Steven Miller (sjm1@williams.edu) President, Fibonacci Association

What do you mean? Mirror, mirror on the wall, who's the most irrational number of all?

From Zombies to Fibonaccis: An Introduction to the Theory of Games

Steven J. Miller, Williams College

http:

//www.williams.edu/Mathematics/sjmiller/public_html

New Jersey Math Camp: Summer 2018

$\sqrt{2}$

$\sqrt{2}$ Is Irrational

 $\sqrt{2}$

Standard Proof: Assume $\sqrt{2} = a/b$.

WLOG, assume *b* is the smallest denominator among all fractions that equal $\sqrt{2}$.

 $2b^2 = a^2$ thus a = 2m is even.

Then $2b^2 = 4m^2$ so $b^2 = 2m^2$ so b = 2n is even.

Thus $\sqrt{2} = a/b = 2m/2n = m/n$, contradicts minimality of *n*.

(Could also do by contradiction from *a*, *b* relatively prime.)

Tennenbaum's Proof

Assume $\sqrt{2} = a/b$ with *b* minimal.

As
$$0 < a - b < b$$
 (if not, $a - b \ge b$ so $a \ge 2b$ and $\sqrt{2} = a/b \ge 2$), contradicts minimality of *b*.

Challenge

WHAT OTHER NUMBERS HAVE GEOMETRIC IRRATIONALITY PROOFS?

More Irrationals

Assume $\sqrt{3} = a/b$ with *b* minimal.

Figure: Geometric proof of the irrationality of $\sqrt{3}$. The white equilateral triangle in the middle has sides of length 2a - 3b.

Have $3(2b - a)^2 = (2a - 3b)^2$ so $\sqrt{3} = (2a - 3b)/(2b - a)$, note 2b - a < b (else $b \ge a$), violates minimality.

Figure: Geometric proof of the irrationality of $\sqrt{5}$.

A straightforward analysis shows that the five doubly covered pentagons are all regular, with side length a - 2b, and the middle pentagon is also regular, with side length b - 2(a - 2b) = 5b - 2a.

We now have a smaller solution, with the five doubly counted regular pentagons having the same area as the omitted pentagon in the middle. Specifically, we have $5(a-2b)^2 = (5b-2a)^2$; as $a = b\sqrt{5}$ and $2 < \sqrt{5} < 3$, note that a - 2b < b and thus we have our contradiction.

11

Figure: Geometric proof of the irrationality of $\sqrt{6}$.

Closing Thoughts

Could try to do $\sqrt{10}$ but eventually must break down. Note 3, 6, 10 are triangular numbers ($T_n = n(n+1)/2$). $T_8 = 36$ and thus $\sqrt{T_8}$ is an integer!

Can you get a cube-root?

What other numbers?

Introduction	Dimension	Coastline	Chaos	Take-aways
00000	00000000000	0000	000000000000000000000000000000000000	

From \mathbb{C} to Shining \mathbb{C} : \mathbb{C} omplex Dynamics from \mathbb{C} ombinatorics to \mathbb{C} oastlines

Steven J. Miller, Williams College sjml@williams.edu

http://web.williams.edu/Mathematics/sjmiller/public_html/

Introduction to Applications of Calculus: Hampshire College 8/8/2022

Introduction	Dimension	Coastline	Chaos	Take-aways
•••••	00000000000	0000	000000000000000000000000000000000000	

Introduction

Introduction	Dimension	Coastline	Chaos	Take-aways
00000				

Turbulent '60s: Goal is to (begin to) understand papers

- Edward N. Lorenz, Deterministic nonperiodic flow, Journal of Atmospheric Sciences 20 (1963), 130–141. http://journals.ametsoc.org/doi/pdf/10. 1175/1520-0469%281963%29020%3C0130%3ADNF% 3E2.0.C0%3B2.
- Benoit Mandelbrot, How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension, Science, New Series, Vol. 156, No. 3775 (May 5, 1967), pp. 636–638.

https://classes.soe.ucsc.edu/ams214/
Winter09/foundingpapers/Mandelbrot1967.pdf
and

http://www.jstor.org/stable/1721427?origin=
JSTOR-pdf&seq=1#page_scan_tab_contents.

