p. Note this is p(1 + 2q + 3q2 + 4q3 + ∙∙∙).

We can rewrite: It is

p(1 + q + q2 + q3 + ∙∙∙) + p(q + q2 + q3 + ∙∙∙) + p (q2 + q3 + q4 + ∙∙∙) + ∙∙∙

Each is a geometric series with ratios ???
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The Darth Vader Problem
Probability of failing a task is p, how many tasks till you die?

𝑆 𝑝 = 𝑝(1 + 2 ∗ 1 − 𝑝 + 3 ∗ 1 − 𝑝 2 + 4 1 − 𝑝 3 + ∙∙∙)

Let q = 1-p. Note this is p(1 + 2q + 3q2 + 4q3 + ∙∙∙).

We can rewrite: It is

p(1 + q + q2 + q3 + ∙∙∙) + p(q + q2 + q3 + ∙∙∙) + p (q2 + q3 + q4 + ∙∙∙) + ∙∙∙

Each is a geometric series with ratios q, q, q, … but different starting terms. 

S(p) = p (1 + q + q2 + ∙∙∙) + pq (1 + q + q2 + ∙∙∙)  + pq2 (1 + q + q2 + ∙∙∙) + ∙∙∙

S(p) = 𝑝 + 𝑝𝑞 + 𝑝𝑞2 + 𝑝𝑞3 +∙∙∙
1

1−𝑞
=
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The Darth Vader Problem
Probability of failing a task is p, how many tasks till you die?

𝑆 𝑝 = 𝑝(1 + 2 ∗ 1 − 𝑝 + 3 ∗ 1 − 𝑝 2 + 4 1 − 𝑝 3 + ∙∙∙)

Let q = 1-p. Note this is p(1 + 2q + 3q2 + 4q3 + ∙∙∙).

We can rewrite: It is

p(1 + q + q2 + q3 + ∙∙∙) + p(q + q2 + q3 + ∙∙∙) + p (q2 + q3 + q4 + ∙∙∙) + ∙∙∙

Each is a geometric series with ratios q, q, q, … but different starting terms. 

S(p) = p (1 + q + q2 + ∙∙∙) + pq (1 + q + q2 + ∙∙∙)  + pq2 (1 + q + q2 + ∙∙∙) + ∙∙∙

S(p) = 𝑝 + 𝑝𝑞 + 𝑝𝑞2 + 𝑝𝑞3 +∙∙∙
1

1−𝑞
= 𝑝 1 + 𝑞 + 𝑞2 + 𝑞3 +∙∙∙

1

1−𝑞
= 𝑝

1

1−𝑞

1

1−𝑞

Thus S(p) = 1/p as claimed! And without calculus! 67



Part V: Die Another Game

https://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/talks.html

https://youtu.be/tBz2GIxfYXA?t=2
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The Darth Vader Problem: Review
Probability of failing a task is p, how many tasks till you die?

Answer: Expect 1/p.

Equivalently, if the probability of a success is p, the number of tasks or tries you 
need before the first success is 1/p.
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The Sixes Game
Probability of failing a task is p, how many tasks till you die?

Answer: Expect 1/p.

Equivalently, if the probability of a success is p, the number of tasks or tries you 
need before the first success is 1/p.

We can use this to study a new game!

The sixes game: you roll a fair die until you get a 6. How many rolls do you 
expect before this happens?
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The Sixes Game
Probability of failing a task is p, how many tasks till you die?

Answer: Expect 1/p

Equivalently, if the probability of a success is p, the number of tasks or tries you 
need before the first success is 1/p.

We can use this to study a new game!

The sixes game: you roll a fair die until you get a 6. How many rolls do you 
expect before this happens?

Answer: As the probability of rolling a 6 is p = 1/6 (all six outcomes are equally 
likely) we expect it will take 6 rolls.
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The Double Sixes Game
You have two fair die.

On each turn you can roll one or both of the die.

The goal is to have both show a 6.

Thus once one of the die lands on a 6 you can stop rolling it.

Questions:
• How many rolls do you expect before you have double sixes?

• What is the probability you win on your first turn? On your second? On your nth?

Can we use the Darth Vader Theorem here? Why or why not?
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The Double Sixes Game
You have two fair die.

On each turn you can roll one or both of the die.

The goal is to have both show a 6.

Thus once one of the die lands on a 6 you can stop rolling it.

Questions:
• How many rolls do you expect before you have double sixes?

• What is the probability you win on your first turn? On your second? On your nth?

Can we use the Darth Vader Theorem here? Why or why not?

Hard to use: the difficulty is that our probability of a success is NOT constant; it 
depends on whether or not we rolled a 6 earlier…. Need a new method.
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The Double Sixes Game
You have two fair die.

On each turn you can roll one or both of the die.

The goal is to have both show a 6.

Thus once one of the die lands on a 6 you can stop rolling it.

We will first find the probability of winning after a given number of rolls.

It is easy to find the probability of winning on the first roll: It is ???.
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The Double Sixes Game
You have two fair die.

On each turn you can roll one or both of the die.

The goal is to have both show a 6.

Thus once one of the die lands on a 6 you can stop rolling it.

We will first find the probability of winning after a given number of rolls.

It is easy to find the probability of winning on the first roll: It is 1/36.

What is the probability you win on the second roll? It is ???.
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The Double Sixes Game
You have two fair die.

On each turn you can roll one or both of the die.

The goal is to have both show a 6.

Thus once one of the die lands on a 6 you can stop rolling it.

We will first find the probability of winning after a given number of rolls.

It is easy to find the probability of winning on the first roll: It is 1/36.

What is the probability you win on the second roll? It is

10/36 * 1/6 + 25/36 * 1/36. But why???
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The Double Sixes Game
You have two fair die. On each turn you can roll one or both of the die.

The goal is to have both show a 6. Thus once one of the die lands on a 6 you can 
stop rolling it.
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Great Probability Results

We can continue the analysis, but there are more and more branches as we go 
down.

We introduce a WONDERFUL idea in probability:

78

The Law of Complementary Events: If the probability something happens is 
p, then the probability it does not happen is ????.



Great Probability Results

We can continue the analysis, but there are more and more branches as we go 
down.

We introduce a WONDERFUL idea in probability:

The Law of Complementary Events: If the probability something happens is 
p, then the probability it does not happen is 1-p.
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Great Probability Results
We introduce another WONDERFUL idea in probability:

The Law of Double Counting: The probability A or B happens is the sum of 
the probability each happens minus the probability they both happen:
Prob(A or B) = Prob(A) + Prob(B) – Prob(A and B).
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The Double Sixes Game
You have two fair die. On each turn you can roll one or both of the die.

Want both to show a 6. Once one of the die lands on a 6 you can stop rolling it.

What is the probability we win by the nth turn?

It is 1 minus the probability we have NOT won. 

