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Introduction J




@ Determine correct scale and statistics to study
eigenvalues and zeros of L-functions.

@ See similar behavior in different systems.

@ Discuss the tools and techniques needed to prove the
results.




Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at
t, b, tg, ...

Question: What rules govern the spacings between the t;?
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Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at
t, b, tg, ...

Question: What rules govern the spacings between the t;?

Examples: Spacings between

@ Energy Levels of Nuclei.

@ Eigenvalues of Matrices.

@ Zeros of L-functions.

@ Summands in Zeckendorf Decompositions.
@ Primes.

@ na mod 1.
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Sketch of proofs

In studying many statistics, often three key steps:
© Determine correct scale for events.

@ Develop an explicit formula relating what we want to
study to something we understand.

© Use an averaging formula to analyze the quantities
above.

It is not always trivial to figure out what is the correct
statistic to study!
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Eigenvalue Review: |

zcC:z=x+iywithi=+/-1;Z =z" =x —y.
Eigenvalue/Eigenvector: \ € C, v + 6)

AV = \V.

Can find by det(A — AlI) = 0 but computational nightmare!
Real Symmetric: A = AT; Hermitian: A = A" (complex
conjugate transpose).

Length of V is VVHV; |[V]|2 = VHV; V- W = VHW.




Eigenvalue Review: Il

A real implies eigenvalues real: If AV = \V then

VHARY
(AV)"V
W)V

WHY
N[V

VHAV
VH(AV)
v (V)
AVHY
NIVIE,

and thus as length is non-zero have A = X and is real, and

then get coefficients of v

A complex Hermitian: similar proof shows eigenvalues
real (coefficients can be complex).




Eigenvalue Review: I

Orthogonal: QTQ = QQT = I; Unitary: U"U = UUH = 1.

Spectral Theorem: If A is real symmetric or complex
Hermitian than can diagonalize (real symmetric:
A = QTAQ, complex Hermitian A = U"AU).

Proof: ‘Trivial’ if distinct eigenvalues as each has an
eigenvector, mutually orthogonal, choose unit length and
let these be columns of Q:

ViTATV, = ViTAV;
(A)'V; = Wi (AV;)

=T
)\1V1TV2 = AVi V.




Classical RMT

Classical Random Matrix Theory J

With Olivia Beckwith, Leo Goldmakher, Chris Hammond,
Steven Jackson, Cap Khoury, Murat Kologlu, Gene Kopp,
Victor Luo, Adam Massey, Eve Ninsuwan, Vincent Pham,
Karen Shen, Jon Sinsheimer, Fred Strauch, Nicholas
Triantafillou, Wentao Xiong
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem intractable.
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem intractable.
Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into
nucleus, see what comes out.

Fundamental Equation:

H wn = Enz/fn

H : matrix, entries depend on system
E, : energy levels
1 . energy eigenfunctions

AR
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Origins of Random Matrix Theory

@ Statistical Mechanics: for each configuration,
calculate quantity (say pressure).

@ Average over all configurations — most configurations
close to system average.

@ Nuclear physics: choose matrix at random, calculate
eigenvalues, average over matrices (real Symmetric

A = AT, complex Hermitian A' = A).
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Random Matrix Ensembles

dj1 dip a3z -+ AN
djp dpp dpz -+ AN
A = ] . . . = AT> ajj = aji
aiNn don A3n cc AnN
Fix p, define
Prob(A) = H p(ay)-
1<i<j<N
This means
Bu
Prob (A D Qi € [Ozij,ﬁij]) = H / Xu dXIj
1<i<j<N VX =

Want to understand eigenvalues of A.
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Eigenvalue Distribution

d(X — Xo) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).
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Eigenvalue Distribution

d(X — Xo) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:

) = 535 (x=3)
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Eigenvalue Distribution

d(X — Xo) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:

pian(x) %Za(x—g(—fﬁ’)
/buA,N(x)dx AU L)
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Eigenvalue Distribution

d(X — Xo) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:
1g A(A)
pan(X) = NZ(S (X - m)
7

/b pan(X)dx = {Ai o €l b]}

o SR Treceal)
kN 5+1 okN5+L
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Wigner's Semi-Circle Law

Wigner’s Semi-Circle Law

N x N real symmetric matrices, entries i.i.d.r.v. from a
fixed p(x) with mean 0, variance 1, and other moments
finite. Then for almost all A, as N — oo

v1—x? if|x| <1

2
0 otherwise.

pan(X) — {
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SKETCH OF PROOF: Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but choose the
matrix elements randomly and independently.