	Dimension 00000000000	Coastline	Chaos 000000000000000000000000000000000000	Take-aways oo
Loronz Do	oor			

From the conclusion: All solutions, and in particular the period solutions, are found to be unstable. When our results concerning the instability of nonperiodic flow are applied to the atmosphere, which is ostensibly nonperiodic, they indicate that prediction of the sufficiently distant future is impossible by any method, unless the present conditions are known exactly. In view of the inevitable inaccuracy and incompleteness of weather observations, precise very-long range forecasting would seem to be non-existent.

Introduction	Dimension	Coastline 0000	Chaos 000000000000000000000000000000000000	Take-aways oo
Mandelbro	ot Paper			

From the abstract: Geographical curves are so involved in their detail that their lengths are often infinite or, rather, undefinable. However, many are statistically "self-similar," meaning that each portion can be considered a reduced-scale image of the whole. In that case, the degree of complication can be described by a quantity D that has many properties of a "dimension," though it is fractional; that is, it exceeds the value unity associated with the ordinary, rectifiable, curves.

Examples of country dimensions from the paper: Britain 1.25, Germany (land frontier in 1899) 1.15, Spain-Portugal (land boundary) 1.14, Australia 1.13, South Africa (coastline) 1.02.

Introduction	Dimension	Coastline	Chaos	Take-aways
	00000000000	0000	000000000000000000000000000000000000	oo
Link				

What is the link between the two papers?

Introduction	Dimension	Coastline	Chaos	Take-aways
	00000000000	0000	000000000000000000000000000000000000	oo
Link				

What is the link between the two papers?

Extreme sensitivity to initial conditions.

Introduction	Dimension ●○○○○○○○○○○	Coastline 0000	Chaos 000000000000000000000000000000000000	Take-aways

Dimension

Introduction	Dimension ○●○○○○○○○○○	Coastline 0000	Chaos 000000000000000000000000000000000000	Take-aways 00
What is d	limension?			
Define	e dimension			

Introduction	Dimension ○●○○○○○○○○○	Coastline	Chaos 000000000000000000000000000000000000	Take-aways oo
What is di	mension?			

Define dimension....

 $\mathbb R$ is the set of real numbers, $\mathbb R^2$ are pairs of real numbers, and so on.

Dilating a set by r means multiply each point by r; thus a unit circle centered at the origin becomes a circle of radius r when we dilate by r.

Hausdorff Dimension

Let

$$S \subset \mathbb{R}^n := \{(x_1,\ldots,x_n): x_i \in \mathbb{R}\}$$

be a set. If dilating *S* by a factor of *r* yields *c* copies of *S*, then the dimension *d* of *S* satisfies $r^d = c$.

Introduction	Dimension	Coastline	Chaos	Take-aways
	0000000000			

Example: Remember $r^d = c$ where d dimension, r dilation, c copies

What is the easiest example?

Segment of length 1. We take r = 3 and get c = 3 copies; thus d = 1 as $3^1 = 3$.

Introduction	Dimension	Coastline	Chaos	Take-aways
	00000000000			

Example: Remember $r^d = c$ where d dimension, r dilation, c copies

Increasing the sides of a square by a factor of r = 3 increases the area by a factor of $9 = 3^2$; the dimension is 2 as $3^2 = 9$.

Introduction	Dimension	Coastline	Chaos	Take-aways
	0000000000			

- Let $C_0 = [0, 1]$, the unit interval.
- Given C_n , let C_{n+1} be the set formed by removing the middle third of each interval in C_n .
- $\begin{array}{l} C_1 = \{0,1/3\} \cup \{2/3,1\} \text{ and} \\ C_2 \ = \ \{0,1/9\} \cup \{2/9,3/9\} \cup \{2/3,7/9\} \cup \{8/9,1\}. \end{array}$

Figure: The zeroth iteration of the construction of the Cantor set. Image from Sarang (Wikimedia Commons). Thoughts on dimension?

Introduction	Dimension	Coastline	Chaos	Take-aways
	00000000000			

- Let $C_0 = [0, 1]$, the unit interval.
- Given C_n , let C_{n+1} be the set formed by removing the middle third of each interval in C_n .
- $\begin{array}{l} C_1 = \{0,1/3\} \cup \{2/3,1\} \text{ and} \\ C_2 \ = \ \{0,1/9\} \cup \{2/9,3/9\} \cup \{2/3,7/9\} \cup \{8/9,1\}. \end{array}$

Figure: The first iteration of the construction of the Cantor set. Image from Sarang (Wikimedia Commons). Thoughts on dimension?