What is the probability we haven’t won? It is ???.

The Law of Complementary Events: If the probability something happens is 
p, then the probability it does not happen is 1-p.

The Law of Double Counting: The probability A or B happens is the sum of 
the probability each happens minus the probability they both happen:
Prob(A or B) = Prob(A) + Prob(B) – Prob(A and B).
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The Double Sixes Game
You have two fair die. On each turn you can roll one or both of the die.

Want both to show a 6. Once one of the die lands on a 6 you can stop rolling it.

What is the probability we win by the nth turn?

It is 1 minus the probability we have NOT won. 

What is the probability we haven’t won? It is (5/6)n + (5/6)n – (25/36)n.

Where did this come from? It is the probability the first die is never a 6 PLUS
the probability the second is never a six, MINUS the probability neither die is 
ever a 6 (we must subtract as we we DOUBLE COUNTED that that probability).

The Law of Complementary Events: If the probability something happens is 
p, then the probability it does not happen is 1-p.

The Law of Double Counting: The probability A or B happens is the sum of 
the probability each happens minus the probability they both happen:
Prob(A or B) = Prob(A) + Prob(B) – Prob(A and B).
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The Double Sixes Game
You have two fair die. On each turn you can roll one or both of the die.

The goal is to have both show a 6. Thus once one of the die lands on a 6 you can 
stop rolling it.

What is the probability we win BY the nth turn? 1 – 2*(5/6)n + (25/36)n.

It is 1 minus the probability we have NOT won. 

What is the probability we haven’t won? It is (5/6)n + (5/6)n – (25/36)n.

So…, what is the probability we win ON the nth turn?

The Law of Complementary Events: If the probability something happens is 
p, then the probability it does not happen is 1-p.
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The Double Sixes Game
You have two fair die. On each turn you can roll one or both of the die.

The goal is to have both show a 6. Thus once one of the die lands on a 6 you can 
stop rolling it.

What is the probability we win BY the nth turn? 1 – 2*(5/6)n + (25/36)n.

It is 1 minus the probability we have NOT won. 

What is the probability we haven’t won? It is (5/6)n + (5/6)n – (25/36)n.

So…, what is the probability we win ON the nth turn?

It is the probability we win BY the nth turn MINUS the probability we win BY 
the (n-1)st turn! (1 – 2*(5/6)n + (25/36)n) – (1 – 2*(5/6)n-1 + (25/36)n-1)

The Law of Complementary Events: If the probability something happens is 
p, then the probability it does not happen is 1-p.
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The Double Sixes Game
You have two fair die. On each turn you can roll one or both of the die.

The goal is to have both show a 6. Thus once one of the die lands on a 6 you can 
stop rolling it.

What is the probability we win BY the nth turn? 1 – 2*(5/6)n + (25/36)n.

It is 1 minus the probability we have NOT won. 

What is the probability we haven’t won? It is (5/6)n + (5/6)n – (25/36)n.

So…, what is the probability we win ON the nth turn?

It is the probability we win BY the nth turn MINUS the probability we win BY 
the (n-1)st turn! (2/6)(5/6)n-1 – (11/36)(25/36)n-1.

The Law of Complementary Events: If the probability something happens is 
p, then the probability it does not happen is 1-p.
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The Double Sixes Game
You have two fair die. On each turn you can roll one or both of the die.

The goal is to have both show a 6. Thus once one of the die lands on a 6 you can 
stop rolling it.

Probability win on nth turn: (2/6)(5/6)n-1 – (11/36)(25/36)n-1.

100 trials                                 10,000 trials                      100,000 trials
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The Double Sixes Game: Code
Mathematica code to simulate
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The Double Sixes Game: Expected Value
Need the FULL strength of the Darth Vader Theorem (friendly version).

The Darth Vader Theorem: If the probability of a success is p, then the 
expected number of trials until a success is 1/p. Furthermore:
𝑆 𝑝 = 𝑝(1 + 2 ∗ 1 − 𝑝 + 3 ∗ 1 − 𝑝 2 + 4 1 − 𝑝 3 + ∙∙∙) = 1/p.
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The Double Sixes Game: Expected Value
Need the FULL strength of the Darth Vader Theorem (friendly version).

To computed the expected number of rolls until the Double Sixes game ends we 
need to compute the sum of n * Prob(takes exactly n rolls), n from 1 to infinity.

As Prob(takes exactly n rolls) = (2/6)(5/6)n-1 – (11/36)(25/36)n-1.

Notation: σ𝑛=1
∞ 𝑎𝑛 𝑚𝑒𝑎𝑛𝑠 𝑎1 + 𝑎2 + 𝑎3 + ∙∙∙ (using a Greek Sigma for Sum)

We have σ𝑛=1
∞ 𝑛 (2/6)(5/6)n−1 − (11/36)(25/36)n−1 .

First term: 
2

6
1 + 2

5

6
+ 3

5

6

2
+ 4

5

6

3
+∙∙∙

The Darth Vader Theorem: If the probability of a success is p, then the 
expected number of trials until a success is 1/p. Furthermore:
𝑆 𝑝 = 𝑝(1 + 2 ∗ 1 − 𝑝 + 3 ∗ 1 − 𝑝 2 + 4 1 − 𝑝 3 + ∙∙∙) = 1/p.
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The Double Sixes Game: Expected Value
Need the FULL strength of the Darth Vader Theorem (friendly version).

Notation: σ𝑛=1
∞ 𝑎𝑛 𝑚𝑒𝑎𝑛𝑠 𝑎1 + 𝑎2 + 𝑎3 + ∙∙∙∙ (using a Greek Sigma for Sum)

We have σ𝑛=1
∞ 𝑛 (2/6)(5/6)n−1 − (11/36)(25/36)n−1 .

Equals 
2

6
σ𝑛=1

∞ 𝑛 (5/6)n−1 -
11

36
σ𝑛=1

∞ 𝑛 (25/36)n−1.

Each looks a lot like the Darth Vader Theorem – need to adjust a bit. What 
should p be for the first? For the second?

The Darth Vader Theorem: If the probability of a success is p, then the 
expected number of trials until a success is 1/p. Furthermore:
𝑆 𝑝 = 𝑝(1 + 2 ∗ 1 − 𝑝 + 3 ∗ 1 − 𝑝 2 + 4 1 − 𝑝 3 + ∙∙∙) = 1/p.
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The Double Sixes Game: Expected Value
Need the FULL strength of the Darth Vader Theorem (friendly version).

Notation: σ𝑛=1
∞ 𝑎𝑛 𝑚𝑒𝑎𝑛𝑠 𝑎1 + 𝑎2 + 𝑎3 + ∙∙∙∙ (using a Greek Sigma for Sum)

We have σ𝑛=1
∞ 𝑛 (2/6)(5/6)n−1 − (11/36)(25/36)n−1 .