Eigenvalue Trace Lemma

Let A be an N x N matrix with eigenvalues \;(A). Then

N

Trace(A*) = > \(A)K,

n=1

where

k
Tr%e A Z Z a|1|2a|2|3 a|N|1

ii=1 k=1
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SKETCH OF PROOF: Correct Scale

N

Trace(A?) = > N(A).

i=1

By the Central Limit Theorem:

N N N N
Trace(A?) = ZZaijaji - ZZaﬁ ~ N2

N

Gives NAve(\(A)?) ~ NZ2or Ave()(A)) ~ vN.
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SKETCH OF PROOF: Averaging Formula

Recall k-th moment of pan(X) is Trace(Ak)/2XNk/2+1,

Average k-th moment is
Trace(A¥)
/ / kN K/2+1 Hp(a”)da”'

Proof by method of moments: Two steps

@ Show average of k-th moments converge to moments
of semi-circle as N — oo;

@ Control variance (show it tends to zero as N — o0).
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SKETCH OF PROOF: Averaging Formula for Second Moment

Substituting into expansion gives

22N2 / / 2| -p(az1)day; - - - p(ann )dann

Iljl

Integration factors as

[e.e]
/ arp(a;)da;
ajj=—00

Higher moments involve more advanced combinatorics
(Catalan numbers).

H / p(aw)day = 1.
a

k')#IJ) K=7—00
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SKETCH OF PROOF: Averaging Formula for Higher Moments

Higher moments involve more advanced combinatorics
(Catalan numbers).

2ka/2+1/ / Z Zalllz " Qi - Hp aj da.l.

ii=1 k=1 i<j

Main contribution when the a;,;,,,’s matched in pairs, not
all matchings contribute equally (if did would get a
Gaussian and not a semi-circle; this is seen in Real
Symmetric Palindromic Toeplitz matrices).

Distribution of eigenvalues of real symmetric palindromic Toeplitz matrices and circulant matrices (with Adam
Massey and John Sinsheimer), Journal of Theoretical Probability 20 (2007), no. 3, 637-662.

http://arxiv.org/abs/ nat h/ 0512146



http://arxiv.org/abs/math/0512146
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Numerical examples

Distribution of eigenvalues—-Gaussian, N=400, 500 matrices
0.025 T T T

0015

0.005

0
-15 -1 -05 0 05 1 15

500 Matrices: Gaussian 400 x 400

P~ ok e
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Numerical examples

The eigenvalues of the Cauchy
distribution are NOT semicirular.

2000

1500

1000

Cauchy Distribution: p(x) = —t

|. Zakharevich, A generalization of Wigner’s law, Comm.
Math. Phys. 268 (2006), no. 2, 403—414.

http://web.willianms.edu/ Mat hematics/sjmller/public_htnl/book/papers/innaz. pdf



http://web.williams.edu/Mathematics/sjmiller/public_html/book/papers/innaz.pdf
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GOE Conjecture

GOE Conjecture:

As N — oo, the probability density of the spacing b/w
consecutive normalized eigenvalues approaches a limit
independent of p.

Until recently only known if p is a Gaussian.

GOE(x) ~ Ixe ™/4,
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Numerical Experiment: Uniform Distribution

Let p(x) = 1 for x| < 1.

35

T T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 uniform matrices, normalized in batches
of 20.