Introduction	Dimension	Coastline	Chaos	Take-aways
	0000000000			

- Let $C_0 = [0, 1]$, the unit interval.
- Given C_n , let C_{n+1} be the set formed by removing the middle third of each interval in C_n .

 $\textit{C}_{1} = \{0, 1/3\} \cup \{2/3, 1\}$ and

 $C_2 = \{0, 1/9\} \cup \{2/9, 3/9\} \cup \{2/3, 7/9\} \cup \{8/9, 1\}.$

Introduction	Dimension	Coastline	Chaos	Take-aways
	00000000000			

- Let $C_0 = [0, 1]$, the unit interval.
- Given C_n , let C_{n+1} be the set formed by removing the middle third of each interval in C_n .
- $C_1 = \{0, 1/3\} \cup \{2/3, 1\}$ and
- $C_2 = \{0, 1/9\} \cup \{2/9, 3/9\} \cup \{2/3, 7/9\} \cup \{8/9, 1\}.$

Figure: The first three iterations of the construction of the Cantor set. Image from Sarang (Wikimedia Commons). Thoughts on dimension?

- Let $C_0 = [0, 1]$, the unit interval.
- Given C_n , let C_{n+1} be the set formed by removing the middle third of each interval in C_n .

 $C_1 = \{0, 1/3\} \cup \{2/3, 1\}$ and

 $C_2 = \{0, 1/9\} \cup \{2/9, 3/9\} \cup \{2/3, 7/9\} \cup \{8/9, 1\}.$

Figure: The first four iterations of the construction of the Cantor set. Image from Sarang (Wikimedia Commons). Thoughts on dimension?

Introduction	Dimension	Coastline	Chaos	Take-aways
	0000000000			

- Let $C_0 = [0, 1]$, the unit interval.
- Given C_n , let C_{n+1} be the set formed by removing the middle third of each interval in C_n .

 $C_1 = \{0, 1/3\} \cup \{2/3, 1\}$ and

 $C_2 = \{0, 1/9\} \cup \{2/9, 3/9\} \cup \{2/3, 7/9\} \cup \{8/9, 1\}.$

Figure: The first five iterations of the construction of the Cantor set. Image from Sarang (Wikimedia Commons). Thoughts on dimension?

Introduction	Dimension	Coastline	Chaos	Take-aways
	0000000000			

- Let $C_0 = [0, 1]$, the unit interval.
- Given C_n , let C_{n+1} be the set formed by removing the middle third of each interval in C_n .

 $\begin{array}{l} C_1 = \{0,1/3\} \cup \{2/3,1\} \text{ and} \\ C_2 \ = \ \{0,1/9\} \cup \{2/9,3/9\} \cup \{2/3,7/9\} \cup \{8/9,1\}. \end{array}$

Figure: The first six iterations of the construction of the Cantor set. Image from Sarang (Wikimedia Commons). Thoughts on dimension?

Introduction	Dimension	Coastline	Chaos	Take-aways
	00000000000			

- Let $C_0 = [0, 1]$, the unit interval.
- Given C_n , let C_{n+1} be the set formed by removing the middle third of each interval in C_n .
- $C_1 = \{0, 1/3\} \cup \{2/3, 1\}$ and
- $C_2 = \{0, 1/9\} \cup \{2/9, 3/9\} \cup \{2/3, 7/9\} \cup \{8/9, 1\}.$

Figure: The first six iterations of the construction of the Cantor set. Image from Sarang (Wikimedia Commons). Thoughts on dimension?

Dilate by r = 3 and get c = 2 copies, thus dimension d satisfies $3^d = 2$, or $d = \log_3 2 \approx 0.63093$; note *not* an integer, but....

Introduction	Dimension	Coastline	Chaos	Take-aways
00000	○○○○○●○○○○○○		000000000000000000000000000000000000	○○
Pascal's 1	Friangle			

Pascal's triangle: k^{th} entry in the n^{th} row is $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.

Introduction	Dimension ○○○○○●○○○○○	Coastline	Chaos 000000000000000000000000000000000000	Take-aways oo
Pascal's Tr	iangle Modulo	2		

Modify Pascal's triangle: • if $\binom{n}{k}$ is odd, blank if even.

Modify Pascal's triangle: • if $\binom{n}{k}$ is odd, blank if even.

If we have just one row we would see $\bullet,$ if we have four rows we would see

Note: Often write $a \mod b$ for the remainder of a divided by b; thus 15 mod 12 is 3.