Equals 
2

6
σ𝑛=1

∞ 𝑛 (5/6)n−1 -
11

36
σ𝑛=1

∞ 𝑛 (25/36)n−1.

Each looks a lot like the Darth Vader Theorem – need to adjust a bit. What 
should be for the first? p = 1/6 (want 1-p = 5/6)

For the second? p = 11/36 (want 1-p = 25/36)

The Darth Vader Theorem: If the probability of a success is p, then the 
expected number of trials until a success is 1/p. Furthermore:
𝑆 𝑝 = 𝑝(1 + 2 ∗ 1 − 𝑝 + 3 ∗ 1 − 𝑝 2 + 4 1 − 𝑝 3 + ∙∙∙) = 1/p.
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The Double Sixes Game: Expected Value
Need the FULL strength of the Darth Vader Theorem (friendly version).

Notation: σ𝑛=1
∞ 𝑎𝑛 𝑚𝑒𝑎𝑛𝑠 𝑎1 + 𝑎2 + 𝑎3 + ∙∙∙∙ (using a Greek Sigma for Sum)

We have σ𝑛=1
∞ 𝑛 (2/6)(5/6)n−1 − (11/36)(25/36)n−1 .

Equals 
2

6
σ𝑛=1

∞ 𝑛 (5/6)n−1 -
11

36
σ𝑛=1

∞ 𝑛 (25/36)n−1.

Equals 2 *
1

6
σ𝑛=1

∞ 𝑛 (1 − 1/6)n−1 -
11

36
σ𝑛=1

∞ 𝑛 (1 − 11/36)n−1.

What is the first term? What is second?

The Darth Vader Theorem: If the probability of a success is p, then the 
expected number of trials until a success is 1/p. Furthermore:
𝑆 𝑝 = 𝑝(1 + 2 ∗ 1 − 𝑝 + 3 ∗ 1 − 𝑝 2 + 4 1 − 𝑝 3 + ∙∙∙) = 1/p.
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The Double Sixes Game: Expected Value
Need the FULL strength of the Darth Vader Theorem (friendly version).

Notation: σ𝑛=1
∞ 𝑎𝑛 𝑚𝑒𝑎𝑛𝑠 𝑎1 + 𝑎2 + 𝑎3 + ∙∙∙∙ (using a Greek Sigma for Sum)

We have σ𝑛=1
∞ 𝑛 (2/6)(5/6)n−1 − (11/36)(25/36)n−1 .

Equals 
2

6
σ𝑛=1

∞ 𝑛 (5/6)n−1 -
11

36
σ𝑛=1

∞ 𝑛 (25/36)n−1.

Equals 2 *
1

6
σ𝑛=1

∞ 𝑛 (1 − 1/6)n−1 -
11

36
σ𝑛=1

∞ 𝑛 (1 − 11/36)n−1.

What is the first term? 2 ∗
1

1/6
What is second? 

1

11/36
. Answer is …. 

The Darth Vader Theorem: If the probability of a success is p, then the 
expected number of trials until a success is 1/p. Furthermore:
𝑆 𝑝 = 𝑝(1 + 2 ∗ 1 − 𝑝 + 3 ∗ 1 − 𝑝 2 + 4 1 − 𝑝 3 + ∙∙∙) = 1/p.
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The Double Sixes Game: Expected Value
Need the FULL strength of the Darth Vader Theorem (friendly version).

Notation: σ𝑛=1
∞ 𝑎𝑛 𝑚𝑒𝑎𝑛𝑠 𝑎1 + 𝑎2 + 𝑎3 + ∙∙∙∙ (using a Greek Sigma for Sum)

We have σ𝑛=1
∞ 𝑛 (2/6)(5/6)n−1 − (11/36)(25/36)n−1 .

Equals 2 *
1

6
σ𝑛=1

∞ 𝑛 (1 − 1/6)n−1 -
25

11

11

36
σ𝑛=1

∞ 𝑛 (1 − 11/36)n−1.

What is the first term? 2 ∗
1

1/6
What is second? 

1

11/36
.

Answer is 2 ∗ 6 −
36

11
= 

96

11
(or about 8.7 rolls until you get both sixes).

The Darth Vader Theorem: If the probability of a success is p, then the 
expected number of trials until a success is 1/p. Furthermore:
𝑆 𝑝 = 𝑝(1 + 2 ∗ 1 − 𝑝 + 3 ∗ 1 − 𝑝 2 + 4 1 − 𝑝 3 + ∙∙∙) = 1/p.
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The Double Sixes Game: Expected Value

Answer is 2 ∗ 6 −
36

11
= 

96

11
(or about 8.7 rolls until you get both sixes).

Is this answer reasonable? Are you surprised by it? What tests can you do to 
see if it makes sense? What lower or upper bounds can you find?

95



The Double Sixes Game: Expected Value

Answer is 2 ∗ 6 −
36

11
= 

96

11
(or about 8.7 rolls until you get both sixes).

Is this answer reasonable? Are you surprised by it? What tests can you do to 
see if it makes sense?

In the six game (roll one die, stop when you get a 6) we saw the expected 
number of rolls is 6; as we now need TWO 6s, reasonable that it takes LONGER, 
and 6 is a LOWER BOUND.

If we played the six game twice (roll the first die until we get a 6, then start 
rolling the second die till we get a 6) expect to need 12 rolls. Thus 12 should be 
an UPPER BOUND. (Actually, can improve to 11 as an upper bound….)
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Review: Big Takeaways

The Darth Vader Theorem: If the probability of a success is p, then the 
expected number of trials until a success is 1/p. Furthermore:
𝑆 𝑝 = 𝑝(1 + 2 ∗ 1 − 𝑝 + 3 ∗ 1 − 𝑝 2 + 4 1 − 𝑝 3 + ∙∙∙) = 1/p.

97

The Law of Complementary Events: If the probability something happens is 
p, then the probability it does not happen is 1-p.

The Law of Double Counting: The probability A or B happens is the sum of 
the probability each happens minus the probability they both happen:
Prob(A or B) = Prob(A) + Prob(B) – Prob(A and B).

The Power of Algebra: Sometimes have to do a bit of algebraic 
manipulations to make what you have look like something you know.
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𝑛𝐶𝑟 =
𝑛

𝑟

Thus 5𝐶2 = 5
2

= 10
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Review: nCr

Recall the combinatorial function nCr: it is the number of ways to choose r
objects from n, when order DOES NOT matter.

We use C for “combinations”.

We often write 𝑛
𝑟

for nCr, and it equals
𝑛!

𝑟! 𝑛−𝑟 !
.

For example, 5C2 = 10. If we have 5 people {A,B,C,D,E} there are 5 ways to
choose the first and then 4 ways to choose the second, and that gives us 5*4 =
20; however, this is ORDERED, this is 5P2. We remove the order by dividing by
2!, the number of ways to order two objects.
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Review: Distinct Deals in Bridge
In a hand of bridge, each of the four players is dealt 13 cards. It does not matter
what order you get the cards, only which cards you get.