0 L L L
0 0.5 1 15 2 25 3 35 4 45 5

5000: 300 x 300 uniform on [—1,1]
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Cauchy Distribution

Let p(x) = —+=

m(1+x2) "

12000

0 05

1

15

The |OCr":l\ spac\ngs‘; of the ce‘mra\ 3/5 o‘f the e\geHvaIues '
of 5000 100x100 Cauchy matrices, normalized in batches
of 20.

2 25 3 35 4 4.5

5000: 100 x 100 Cauchy

Y
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Cauchy Distribution

Let p(x) = m

35

T T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 Cauchy matrices, normalized in batches
of 20.
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Random Graphs

, @

Degree of a vertex = number of edges leaving the vertex.
Adjacency matrix: a; = number edges b/w Vertex i and

Vertex j.
0011
0010
A=11102
1020

These are Real Symmetric Matrices.
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McKay'’s Law (Kesten Measure) with d =3

Density of Eigenvalues for d-regular graphs

f(x) - {mﬁud—n—xz ¥ < 2Va =1

0 otherwise.
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McKay’s Law (Kesten Measure) with d =6

Fat Thin: fat enough to average, thin enough to get
something different than semi-circle (though as d — o
recover semi-circle).




Classical RMT

3-Regular Graph with 2000 Vertices: Comparison with the GOE

Spacings between eigenvalues of 3-regular graphs and
the GOE:




Toeplitz

Real Symmetric Toeplitz Matrices
Chris Hammond and Steven J. Miller J
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Toeplitz Ensembles

Toeplitz matrix is of the form

bo b]_ b2 T bel
b_1 bo by - by
b, b bo -+ bnos
bi_n bo-n by - bo

@ Will consider Real Symmetric Toeplitz matrices.
@ Main diagonal zero, N — 1 independent parameters.
o Normalize Eigenvalues by v/N.




Toeplitz
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Eigenvalue Density Measure

Let
My = lim Ea [Mk(A, N)],

N—oo

have M, = 1 and My, = 0.




Toeplitz
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Even Moments

1
MZk(N) = W Z E(b|il_i2|b“2—i3‘ PN b‘i2k_i1‘)'

1<y, ik <N
Main Term: b;’s matched in pairs, say
By,

—ims1] — b\in—in+l|> Xm = ||m_|m+1| = ||n_|n+1-

Two possibilities:
im - ierl = in - inJrl or im - ierl = _(in - in+l)-

(2k — 1)!! ways to pair, 2 choices of sign.

Qe




Toeplitz
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Main Term: All Signs Negative (else lower order contributio n)

1
MZk(N) = W Z E(b|il_i2|b“2—i3‘ PN b‘i2k_i1‘)'

lSi17"'7i2k§N
Let X4, ..., Xx be the values of the ||J — |J+1\ S, €1,...,¢6 the
choices of sign. Define X; =iy — iy, Xo = ip —3,. ...
i = i1—X
i3 = il — il — iz
i1 = i —Xg— = Xok

k
=1

A




Toeplitz
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Even Moments: Summary

Main Term: paired, all signs negative.
1
Mo (N) < (2k — 1)1 4 Oy (N) .

Bounded by Gaussian.

A1




Toeplitz

The Fourth Moment

1
M4(N) = N3 Z E(b\ilfiz\b|i2*i3|b\i3*i4\b|i4*i1|)

1<iy,ip,i3,is <N

Let X = ||J — ij+1‘.

A
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The Fourth Moment

Case One: X1 = Xo, X3 = X4.

il — i2 = —(i2 — |3) and i3 — i4 = —(i4 — |1)

Implies
iy = i3, Iy andis arbitrary.

Left with E[bZ bZ ]:

N® — N timesget 1, N timesget p; = E[b ].

Contributes 1 in the limit.

A




Toeplitz
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The Fourth Moment

1
Ma(N) = N3 Z E(b\il—iz\bliz—islb\is—i4\b|i4—i1|)

1<y,in,i3,i4<N
Case Two: Diophantine Obstruction: X; = X3 and X, = X4.
i1 —ip = —(iz—ig) and i, —iz = —(isg —iy).
This yields
i1 = Ip+1ig — i3, Iy,lp,03,i3 € {1,... N}

Ifip,is > & and iz < §, iy > N: at most (1 — 55)N? valid
choices.