Introduction	Dimension ○○○○○●○○○○○	Coastline	Chaos 000000000000000000000000000000000000	Take-aways oo
Pascal's 1	Friangle Modulo	2		
Modify	y Pascal's triangle	e: • if $\binom{n}{k}$ is	odd, blank if even.	

For eight rows we find

Introduction 00000	Dimension	Coastline 0000	Chaos ooooooooooooooooooooooooooooooooooo	Take-aways
Pascal mod	2 Plots			

Figure: Plot of Pascal's triangle modulo 2 for 2⁴, 2⁸ and 2¹⁰ rows.

https://www.youtube.com/watch?v=tt4_4YajqRM
(start 1:35)
Fixed: https://youtu.be/_vkGakVt1RA?t=264 (start
4:24)

troduction	Dimension	Coastline	Chaos	Take-av
0000	000000000000			

avs

Sierpinski Triangle: Remember $r^d = c$ where d dimension, r dilation, c copies

Figure: The construction process leading to the Sierpinski triangle; first four stages. Image from Wereon (Wikimedia Commons).

What's its dimension?

roduction	Dimension	Coastline	Chaos	Take-aw
0000	000000000000			

Sierpinski Triangle: Remember $r^d = c$ where *d* dimension, *r* dilation, *c* copies

Figure: The construction process leading to the Sierpinski triangle; first four stages. Image from Wereon (Wikimedia Commons).

What's its dimension?

If double get three copies; so in $r^d = c$ have r = 2, c = 3 and thus $d = \log_2 3 \approx 1.58496$ (note exceeds 1, less than 2).

Introduction	Dimension ○○○○○○○●○○	Coastline	Chaos 000000000000000000000000000000000000	Take-aways oo
More Pase	cal			

Question: What would be a good way to generalize what we've done?

Some links....

- https://www.youtube.com/watch?v=wcxmdiuYjhk
- https://www.youtube.com/watch?v=b2GEQPZQxk0
- https://www.youtube.com/watch?v=XMriWTvPXHI
- https://www.youtube.com/watch?v=QBTiqiIiRpQ

Introduction	Dimension	Coastline	Chaos	Take-aways
	○○○○○○○○○○	0000	000000000000000000000000000000000000	oo

Generalization: Pascal mod 3

Introduction	Dimension	Coastline	Chaos	Take-aways
	○○○○○○○○●○	0000	000000000000000000000000000000000000	oo

Generalization: Pascal mod 4

Introduction	Dimension ○○○○○○○○●○	Coastline 0000	Chaos 000000000000000000000000000000000000	Take-aways

Generalization: Pascal mod 5

Introduction	Dimension	Coastline	Chaos	Take-aways
	○○○○○○○○○●	0000	000000000000000000000000000000000000	oo
Research	Problems			

Always ask new questions, try to extend.

Guided 600+ students, two years ago asked in class: can any $r \in \mathbb{R}$ be a fractal dimension?

Introduction	Dimension 00000000000	Coastline ●○○○	Chaos 000000000000000000000000000000000000	Take-aways

Coastline

Introduction	Dimension 00000000000	Coastline ○●○○	Chaos 000000000000000000000000000000000000	Take-aways
Coastline D	imension			

Coastline paradox: measured length of a coastline changes with the scale of measurement.

Led to $L(G) = CG^{1-d}$ where *C* is a constant, *G* is the scale of measurement, *d* the dimension.

Introduction	Dimension	Coastline	Chaos	Take-aways
	00000000000	○○●○	000000000000000000000000000000000000	oo

British Coastline

 $L(G) = CG^{1-d}$ where C is a constant, G is the scale of measurement, d the dimension.

Figure: How Long is the Coastline of the Law (D. Katz, posted 10/18/10).

Introduction	Dimension	Coastline	Chaos	Take-aways
00000	00000000000	○○○●	000000000000000000000000000000000000	

Koch Snowflake

Koch snowflake (showing 1 of 3 sides) Draw an equilateral triangle in the middle, remove bottom. Repeat on each line segment. Lather, rinse, repeat Length at stage n+1 is 4/3 length at stage n; length goes to infinity. Exercise to show area is bounded. Dimension: As $r^d = c$, since r=3 yields c=4, $d = \log 4 / \log 3$.

Thus dimension is approximately 1.26186.