• How many ways are there to deal the cards?

Answer: 52𝐶13 ∗ 39𝐶13 ∗ 26𝐶13 ∗ 13𝐶13

Equals 53,644,737,765,488,792,839,237,440,000 (about 1028.7295)

Do you think in all of human history there have ever been two deals the same?

Number of seconds since the universe began:

60 ∗ 60 ∗ 24 ∗ 366 ∗ 14,000,000,000 or about 1017.6.

About 108,000,000,000 people have been born, if each deals a hand a second
since the dawn of time get up to about 1028.6795.
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Long Suits in Bridge
In a hand of bridge, each of the four players is dealt 13 cards. It does not matter
what order you get the cards, only which cards you get.

What is the probability you are dealt at least 7 cards in a suit?
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Long Suits in Bridge
In a hand of bridge, each of the four players is dealt 13 cards. It does not matter
what order you get the cards, only which cards you get.

What is the probability you are dealt at least 7 cards in a suit?

Break a hard problem into a lot of easier problems.

Note cannot have two 7 card suits (this is why we start with 7 and not 6!).

It is Prob(exactly one 7 card suit) + … + Prob(exactly one 13 card suit).

What are these probabilities? What is Prob(exactly one 7 card suit)?

102



Long Suits in Bridge
In a hand of bridge, each of the four players is dealt 13 cards. It does not matter what
order you get the cards, only which cards you get.

What is the probability you are dealt at least 7 cards in a suit?

Break a hard problem into a lot of easier problems.

Note cannot have two 7 card suits (this is why we start with 7 and not 6!).

It is Prob(exactly one 7 card suit) + … + Prob(exactly one 13 card suit).

What are these probabilities?

Prob(exactly one 7 card suit) = 4𝐶1 ∗ 13𝐶7 ∗ 39𝐶6

Why? 4C1 ways to choose the suit, 13C7 ways to choose 7 cards in that suit, 39C6 ways
to fill out the hand.

103



Long Suits in Bridge
In a hand of bridge, each of the four players is dealt 13 cards. It does not matter
what order you get the cards, only which cards you get. NOTE: 𝑛𝐶𝑟 = 𝑛

𝑟

What is the probability you are dealt at least 7 cards in a suit?

It is Prob(exactly one 7 card suit) + … + Prob(exactly one 13 card suit).

4𝐶1 ∗ 13𝐶7 ∗ 39𝐶6 + 4𝐶1 ∗ 13𝐶8 ∗ 39𝐶5 + ··· +4𝐶1 ∗ 13𝐶13 ∗ 39𝐶0

Can write compactly as σ𝑘=7
13 4

1
13
𝑘

39
13−𝑘

= 25,604,567,408.

There are 52𝐶13 = 635,013,559,600 hands.

Probability at least 7 in a suit is
25,604,567,408

635,013,559,600
or about .04 (thus 4%).

Low probability, but happens enough that need to be prepared for it!
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Long Suits in Bridge
In a hand of bridge, each of the four players is dealt 13 cards. It does not matter
what order you get the cards, only which cards you get.

Probability at least 7 in a suit is
25,604,567,408

635,013,559,600
or about .04 (thus 4%).

Similarly probability at least 8 is
3,209,923,136

635,013,559,600
or about .005 (thus .5%).

Not surprisingly, almost all hands with at least 7 in a suit have exactly 7 in a suit.

It is
25,604,567,408 − 3,209,923,136

25,604,567,408
or about 87.5%
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Long Suits in Bridge
In a hand of bridge, each of the four players is dealt 13 cards. It does not matter
what order you get the cards, only which cards you get.

Probability at least 7 in a suit is
25,604,567,408

635,013,559,600
or about .04 (thus 4%).

Similarly probability at least 8 is
3,209,923,136

635,013,559,600
or about .005 (thus .5%).

What is the probability you have exactly 6 in a suit? What is the complication?
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Long Suits in Bridge
In a hand of bridge, each of the four players is dealt 13 cards. It does not matter
what order you get the cards, only which cards you get.

Probability at least 7 in a suit is
25,604,567,408

635,013,559,600
or about .04 (thus 4%).

Similarly probability at least 8 is
3,209,923,136

635,013,559,600
or about .005 (thus .5%).

What is the probability you have exactly 6 in a suit? What is the complication?
The challenge is you could have TWO 6 card suits.
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Recall a Great Probability Result
We recall a WONDERFUL idea in probability:

The Law of Double Counting: The probability A or B happens is the sum of 
the probability each happens minus the probability they both happen:
Prob(A or B) = Prob(A) + Prob(B) – Prob(A and B).
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Probability have a suit with EXACTLY 6 cards

How many ways are there for a player to have exactly 6 cards in a specific suit?

The Law of Double Counting: The probability A or B happens is the sum of 
the probability each happens minus the probability they both happen:
Prob(A or B) = Prob(A) + Prob(B) – Prob(A and B).
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Probability have a suit with EXACTLY 6 cards

How many ways are there for a player to have exactly 6 cards in a specific suit?
4𝐶1 ∗ 13𝐶6 ∗ 39𝐶7.

There are 4C1 ways to choose the specific suit that they have 6 cards in, 13C6 
ways to choose the 6 cards in the suit, and then 39C7 ways to choose the 
remaining cards.

The problem is while unlikely, it is POSSIBLE that they have another 6 (or even 
7!) card suit in the remaining 39C7 cards…. How do we fix?

The Law of Double Counting: The probability A or B happens is the sum of 
the probability each happens minus the probability they both happen:
Prob(A or B) = Prob(A) + Prob(B) – Prob(A and B).
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Probability have a suit with EXACTLY 6 cards

How many ways are there for a player to have exactly 6 cards in a specific suit?
4𝐶1 ∗ 13𝐶6 ∗ 39𝐶7.

How many ways are there to have two suits with exactly 6 cards?
? ? ? .

How many ways are there to have one suit with 7 and one with 6 cards?
? ? ? .

The Law of Double Counting: The probability A or B happens is the sum of 
the probability each happens minus the probability they both happen:
Prob(A or B) = Prob(A) + Prob(B) – Prob(A and B).
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Probability have a suit with EXACTLY 6 cards

How many ways are there for a player to have exactly 6 cards in a specific suit?
4𝐶1 ∗ 13𝐶6 ∗ 39𝐶7.

How many ways are there to have two suits with exactly 6 cards?
4𝐶2 ∗ 13𝐶6 ∗ 13𝐶6 ∗ 26𝐶1.

How many ways are there to have one suit with 7 and one with 6 cards?
4𝐶1 ∗ 13𝐶7 ∗ 3𝐶1 ∗ 13𝐶6.