A




Toeplitz
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A

The Fourth Moment

Theorem: Fourth Moment: Let p4 be the fourth moment

of p. Then
2 1

500 Toeplitz Matrices, 400 x 400.

1500
1250
1000
750
500
250




Toeplitz
°

Main Result

Theorem: HM ’05

For real symmetric Toeplitz matrices, the limiting spectral
measure converges in probability to a unique measure of
unbounded support which is not the Gaussian. If p is
even have strong convergence).

Massey, Miller and Sinsheimer 07 proved that if first row
is a palindrome converges to a Gaussian.

A




Toeplitz
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Poissonian Behavior?

0.2

1 2 3 4 5

Not rescaled. Looking at middle 11 spacings, 1000
Toeplitz matrices (1000 x 1000), entries iidrv from the
ndard normal.




Block Circulant

Block Circulant Ensemble J

With Murat Kologlu, Gene Kopp, Fred Strauch and
Wentao Xiong.

A




Block Circulant
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The Ensemble of m-Block Circulant Matrices

Symmetric matrices periodic with period m on wrapped
diagonals, i.e., symmetric block circulant matrices.

8-by-8 real symmetric 2-block circulant matrix:

Co C1|Cr C3|Cy d3 Co dl
C1 do dl d2 d3 d4 Cs d2
Co dl Co CL|Cr C3|Cy d3
C3 d2 C1 do dl d2 d3 d4
Cy d3 Co dl Co CL|Cr C3
d3 d4 C3 d2 (o] do dl d2
Co, C3|Cy d3 Co dl Co C;
dl d2 d3 d4 C3 dz C1 do

Choose distinct entries i.i.d.r.v.

AQ




Block Circulant
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Oriented Matchings and Dualization

Compute moments of eigenvalue distribution (as m stays
fixed and N — oo) using the combinatorics of pairings.
Rewrite:

Mn(N) = N > E(ay,80), - 8ni,)
2 1<iy in<N

1
= o Z 1(~)Ma,(~) - - May(~)-

where the sum is over oriented matchings on the edges
{(1,2),(2,3),...,(n,1)} of a regular n-gon.
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Oriented Matchings and Dualization

Figure: An oriented matching in the expansion for M, (N) = Mg(8).




Block Circulant

Contributing Terms

As N — oo, the only terms that contribute to this sum are
those in which the entries are matched in pairs and with
opposite orientation.
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Only Topology Matters

Think of pairings as topological identifications; the
contributing ones give rise to orientable surfaces.

i3 i9

(L'igi4 Qg

Qigis Aigiy

Contribution from such a pairing is m=29, where g is the
genus (number of holes) of the surface. Proof:
combinatorial argument involving Euler characteristic.

S



Block Circulant

Computing the Even Moments

Theorem: Even Moment Formula
[k/2] 1
Mac = ) eg(k)m~2¢ + O, (N) :

9=0

with g4(k) the number of pairings of the edges of a
(2k)-gon giving rise to a genus g surface.

J. Harer and D. Zagier (1986) gave generating functions
for the g4(K).
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Harer and Zagier

Lk/2]
D eg(k)rkt0 = (2k — 1)l c(k, 1)
g=0
where r
- 1+x
k+1
1+2§c(k,r)x = (1—x) .

Thus, we write

My = m~ &2k — D)lic(k, m).
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A multiplicative convolution and Cauchy’s residue formula
yield the characteristic function of the distribution.

o(t) =

k=0

1

m
1 f 1
N 27im |z|=2 2z1




Block Circulant
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Fourier transform and algebra yields

Theorem: Kolo glu, Kopp and Miller

The limiting spectral density function f,(x) of the real
symmetric m-block circulant ensemble is given by

(2r + 2.5).! i_})s (mx?)"

Fixed m equals m x m GOE, as m — oo converges to the
semicircle distribution.