Introduction	Dimension	Coastline	Chaos	Take-aways
	00000000000	0000	●○○○○○○○○○○○○○○○○○	oo

Chaos

Introduction	Dimension 00000000000	Coastline	Chaos ⊙●○○○○○○○○○○○○○○○○○○	Take-aways oo
Finding roo	ots			

Much of math is about solving equations.

Introduction	Dimension 00000000000	Coastline 0000	Chaos ○●○○○○○○○○○○○○○○○○○○	Take-aways
Finding ro	ots			

Much of math is about solving equations.

Example: polynomials:

•
$$ax + b = 0$$
, root $x = -b/a$.

- $ax^2 + bx + c = 0$, roots $(-b \pm \sqrt{b^2 4ac})/2a$.
- Cubic, quartic: formulas exist in terms of coefficients; not for quintic and higher.

In general cannot find exact solution, how to estimate?

ntroduction	Dimension	Coastline	Chaos	Take-aways
			000000000000000000000000000000000000000	

Cubic: For fun, here's the solution to $ax^3 + bx^2 + cx + d = 0$

Introduction	Dimension	Coastline	Chaos	Take-aways
			000000000000000000000000000000000000000	

One of four solutions to quartic $ax^4 + bx^3 + cx^2 + dx + e = 0$

Introduction Dimension Coastline Chaos Take-aways

Divide and Conquer: Partial plot of continuous function f(x)

Introduction	Dimension	Coastline	Chaos	Take-aways
	00000000000	0000	○○○○○●○○○○○○○○○○○○○	oo

Divide and Conquer

Divide and Conquer

Assume *f* is continuous, f(a) < 0 < f(b). Then *f* has a root between *a* and *b*. To find, look at the sign of *f* at the midpoint $f\left(\frac{a+b}{2}\right)$; if sign positive look in $[a, \frac{a+b}{2}]$ and if negative look in $[\frac{a+b}{2}, b]$. Lather, rinse, repeat.

Introduction	Dimension	Coastline	Chaos	Take-aways
	00000000000	0000	○○○○○●○○○○○○○○○○○○○	oo

Divide and Conquer

Divide and Conquer

Assume *f* is continuous, f(a) < 0 < f(b). Then *f* has a root between *a* and *b*. To find, look at the sign of *f* at the midpoint $f\left(\frac{a+b}{2}\right)$; if sign positive look in $[a, \frac{a+b}{2}]$ and if negative look in $[\frac{a+b}{2}, b]$. Lather, rinse, repeat.

Example:

- f(0) = -1, f(1) = 3, look at f(.5).
- *f*(.5) = 2, so look at *f*(.25).
- *f*(.25) = -.4, so look at *f*(.375).

Introduction	Dimension	Coastline	Chaos	Take-aways
			000000000000000000000000000000000000000	

Divide and Conquer (continued)

How fast? Every 10 iterations uncertainty decreases by a factor of $2^{10}=1024\approx 1000.$

Thus 10 iterations essentially give three decimal digits.

		f(x) = x^2 - 3, sqrt(3)		1.732051		
n	left	right	f(left)	f(right)	left error	right error
1	1	2	-2	1	0.732051	-0.26795
2	1.5	2	-0.75	1	0.232051	-0.26795
3	1.5	1.75	-0.75	0.0625	0.232051	-0.01795
4	1.625	1.75	-0.35938	0.0625	0.107051	-0.01795
5	1.6875	1.75	-0.15234	0.0625	0.044551	-0.01795
6	1.71875	1.75	-0.0459	0.0625	0.013301	-0.01795
7	1.71875	1.734375	-0.0459	0.008057	0.013301	-0.00232
8	1.726563	1.734375	-0.01898	0.008057	0.005488	-0.00232
9	1.730469	1.734375	-0.00548	0.008057	0.001582	-0.00232
10	1.730469	1.732422	-0.00548	0.001286	0.001582	-0.00037

Figure: Approximating $\sqrt{3}\approx$ 1.73205080756887729352744634151.

Introduction	Dimension	Coastline	Chaos	Take-aways
00000	00000000000	0000	000000000000000000000000000000000000	00
Equation	of a Line			

Lots of ways to write: Point-Slope: given $P = (x_0, y_0)$ and m,

$$y-y_0 = m(x-x_0)$$

or

$$y = m(x-x_0)+y_0.$$

Introduction	Dimension 00000000000	Coastline	Chaos ○○○○○○○●○○○○○○○○○○○	Take-aways oo
Tangent Li	ne			

One of most important uses of calculus; approximate a curve by a straight line.