How likely do you think the last two probabilities are relative to the first? Is 
this REALLY something we need to worry about?

The Law of Double Counting: The probability A or B happens is the sum of 
the probability each happens minus the probability they both happen:
Prob(A or B) = Prob(A) + Prob(B) – Prob(A and B).
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Probability have a suit with EXACTLY 6 cards

How many ways are there for a player to have exactly 6 cards in a specific suit?
4𝐶1 ∗ 13𝐶6 ∗ 39𝐶7 = 105,574,751,568.

How many ways are there to have two suits with exactly 6 cards?
4𝐶2 ∗ 13𝐶6 ∗ 13𝐶6 ∗ 26𝐶1 = 459,366,336.

How many ways are there to have one suit with 7 and one with 6 cards?
4𝐶1 ∗ 13𝐶7 ∗ 3𝐶1 ∗ 13𝐶6 = 11,778,624.

NO!!! While 459 million is a big number relative to most of our bank accounts, 
it is pretty small relative to 105 billion!

The Law of Double Counting: The probability A or B happens is the sum of 
the probability each happens minus the probability they both happen:
Prob(A or B) = Prob(A) + Prob(B) – Prob(A and B).
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Probability have a suit with EXACTLY 6 cards

How many ways are there for a player to have exactly 6 cards in a specific suit?
4𝐶1 ∗ 13𝐶6 ∗ 39𝐶7 = 105,574,751,568.

How many ways are there to have two suits with exactly 6 cards?
4𝐶2 ∗ 13𝐶6 ∗ 13𝐶6 ∗ 26𝐶1 = 459,366,336.

How many ways are there to have one suit with 7 and one with 6 cards?
4𝐶1 ∗ 13𝐶7 ∗ 3𝐶1 ∗ 13𝐶6 = 11,778,624.

There are 52C13 = 635,013,559,600 possible hands.

Thus the probability have EXACTLY one 6 card suit is 
105,574,751,568 −459,366,336 −11,778,624

635,013,559,600
= 

938,425,059
5,669,763,925

, about 16.6%!

The Law of Double Counting: The probability A or B happens is the sum of 
the probability each happens minus the probability they both happen:
Prob(A or B) = Prob(A) + Prob(B) – Prob(A and B).
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Probability have a suit with EXACTLY 6 cards
The probability have EXACTLY one 6 card suit is
105,574,751,568 −459,366,336 −11,778,624

635,013,559,600
= 

938,425,059
5,669,763,925

, about 16.6%!

The probability have EXACTLY TWO 6 card suits is
459,366,336

635,013,559,600
= 

28,710,396
39,688,347,475

, about .07%!

The probability have EXACTLY 7 in one suit and EXACTLY 6 in another is
11,778,624

635,013,559,600
= 

736,164
39,688,347,475

, about .00185%!

If play 100 games, first happens 17 times on average, we do expect to see often!
If play 1000 games, second happens .72 times on average, so don’t expect to see!
If play 10,000 games, third happens .19 times on average, so don’t expect to see!
This helps us figure out what bidding conventions we need – what is worth having!
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Recap
• Often more than one way to compute an answer.

• Break a complicated probability into a sum of simpler probabilities; important
that the cases are disjoint and cover all the possibilities.

• Tremendous power in using nCr to compute the number of combinations.

• Frequently there are smaller effects / lower order terms that you TECHNICALLY
need to have the right answer, but they change things by a negligible amount….

• If you can compute something two ways, do so – a great way to check your work!

• If you can write a computer program to test your work that is OUTSTANDING!
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Review: nCr

Recall the combinatorial function nCr: it is the number of ways to choose r
objects from n, when order DOES NOT matter.

We use C for “combinations”.

We often write 𝑛
𝑟

for nCr, and it equals
𝑛!

𝑟! 𝑛−𝑟 !
.

For example, 5C2 = 10. If we have 5 people {A,B,C,D,E} there are 5 ways to
choose the first and then 4 ways to choose the second, and that gives us 5*4 =
20; however, this is ORDERED, this is 5P2. We remove the order by dividing by
2!, the number of ways to order two objects.
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Trump Splits II: The Bad 5-0 Split
In a hand of bridge, each of the four players is dealt 13 cards. It does not matter
what order you get the cards, only which cards you get.

What if you and your partner have 8 trump; what are the odds the remaining 5
are all in the same hand?
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Trump Splits II: The Bad 5-0 Split
In a hand of bridge, each of the four players is dealt 13 cards. It does not matter
what order you get the cards, only which cards you get.

What if you and your partner have 8 trump; what are the odds the remaining 5
are all in the same hand?

One solution: There are 2C1 ∗ 5𝐶5 ∗ 21𝐶8 ∗ 13𝐶13 = 406,980.

(there are 2 ways to choose which player gets the 5 trump, then give all 5 to that
player, then give that player any 8 of the remaining 21 cards, then give all the
remaining cards to the final player)

The number of ways to assign the remaining 26 cards is 26C13 ∗ 13C13 =
104,006,000.

Thus probability is 406,980 / 104,006,000 = 9/230 or about .039 (or 3.9%). 120



Trump Splits II: The Bad 5-0 Split
In a hand of bridge, each of the four players is dealt 13 cards. It does not matter
what order you get the cards, only which cards you get.

What if you and your partner have 8 trump; what are the odds the remaining 5
are all in the same hand?

One solution: There are 2C1 ∗ 5𝐶5 ∗ 21𝐶8 ∗ 13𝐶13 = 406,980.

Number of ways to assign 26 cards is 26C13 ∗ 13C13 = 104,006,000.

Thus probability is 406,980 / 104,006,000 = 9/230 or about .039 (or 3.9%).

Could we say the answer is 2 * (1/2)5 as there are two players who could get all
5, and each card has a 50-50 chance?
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Trump Splits II: The Bad 5-0 Split
In a hand of bridge, each of the four players is dealt 13 cards. It does not matter
what order you get the cards, only which cards you get.

What if you and your partner have 8 trump; what are the odds the remaining 5
are all in the same hand?

One solution: There are 2C1 ∗ 5𝐶5 ∗ 21𝐶8 ∗ 13𝐶13 = 406,980.

Thus probability is 406,980 / 104,006,000 = 9/230 or about .039 (or 3.9%).

Could we say the answer is 2 * (1/2)5 as there are two players who could get all
5, and each card has a 50-50 chance? Note this equals 1/16 or 6.25%. Why is
this wrong?
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Trump Splits II: The Bad 5-0 Split
In a hand of bridge, each of the four players is dealt 13 cards. It does not matter
what order you get the cards, only which cards you get.

What if you and your partner have 8 trump; what are the odds the remaining 5
are all in the same hand?

One solution: There are 2C1 ∗ 5𝐶5 ∗ 21𝐶8 ∗ 13𝐶13 = 406,980.