-




Block Circulant
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Results (continued)

Figure: Plot for f; and histogram of eigenvalues of 100 circulant
matrices of size 400 x 400.
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Results (continued)

Figure: Plot for f, and histogram of eigenvalues of 100 2-block
circulant matrices of size 400 x 400.
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Results (continued)

-3 -2 -1 1 2 3

Figure: Plot for f3 and histogram of eigenvalues of 100 3-block
circulant matrices of size 402 x 402.

¢
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Block Circulant
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Results (continued)

0.4

-3 -2 -1 1 2 3

Figure: Plot for f, and histogram of eigenvalues of 100 4-block
circulant matrices of size 400 x 400.
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Results (continued)

0.4

Figure: Plot for fg and histogram of eigenvalues of 100 8-block
circulant matrices of size 400 x 400.

¢
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Block Circulant
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Results (continued)

0.4

Figure: Plot for fog and histogram of eigenvalues of 100 20-block
circulant matrices of size 400 x 400.
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Results (continued)

Figure: Plot of convergence to the semi-circle.

The Limiting Spectral Measure for Ensembles of Symmetric Block
Circulant Matrices (with Murat Kologlu, Gene S. Kopp, Frederick W.
Strauch and Wentao Xiong), Journal of Theoretical Probability 26

[ (2013), no. 4, 1020-1060. http://arxiv. or g/ abs/ 1008. 4812



http://arxiv.org/abs/1008.4812

Checkerboard Matrices

Checkerboard Martrices J

Joint with Paula Burkhardt, Peter Cohen, Jonathan
Dewitt, Max Hlavacek, Eyvindur A. Palsson, Aaditya
Sharma, Carsten Sprunger, Yen Nhi Truong Vu, Roger
Van Peski and Kevin Yang.

RE
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Checkerboard Matrices

An N x N matrix A is a random real symmetric
checkerboard matrix if

w  bgs W bgz W -+ bon-1
Do,1 w b1 w b1a - W

A = w b1,2 W b2,3 W T b2,N—1
bon-1 W bono1 W o ban-1 o W

where the b;; are i.i.d.r.v, and w is a random variable.

It is k-checkerboard if w occurs every k entries in row
starting with the entry at the index (i mod k) of the ith row.

AR
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Evolving Results

Last summer proved all but k eigenvalues in bulk and
converge to semi-circle, remaining k in blip of size N /Kk.

Evolving Results:
@ Variance in blip like 1/N.
@ There are two peaks; for k = 2 from the (1,1,...,1)
and the (1,-1,1,-1,...,1,—1) eigenvectors.
@ The limiting spectral distribution in blip is a double
delta spike for any k.

R7
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Evolving Results

Last summer proved all but k eigenvalues in bulk and
converge to semi-circle, remaining k in blip of size N /Kk.

Evolving Results:

@ Variance in blip like 1/N. False. Is order k.

@ There are two peaks; for k = 2 from the (1,1,...,1)
and the (1,-1,1,-1,...,1,—1) eigenvectors. False.

@ The limiting spectral distribution in blip is a double
delta spike for any k. False. Goes to nice k x k GOE!

¢




Checkerboard Matrices
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Key ideas

Weights: To concentrate in blip, let
f(n) = (n — 1)x" — nx"~1, and set

0 = e S () (- (%))

Combinatorics: Reduce to k x k GOE.

¢
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Scaled Bin Count

10}

Normalized Eigenvalue

-05 00 05 10 15 20 25

Figure: 2-Checkerboard: N = 100, 100 trials.