Locally good: for small changes in time, speed approximately constant.

New location f(x) is approximately $f(x_0) + f'(x_0)(x - x_0)$ (where start plus speed at x_0 times elapsed time).

Get the tangent line by Point-Slope: $P = (x_0, f(x_0))$ and slope $m = f'(x_0)$.

Introduction	Dimension	Coastline	Chaos	Take-aways
			000000000000000000000000000000000000000	

Tangent Line

New location f(x) is approximately $f(x_0) + f'(x_0)(x - x_0)$ (where start plus speed at x_0 times elapsed time).

Tangent Line

50

New location f(x) is approximately $f(x_0) + f'(x_0)(x - x_0)$ (where start plus speed at x_0 times elapsed time).

Get the tangent line by Point-Slope: $P = (x_0, f(x_0))$ and slope $m = f'(x_0).$ $f(x) = \cos(x), f'(x) = -\sin(x), x_0 = 4.$ 6 4 -1 -2 -3

ntroduction	
00000	

Dimension 000000000000 Coastline

Chaos

Take-aways

Newton's Method

Newton's Method

Assume *f* is continuous and differentiable. We generate a sequence hopefully converging to the root of f(x) = 0 as follows. Given x_n , look at the tangent line to the curve y = f(x) at x_n ; it has slope $f'(x_n)$ and goes through $(x_n, f(x_n))$ and gives line $y - f(x_n) = f'(x_n)(x - x_n)$. This hits the *x*-axis at $y = 0, x = x_{n+1}$, and yields $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.

		0000	
Introduction	Dimension	Coastline	Take-aways

Introduction	Dimension	Coastline	Chaos	Take-aways
	00000000000	0000	○○○○○○○○●○○○○○○○○○	oo
Nouton's N	lothod			

Introduction	Dimension 00000000000	Coastline	Chaos ○○○○○○○○●○○○○○○○○○○	Take-aways oo
Newton's	Method			

For example, $f(x) = x^2 - 3$ after algebra get $x_{n+1} = \frac{1}{2} \left(x_n + \frac{3}{x_n} \right)$.

Introduction	Dimension	Coastline	Chaos	Take-aways
			000000000000000000000000000000000000000	

Doing the algebra: Approximating roots of f(x) = 0

Have n^{th} approx x_n to the root of f(x) = 0, want next, x_{n+1} . Tangent line y = f(x) at point $(x_n, f(x_n))$ with slope $m = f'(x_n)$:

$$y = f(x_n) + f'(x_n)(x - x_n).$$

Introduction	Dimension	Coastline	Chaos	Take-aways
			000000000000000000000000000000000000000	

Doing the algebra: Approximating roots of f(x) = 0

Have n^{th} approx x_n to the root of f(x) = 0, want next, x_{n+1} . Tangent line y = f(x) at point $(x_n, f(x_n))$ with slope $m = f'(x_n)$:

$$y = f(x_n) + f'(x_n)(x - x_n).$$

Tangent line hits *x*-axis when y = 0, call that x_{n+1} , so

$$0 = f(x_n) + f'(x_n)(x_{n+1} - x_n).$$

 Introduction
 Dimension
 Coastline
 Chaos
 Take-aways

 00000
 0000000000
 0000
 0000000000
 00

Doing the algebra: Approximating roots of f(x) = 0

Have n^{th} approx x_n to the root of f(x) = 0, want next, x_{n+1} . Tangent line y = f(x) at point $(x_n, f(x_n))$ with slope $m = f'(x_n)$:

$$y = f(x_n) + f'(x_n)(x - x_n).$$

Tangent line hits *x*-axis when y = 0, call that x_{n+1} , so

$$0 = f(x_n) + f'(x_n)(x_{n+1} - x_n).$$

If
$$f(x) = x^2 - 3$$
: $f'(x) = 2x$, $f(x_n) = 2x_n^2 - 3$, $f'(x_n) = 2x_n$:
 $-\frac{f(x_n)}{f'(x_n)} = x_{n+1} - x_n$ or $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, thus