Thus probability is 406,980 / 104,006,000 = 9/230 or about .039 (or 3.9%).

Could we say the answer is 2 * (1/2)5 as there are two players who could get all
5, and each card has a 50-50 chance? Note this equals 1/16 or 6.25%. Why is
this wrong? As we hand out the cards, subsequent ones no longer have a 50-50
chance. Answer is 2 (13/26)(12/25)(11/24)(10/23)(9/22) = 9/230. 123



Trump Splits II: The Bad 5-0 Split
What if you and your partner have 8 trump; what are the odds the remaining 5
are all in the same hand?

Could we say the answer is 2 * (1/2)5 as there are two players who could get all
5, and each card has a 50-50 chance? Note this equals 1/16 or 6.25%. Why is
this wrong? As we hand out the cards, subsequent ones no longer have a 50-50
chance. Answer is 2 (13/26)(12/25)(11/24)(10/23)(9/22) = 9/230.
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Aces Up

125

What is the probability the last four cards are in different suits, and thus no 
matter how well you play, you will LOSE?



Aces Up
What is the probability the last four cards are in different suits?

There are many ways to compute this.

• We could look at each card, one at a time, and each is in a different suit
than the previous.

• We can choose one card from each suit.

Which do you prefer? Why? Will they give the same answer (they better!).

Try to solve it. Note there are 52P4 = 6,497,400 ways to choose 4 cards when
order DOES matters, and 52C4 = 270,725 ways to choose 4 cards when order
DOES NOT matter.
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Aces Up
What is the probability the last four cards are in different suits?

There are many ways to compute this.

• We could look at each card, one at a time, and each is in a different suit

than the previous.
52

52
∗

??

??
∗

??

??
∗

??

??
=

??

??

• We can choose one card from each suit.

Which do you prefer? Why? Will they give the same answer (they better!).

Try to solve it. Note there are 52P4 = 6,497,400 ways to choose 4 cards when
order DOES matters, and 52C4 = 270,725 ways to choose 4 cards when order
DOES NOT matter.
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Aces Up
What is the probability the last four cards are in different suits?

There are many ways to compute this.

• We could look at each card, one at a time, and each is in a different suit

than the previous.
52

52
∗

39

51
∗

??

??
∗

??

??
=

??

??

• We can choose one card from each suit.

Which do you prefer? Why? Will they give the same answer (they better!).

Try to solve it. Note there are 52P4 = 6,497,400 ways to choose 4 cards when
order DOES matters, and 52C4 = 270,725 ways to choose 4 cards when order
DOES NOT matter.
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Aces Up
What is the probability the last four cards are in different suits?

There are many ways to compute this.

• We could look at each card, one at a time, and each is in a different suit

than the previous.
52

52
∗

39

51
∗

26

50
∗

13

49
=

2197

20825
or about 10.5%

• We can choose one card from each suit.
??
?? ∗ ??

?? ∗ ??
?? ∗ ??

??
??
??

Which do you prefer? Why? Will they give the same answer (they better!).

Try to solve it. Note there are 52P4 = 6,497,400 ways to choose 4 cards when
order DOES matters, and 52C4 = 270,725 ways to choose 4 cards when order
DOES NOT matter.
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Aces Up
What is the probability the last four cards are in different suits?

There are many ways to compute this.

• We could look at each card, one at a time, and each is in a different suit

than the previous.
52

52
∗

39

51
∗

26

50
∗

13

49
=

2197

20825
or about 10.5%

• We can choose one card from each suit..
13
1 ∗ 13

1 ∗ 13
1 ∗ 13

1
52
4

=
2197

20825
.

Always good to calculate something two different ways!

Also, if you can, test with a computer program!!!
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Aces Up
What is the probability the last four cards are in different suits?
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Aces Up
What is the probability the last four cards are in different suits?
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Recap
• Often more than one way to compute an answer.

• Break a complicated probability into a sum of simpler probabilities; important
that the cases are disjoint and cover all the possibilities.

• Tremendous power in using nCr to compute the number of combinations.

• Frequently there are smaller effects / lower order terms that you TECHNICALLY
need to have the right answer, but they change things by a negligible amount….

• If you can compute something two ways, do so – a great way to check your work!

• If you can write a computer program to test your work that is OUTSTANDING!
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Review: nCr

Recall the combinatorial function nCr: it is the number of ways to choose r
objects from n, when order DOES NOT matter.

We use C for “combinations”.

We often write 𝑛
𝑟

for nCr, and it equals
𝑛!

𝑟! 𝑛−𝑟 !
.

For example, 5C2 = 10. If we have 5 people {A,B,C,D,E} there are 5 ways to
choose the first and then 4 ways to choose the second, and that gives us 5*4 =
20; however, this is ORDERED, this is 5P2. We remove the order by dividing by
2!, the number of ways to order two objects.
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Modified Two Handed Bridge: Getting all Trump
Let’s say hearts are trump. Go through the deck looking at the cards two at a
time. In each pair choose one card, and discard the other.

You end with 26 cards; one comes from cards 1 and 2, one comes from cards 3
and 4, …, one comes from cards 51 and 52.

If you always choose a heart if it is available, what is the probability you end up
with all 13 hears?

What could prevent you from being able to have all 13 hearts?
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Modified Two Handed Bridge: Getting all Trump
Let’s say hearts are trump. Go through the deck looking at the cards two at a
time. In each pair choose one card, and discard the other.

You end with 26 cards; one comes from cards 1 and 2, one comes from cards 3
and 4, …, one comes from cards 51 and 52.

If you always choose a heart if it is available, what is the probability you end up
with all 13 hears?

What could prevent you from being able to have all 13 hearts?

You lose if you ever have two hearts in the same pair.
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Modified Two Handed Bridge: Getting all Trump
Let’s say hearts are trump. Go through the deck looking at the cards two at a
time. In each pair choose one card, and discard the other. You end with 26
cards; one comes from cards 1 and 2, …, one comes from cards 51 and 52. If you
always choose a heart if it is available, what is the probability you end up with all
13 hears?

Here is one way to view it: You choose ??? of the 26 pairs to have exactly one
heart, each pair you have ??? choices to place the heart, you then have ???
ways to place the 13 hearts in these spots, and you then have ??? ways to place
the remaining 39 cards. You then divide by the number of ways to place the 52
cards, which is ???. Notice using order.
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Modified Two Handed Bridge: Getting all Trump
Let’s say hearts are trump. Go through the deck looking at the cards two at a
time. In each pair choose one card, and discard the other. You end with 26
cards; one comes from cards 1 and 2, …, one comes from cards 51 and 52. If you
always choose a heart if it is available, what is the probability you end up with all
13 hears?