Z0)
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Scaled Bin Count

Normalized Eigenvalue

Figure: 2-Checkerboard: N = 150, 100 trials.
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Scaled Bin Count

Normalized Eigenvalue

Figure: 2-Checkerboard: N = 200, 100 trials.
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Scaled Bin Count
10

Normalized Eigenvalue

Figure: 2-Checkerboard: N = 250, 100 trials.

eSS -




Checkerboard Matrices
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Scaled Bin Count

Normalized Eigenvalue

Figure: 2-Checkerboard: N = 300, 100 trials.
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Checkerboard Matrices
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Scaled Bin Count

Normalized Eigenvalue

Figure: 2-Checkerboard: N = 350, 100 trials.
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Split Eigenvalue Distribution: Checkerboard and Generali

. .| Scaled Bin Count

|
il

zations

Normalized
Eigenvalues

Figure: Histogram of normalized eigenvalues for 500 100 x 100

2-checkerboard matrices.




Checkerboard Matrices
[ ]

Split Eigenvalue Distribution: Checkerboard and Generali zations

Figure: Complex Generalization |.

TS
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Split Eigenvalue Distribution: Checkerboard and Generali zations

Figure: Complex Generalization II.

v OGS
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Riemann Zeta Function

c(s) = Z% - 11 (1-%) . Re(s)> 1.

n=1 p prime
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Riemann Zeta Function

(s) = Z% = 11 (1—é> ., Re(s) > 1.

n=1 p prime

Unique Factorization: n = pf - --pfm.
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Riemann Zeta Function

(s) = Z% = 11 (1—é> ., Re(s) > 1.

n=1 p prime

Unique Factorization: n = pf - --pfm.

1 1\?
1+ —4+(=) +---

1 1\2
2s 2s 1+—4+ (=) +---

3 3s

VRS
'—\
|
AR
N———
N
Il

1
= 2
n
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Riemann Zeta Function (cont)

(s) = Z%:H(l—%), Re(s) > 1

n p
n(x) = #{p:pisprime,p < x}

Properties of ((s) and Primes:
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Riemann Zeta Function (cont)

(s) = Z%:H(l—%), Re(s) > 1

n p
n(x) = #{p:pisprime,p < x}

Properties of ((s) and Primes:

@ limg_,1+ ((S) = 00, m(X) = 0.
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Riemann Zeta Function (cont)

(s) = Z%:H(l—%), Re(s) > 1

n p
n(x) = #{p:pisprime,p < x}

Properties of ((s) and Primes:
@ limg_,1+ ((S) = 00, m(X) = 0.
° C(Z):F, (x)—>oo.
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Riemann Zeta Function

n=1 p prime

Functional Equation:
S\ _s
&(s) = T(3)75c(s) = ¢ —s).
Riemann Hypothesis (RH):
- 1 : 1 .
All non-trivial zeros have Re(s) = > can write zeros as §+w.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A — A
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General L-functions

Functional Equation:
A(s,f) = Ax(s,f)L(s,f) = A1 —s,T).
Generalized Riemann Hypothesis (RH):

- 1 : 1 .
All non-trivial zeros have Re(s) = > can write zeros as §+w.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A=A
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Elliptic Curves: Mordell-Weil Group

Elliptic curve y2 = x3 + ax + b with rational solutions
P = (X1,y1) and Q = (X2, y2) and connecting line
y =mx + b.

R L R L
Q P
P
E PaQ \ E
2P \
Addition of distinct points P and Q Adding a point P to itself

E(Q) =~ E(Qors © Z'
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Elliptic curve L-function

E :y2=x3+ax + b, associate L-function

LsE) = 2 W o ] L),

n=1 p prime

where

ag(p) = p — #{(x.y) € (Z/pZ)* : y* = x* + ax + b mod p}.
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Elliptic curve L-function

E :y2=x3+ax + b, associate L-function

LsE) = 2 W o ] L),

n=1 p prime

where

ag(p) = p — #{(x.y) € (Z/pZ)* : y* = x* + ax + b mod p}.

Birch and Swinnerton-Dyer Conjecture

Rank of group of rational solutions equals order of
vanishing of L(s,E) ats = 1/2.
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Properties of zeros of L-functions

@ infinitude of primes, primes in arithmetic progression.
@ Chebyshev’s bias: m34(x) > m1.4(x) ‘most’ of the time.
@ Birch and Swinnerton-Dyer conjecture.

@ Goldfeld, Gross-Zagier: bound for h(D) from
L-functions with many central point zeros.