Here is one way to view it: You choose 13 of the 26 pairs to have exactly one
heart, each pair you have 2 choices to place the heart, you then have 13! ways
to place the 13 hearts in these spots, and you then have 39! ways to place the
remaining 39 cards. You then divide by the number of ways to place the 52
cards, which is 52P52 = 52!. Notice using order.

Answer: 26𝐶13 ∗ 213 ∗ 13! ∗ 39! / 52! = 77824/580027, approximately
13.4%.
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Modified Two Handed Bridge: Getting all Trump
.
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Modified Two Handed Bridge: Getting all Trump
.

141

Worth commenting on the code.

The deck is {1,…,1,0,…,0} where we 
have 13 cards are a 1, and 39 cards 
are a 0.

Why?

We only care if a card is trump or 
not trump – that is all we need to 
keep track of when we code!



Modified Two Handed Bridge: Getting all Trump
.

142

Other versions:

It is trivial to do if you look at the cards one at a time.

What if you look at the cards 4 at a time and you choose one each time? It 
is JUST barely possible – compute the probability you can do it.

Can you do it if you choose one out of every 6 cards?



Poker Problem: 5 Cards, at least two Aces, two Kings
Consider a 5 card poker hand. What is the probability have at least

two Aces and at least two Kings?

How can you do this? What hands would work? What is the difficulty?
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Poker Problem: 5 Cards, at least two Aces, two Kings
Consider a 5 card poker hand. What is the probability have at least

two Aces and at least two Kings?

How can you do this? What hands would work? What is the difficulty?

AAAKK, AAKKK, AAKKX

Challenge is could have three of a kind and a pair.

Have to be careful not to double count.

What are the probabilities of each of the three configurations? How many
hands?
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Poker Problem: 5 Cards, at least two Aces, two Kings
Consider a 5 card poker hand. What is the probability have at least

two Aces and at least two Kings?

How can you do this? What hands would work? What is the difficulty?

• AAAKK: 4𝐶3 ∗ 4𝐶2 = 4 ∗ 6 = 24

• AAKKK: 4𝐶2 ∗ 4𝐶3 = 6 ∗ 4 = 24

• AAKKX: 4𝐶2 ∗ 4𝐶2 ∗ 44𝐶1 = 6 ∗ 6 ∗ 44 = 1584

• 5 card hands: 52𝐶5 = 2,598,960.

• Probability is
24+24+1584

2598960
=

1633

2598960
= .0628%.
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Poker Problem: 5 Cards, at least two Aces, two Kings
Consider a 5 card poker hand. What is the probability have at least

two Aces and at least two Kings

• AAAKK: 4𝐶3 ∗ 4𝐶2 = 4 ∗ 6 = 24

• AAKKK: 4𝐶2 ∗ 4𝐶3 = 6 ∗ 4 = 24

• AAKKX: 4𝐶2 ∗ 4𝐶2 ∗ 44𝐶1 = 6 ∗ 6 ∗ 44 = 1584

• 5 card hands: 52𝐶5 = 2,598,960.

• Probability is
24+24+1584

2598960
=

1633

2598960
= .0628328%.

Another Approach: Choose two Aces, choose two kings, choose another card.

4𝐶2 ∗ 4𝐶2 ∗ 48𝐶1 = 1728, 𝑠𝑜
1728

2598960
or about .0664881%.

Which is right? Why?
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Poker Problem: 5 Cards, at least two Aces, two Kings
Consider a 5 card poker hand. What is the probability have at least

two Aces and at least two Kings?

• AAAKK: 4𝐶3 ∗ 4𝐶2 = 4 ∗ 6 = 24

• AAKKK: 4𝐶2 ∗ 4𝐶3 = 6 ∗ 4 = 24

• AAKKX: 4𝐶2 ∗ 4𝐶2 ∗ 44𝐶1 = 6 ∗ 6 ∗ 44 = 1584

• 5 card hands: 52𝐶5 = 2,598,960.

• Probability is
24+24+1584

2598960
=

1633

2598960
= .0628328%.

Another Approach: Choose two Aces, choose two kings, choose another card.

Another Approach: 4𝐶2 ∗ 4𝐶2 ∗ 48𝐶1 = 1728, 𝑠𝑜
1728

2598960
or about .0664881%.

The first – the second approach triple counts! The “third” ace could be in the 48C1.

Note (1728-1584) = 144, and 144/3 = 48 = 24+24, the AAAKK and AAKKK. 147



Poker Problem: 5 Cards, at least two Aces, two Kings
Consider a 5 card poker hand. What is the probability have at least

two Aces and at least two Kings? Is it .0628328% 𝑜𝑟 .0664881%?

148



Poker Problem: 5 Cards, at least two Aces, two Kings
Consider a 5 card poker hand. What is the probability have at least

two Aces and at least two Kings? Is it .0628328% 𝑜𝑟 .0664881%?

The problem is that the simulation is not good enough to determine which
probability is correct, as they are so close. We need to go up to 100,000,000; it
took about 20 seconds to do a million….
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Poker Problem: 5 Cards, at least two Aces, two Kings
Consider a 5 card poker hand. What is the probability have at least

two Aces and at least two Kings? Is it .0628328% 𝑜𝑟 0664881%?

Did 100,000,000 hands and succeeded approximately 0.0626%.

Took 21.46 seconds to do 1,000,000 and 2157.58 seconds for 100,000,000. 150
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Expanding (x + y)n

(x + y)0 =  1

(x + y)1 =  1 x + 1 y

(x + y)2 = 1 x2 + 2 x y + 1 y2.

(x + y)3 = 1 x3 + 3 x2 y + 3 x y2 + 1 y3.

We can keep going and get more and 
more rows…..
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Why is the Pascal Relation true? Each number is the sum of what is immediately above to the right and to the left.
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FOIL
FOIL stands for FIRST, OUTSIDE, INSIDE and LAST.

It provides a framework to multiply (a+b) and (c+d).

We have:

(a + b) * (c + d) = a * c   +   a * d   +   b * c  +  b * d. 

FIRST        OUTSIDE         INSIDE        LAST
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FOIL
FOIL stands for FIRST, OUTSIDE, INSIDE and LAST.

We can repeatedly apply it, and its generalizations…..

We have:

(x + y)2 =  (x + y) * (x + y)  =  x * x + x * y + y * x + y * y  =  x2 + x y + y x + y2  =  x2 + 2 x y + y2.

So:

(x + y)3 = (x + y) * (x + y)2 = (x + y) * (x2 + 2 x y + y2)

= x * (x2 + 2 x y + y2) + y * (x2 + 2 x y + y2)

= (x3 + 2 x2 y + x y2) + (x2 y + 2 x y2 + y3)

= x3 + 3 x2 y + 3 x y2 + y3.
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Expanding (x + y)n

(x + y)1 =  1 x + 1 y

(x + y)2 = 1 x2 + 2 x y + 1 y2.