@ Even better estimates for h(D) if a positive
percentage of zeros of {(s) are at most 1/2 — ¢ of the
average spacing to the next zero.

Q1
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Distribution of zeros

@ ((s) # 0 for Re(s) = 1: m(X), maq(X).
@ GRH: error terms.
@ GSH: Chebyshev’s bias.

@ Analytic rank, adjacent spacings: h(D).
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Explicit Formula (Contour Integration)
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Explicit Formula (Contour Integration)

d -1
ol _C?—Slogg(s) = —£|091;[(1—p_s)

d —S
= E;Iog(l—p )

logp - p~° log p
— Zl—ip—s = ZF + Good(s).
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Explicit Formula (Contour Integration)

Contour Integration:

[-@

poo 5) %
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Explicit Formula (Contour Integration)

Contour Integration:

~¢(s) s
/ ) #(s)ds vs ;Iogp/gb(s)p ds.
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Explicit Formula (Contour Integration)

Contour Integration (see Fourier Transform arising):

('(s) —ologp o—itlo
|-G otsids v > logp [ ots)errrvetomngs.

Knowledge of zeros gives info on coefficients.
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Explicit Formula: Example

Dirichlet L-functions: Let ¢ be an even Schwartz function
and L(s, x) =>_, x(n)/n® a Dirichlet L-function from a
non- trivial character y with conductor m and zeros
p=35+iv. Then

Z¢( log( m/7r ) / oy
logp "\ x(p)
) (log(m/ﬂ)> p*/2

logp -/, logp "\ x*(p) 1
_Zzp:log(m/w)¢(zlog(m/w)) p JrO(Iogm)'

|
8
<)
3@
~| O
N
<)
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Takeaways

Very similar to Central Limit Theorem.

@ Universal behavior: main term controlled by first two
moments of Satake parameters, agrees with RMT.

@ First moment zero save for families of elliptic curves.

@ Higher moments control convergence and can
depend on arithmetic of family.
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Modeling lowest zero of Lg,, (S, xq) with 0 < d < 400,000

04 it
0.2 It
05 1

Lowest zero for Lg,, (S, xq4) (bar chart), lowest eigenvalue
of SO(2N) with Ng (solid), standard Ny (dashed).

o
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Modeling lowest zero of S, xd) With 0 < d < 400,

18 ‘ ‘ :
6
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12}
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ol

Lowest zero for LEu(s Xd) (bar chart); lowest eigenvalue of SO(2N): Ngt = 2 (solid)

with discretisation, and Ng = 2.32 (dashed) without discretisation.
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The lowest eigenvalue of Jacobi Random Matrix Ensembles and Painlevé VI, (with E. Duefiez, D. K. Huynh, J.
Keating and N. Snaith), Journal of Physics A: Mathematical and Theoretical 43 (2010) 405204 (27pp).
http://arxiv.org/pdf/1005. 1298

Models for zeros at the central point in families of elliptic curves (with E. Duefiez, D. K. Huynh, J. Keating and N.
Snaith), J. Phys. A: Math. Theor. 45 (2012) 115207 (32pp). ht t p: / / ar xi v. or g/ pdf / 1107. 4426



http://arxiv.org/pdf/1005.1298
http://arxiv.org/pdf/1107.4426

Open Questions
and References
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Open Questions: Low-lying zeros of  L-functions

@ Generalize excised ensembles for higher weight GL,
families where expect different discretizations.

@ Obtain better estimates on vanishing at the central
point by finding optimal test functions for the second
and higher moment expansions.

@ Further explore L-function Ratios Conjecture to
predict lower order terms in families, compute these
terms on number theory side.