(x + y)3 = 1 x3 + 3 x2 y + 3 x y2 + 1 y3.

This is the start of Pascal’s Triangle…..

How should we define (x + y)0? Well, we often say things to to zeroth power are 1, so we 
extend to….
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Expanding (x + y)n and nCr
Consider 𝑥 + 𝑦 4

We have 𝑥 + 𝑦 ∗ 𝑥 + 𝑦 ∗ 𝑥 + 𝑦 ∗ (𝑥 + 𝑦)

When we multiply out, for each factor we take an x or a y (but not both)

Thus we could have 

• xxxx = x4 (1 = 4C4 way),

• xxxy, xxyx, xyxx, yxxx, all of which give x3 y (4 = 4C3 ways), 

• xxyy, xyxy yxxy, xyyx, yxyx, yyxx, all of which give x2 y2 (6 = 4C2 ways),

• yyyx, yyxy, yxyy, xyyy, all of which give x y3 (4 = 4C1 ways),

• yyyy = y4 (1 = 4C0 way).

So every term will be of the form xa yb with a+b = 4 and a, b non-negative; so xa y4-a.

What is the connection with nCr? The coefficient of xa y4-a is 4Ca.

Makes sense: we have 4 factors, choosing a of them to be x, and 4-a to be y.
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Pascal’s Triangle

The numbers in the nth row of 
Pascal’s Triangle are the 
coefficients we obtain in 
expanding (x+y)n.

Equivalently, we have two 
diagonals of 1, and all other 
elements are the sum of the 
elements in the row above 
immediately to the left and 
immediately to the right.
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Expanding (x + y)n and nCr
Consider 𝑥 + 𝑦 4

We have 𝑥 + 𝑦 ∗ 𝑥 + 𝑦 ∗ 𝑥 + 𝑦 ∗ (𝑥 + 𝑦)

When we multiply out, for each factor we take an x or a y (but not both)

So every term will be of the form xa yb with a+b = 4 and a, b non-negative; so xa y4-a.

What is the connection with nCr? The coefficient of xa y4-a is 4Ca.

Makes sense: we have 4 factors, choosing a of them to be x, and 4-a to be y.

Thus 𝑥 + 𝑦 4 = 4C4 x4 + 4C3 x3 y + 4C2 x2 y2 + 4C1 x y3 + 4C0 y4.

More generally have the   
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Sketch of the proof:

Assume we know one row, say
(x+y)5 = x5 + 5 x4 y + 10 x3 y2 + 10 x2 y3 + 5 x y4 + y5.

Then
(x+y)6 =  (x+y) (x+y)5

=  x (x+y)5 + y (x+y)5

= x (x5 + 5 x4 y + 10 x3 y2 + 10 x2 y3 + 5 x y4 + y5) + y (x5 + 5 x4 y + 10 x3 y2 + 10 x2 y3 + 5 x y4 + y5)

= (x6 + 5 x5 y + 10 x4 y2 + 10 x3 y3 + 5 x2 y4 + x y5) + (x5 y + 5 x4 y2 + 10 x3 y3 + 10 x2 y4 + 5 x y5 + y6)

=     x6 + 5 x5 y + 10 x4 y2 + 10 x3 y3  +   5 x2 y4 +    x y5

+   x5 y +  5 x4 y2 + 10 x3 y3  + 10 x2 y4  + 5 x y5 + y6 

=     x6 + (5+1) x5 y + (10+5) x4 y2 + (10+10) x3 y3  +  (5+10) x2 y4 + (1+5) x y5 + y6

=     x6 + 6 x5 y + 15 x4 y2 + 20 x3 y3  +  15 x2 y4 + 6 x y5 + y6
160



Pascal’s Identity: Often write nCk as 
Rather than doing algebra, we can tell a story involving nCr’s….

Why is this true? Note have n+1 fans and must choose k, order doesn’t matter.

Left: There are 𝑛
𝑘+1

ways to choose k+1 people from n.

Right: 1
0

way not to take the Yankee fan, then 𝑛
𝑘

ways to choose k Sox fans, and 
second term is 1

1
way to choose the Yankee fan, and then 𝑛

𝑘−1
ways to choose k-1 

Sox fans (so again have k fans overall).
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Pascal’s Triangle
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Pascal’s Triangle
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Pascal’s Triangle

https://www.youtube.com/watch?v=tt4_4YajqRM (start 1:35)
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Combinations: nCr or nCr
nCr or nCr is the number of ways to choose r objects from n when order DOES
NOT matter; the C stands for combinations.

Theorem: 𝑛𝐶𝑟 ∗ 𝑟! = 𝑛𝑃𝑟 =
𝑛!

𝑛−𝑟 !
, thus 𝑛𝐶𝑟 =

𝑛!

𝑟! 𝑛−𝑟 !
.

What value of r leads to the largest value of nCr?
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Combinations: nCr or nCr
nCr or nCr is the number of ways to choose r objects from n when order DOES
NOT matter; the C stands for combinations.

Theorem: 𝑛𝐶𝑟 ∗ 𝑟! = 𝑛𝑃𝑟 =
𝑛!

𝑛−𝑟 !
, thus 𝑛𝐶𝑟 =

𝑛!

𝑟! 𝑛−𝑟 !
.

What value of r leads to the largest value of nCr? It is r = n/2 (if n/2 is not an
integer, it is the integer on either side).

To see this, note nCr looks like a polynomial of degree nr if r is at most n/2, so we
want the exponent to be as large as possible, and then use symmetry for r
greater than n/2 to relate those values to r less than n/2. (This is NOT a proof,
this is a heuristic – see how you go from nCr to nCr+1.
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Combinations: nCr or nCr
nCr or nCr is the number of ways to choose r objects from n when order DOES
NOT matter; the C stands for combinations.

Theorem: 𝑛𝐶𝑟 ∗ 𝑟! = 𝑛𝑃𝑟 =
𝑛!

𝑛−𝑟 !
, thus 𝑛𝐶𝑟 =

𝑛!

𝑟! 𝑛−𝑟 !
.

What value of r leads to the largest value of nCr? It is r = n/2 (if n/2 is not an
integer, it is the integer on either side).

PROOF:

𝑛𝐶𝑟+1 =
𝑛!

(𝑟+1)! 𝑛−(𝑟+1) !
=

𝑛!

𝑟+1 𝑟! 𝑛−(𝑟+1) !

(𝑛−𝑟)

𝑛−𝑟
=

𝑛!

𝑟! 𝑛−𝑟 !

𝑛−𝑟

𝑟+1
= 𝑛𝐶𝑟

𝑛−𝑟

𝑟+1

As r < n/2, we have
𝑛−𝑟

𝑟+1
> 1. Note

𝑛−𝑟

𝑟+1
> 1 if n-r > r+1 or r <

𝑛−1

2
.
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