See Dueiiez-Huynh-Keating-Miller-Snaith, Miller, and the
Ratios papers.
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Publications: Random Matrix Theory

e Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices (with Christopher
Hammond), Journal of Theoretical Probability 18 (2005), no. 3, 537-566.
http://arxiv.org/abs/ nat h/ 0312215

Distribution of eigenvalues of real symmetric palindromic Toeplitz matrices and circulant matrices (with
Adam Massey and John Sinsheimer), Journal of Theoretical Probability 20 (2007), no. 3, 637-662.
http://arxiv.org/abs/ nat h/ 0512146

The distribution of the second largest eigenvalue in families of random regular graphs (with Tim Novikoff
and Anthony Sabelli), Experimental Mathematics 17 (2008), no. 2, 231-244.
http://arxiv.org/abs/ nath/ 0611649

Nuclei, Primes and the Random Matrix Connection (with Frank W. K. Firk), Symmetry 1 (2009), 64-105;
doi:10.3390/sym1010064. http://arxi v. or g/ abs/ 0909. 4914

Distribution of eigenvalues for highly palindromic real symmetric Toeplitz matrices (with Steven Jackson and
Thuy Pham), Journal of Theoretical Probability 25 (2012), 464—495.
http://arxiv. org/abs/1003. 2010

The Limiting Spectral Measure for Ensembles of Symmetric Block Circulant Matrices (with Murat Kologlu,
Gene S. Kopp, Frederick W. Strauch and Wentao Xiong), Journal of Theoretical Probability 26 (2013), no. 4,
1020-1060. http://arxiv. org/ abs/ 1008. 4812

Distribution of eigenvalues of weighted, structured matrix ensembles (with Olivia Beckwith, Karen Shen),
submitted December 2011 to the Journal of Theoretical Probability, revised September 2012.
http://arxiv.org/abs/1112. 3719 .
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The expected eigenvalue distribution of large, weighted d-regular graphs (with Leo Goldmahker, Cap
Khoury and Kesinee Ninsuwan), preprint.
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Publications: L-Functions

The low lying zeros of a GL(4) and a GL(6) family of L-functions (with Eduardo Duefiez), Compositio
Mathematica 142 (2006), no. 6, 1403-1425. http://arxiv. or g/ abs/ mat h/ 0506462
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Low lying zeros of L—functions with orthogonal symmetry (with Christopher Hughes), Duke Mathematical
Journal 136 (2007), no. 1, 115-172. http://arxi v. or g/ abs/ mat h/ 0507450
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Proceedings of the London Mathematical Society, 2009; doi: 10.1112/plms/pdp018.
http://arxiv.org/ pdf/ nmath/ 0607688. pdf
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2866-2891. http://arxiv.org/abs/1003. 5336

The low-lying zeros of level 1 Maass forms (with Levent Alpoge), preprint 2013.
http://arxiv.org/abs/1301. 5702

The n-level density of zeros of quadratic Dirichlet L-functions (with Jake Levinson), submitted September
2012 to Acta Arithmetica. http://arxiv. or g/ abs/ 1208. 0930
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Moment Formulas for Ensembles of Classical Compact Groups (with Geoffrey lyer and Nicholas
Triantafillou), preprint 2013.
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Publications: Elliptic Curves
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1- and 2-level densities for families of elliptic curves: evidence for the underlying group symmetries,
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Sci. Canada 27 (2005), no. 4, 111-120. http://arxi v. or g/ abs/ mat h/ 0506461
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Alvaro Lozano-Robledo), Journal of Number Theory 123 (2007), no. 2, 388-402.
http://arxiv.org/abs/ mat h/ 0406579
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Publications: L-Function Ratio Conjecture

e A symplectic test of the L-Functions Ratios Conjecture, Int Math Res Notices (2008) Vol. 2008, article ID
rnm146, 36 pages, doi:10.1093/imrn/rnm146. http://arxi v. or g/ abs/ 0704. 0927

9 An orthogonal test of the L-Functions Ratios Conjecture, Proceedings of the London Mathematical Society
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An elliptic curve family test of the Ratios Conjecture (with Duc Khiem Huynh and Ralph Morrison), Journal
of Number Theory 131 (2011), 1117-1147. http://arxiv. org/ abs/ 1011. 3298
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submitted September 2012 to Proceedings of the London Mathematical Society.
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