 Introduction
 Dimension
 Coastline
 Chaos
 Take-aways

 00000
 0000000000
 0000
 0000000000
 00

Doing the algebra: Approximating roots of f(x) = 0

Have n^{th} approx x_n to the root of f(x) = 0, want next, x_{n+1} . Tangent line y = f(x) at point $(x_n, f(x_n))$ with slope $m = f'(x_n)$:

$$y = f(x_n) + f'(x_n)(x - x_n).$$

Tangent line hits *x*-axis when y = 0, call that x_{n+1} , so

$$0 = f(x_n) + f'(x_n)(x_{n+1} - x_n).$$

If
$$f(x) = x^2 - 3$$
: $f'(x) = 2x$, $f(x_n) = 2x_n^2 - 3$, $f'(x_n) = 2x_n$:
 $-\frac{f(x_n)}{f'(x_n)} = x_{n+1} - x_n \text{ or } x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, thus
 $x_{n+1} = x_n - \frac{x_n^2 - 3}{2x_n} = \frac{2x_n^2 - x_n^2 + 3}{x_n} = \frac{1}{2}\left(x_n + \frac{3}{x_n}\right)$

Introduction	Dimension 00000000000	Coastline 0000	Chaos ○○○○○○○○○●○○○○○○○○	Take-aways

Rational Approximations: $\sqrt{3} = 1.7320508076...$

$$x_{n+1} = \frac{1}{2}\left(x_n + \frac{3}{x_n}\right)$$
$$x_0 = 2$$
Introduction	Dimension	Coastline	Chaos	Take-aways
			0000000000000000000	

Rational Approximations: $\sqrt{3} = 1.7320508076...$

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{3}{x_n} \right)$$

$$x_0 = 2$$

$$x_1 = \frac{1}{2} \left(2 + \frac{3}{2} \right) = \frac{7}{4} = 1.75$$

Introduction	Dimension	Coastline	Chaos	Take-aways
			000000000000000000000000000000000000000	

Rational Approximations: $\sqrt{3} = 1.7320508076...$

$$\begin{aligned} x_{n+1} &= \frac{1}{2} \left(x_n + \frac{3}{x_n} \right) \\ x_0 &= 2 \\ x_1 &= \frac{1}{2} \left(2 + \frac{3}{2} \right) = \frac{7}{4} = 1.75 \\ x_2 &= \frac{1}{2} \left(\frac{7}{4} + \frac{3}{7/4} \right) = \frac{97}{56} \approx 1.732142857 \dots \end{aligned}$$

Introduction	Dimension	Coastline	Chaos	Take-aways
			000000000000000000000000000000000000000	

Rational Approximations: $\sqrt{3} = 1.7320508076...$

$$\begin{aligned} x_{n+1} &= \frac{1}{2} \left(x_n + \frac{3}{x_n} \right) \\ x_0 &= 2 \\ x_1 &= \frac{1}{2} \left(2 + \frac{3}{2} \right) = \frac{7}{4} = 1.75 \\ x_2 &= \frac{1}{2} \left(\frac{7}{4} + \frac{3}{7/4} \right) = \frac{97}{56} \approx 1.732142857... \\ x_3 &= \frac{1}{2} \left(\frac{97}{56} + \frac{3}{97/56} \right) = \frac{18817}{10864} \approx 1.7320508100. \end{aligned}$$

Introduction	Dimension	Coastline	Chaos	Take-away
			000000000000000000000000000000000000000	

Newton's Method

$\begin{array}{l} \sqrt{3} = 1.7320508075688772935274463415058723669428 \\ x_5 = 1.7320508075688772935274463415058723678037 \\ x_5 = \frac{1002978273411373057}{579069776145402304}. \end{array}$

Introduction	Dimension	Coastline	Chaos	Take-aways
00000	00000000000	0000	○○○○○○○○○○○○○○○○○○○	oo
Newton M	ethod: $x^2 - 3 =$	0		

Consider $x^2 - 1 = (x - 1)(x + 1) = 0$.

Roots are 1, -1; if we start at a point x_0 do we approach a root? If so which?

Recall
$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{1}{x_n} \right)$$
.

00000	00000000000	0000	000000000000000000000000000000000000000	00	
Newton Method: $x^2 - 3 - 0$					

Consider
$$x^2 - 1 = (x - 1)(x + 1) = 0$$
.

Roots are 1, -1; if we start at a point x_0 do we approach a root? If so which?

Recall
$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{1}{x_n} \right).$$

Introduction	Dimension	Coastline	Chaos	Take-aways
			000000000000000000	

https://www.youtube.com/watch?v=ZsFixqGFNRc

What are the roots to $x^3 - 1 = 0$?

Here comes Complex Numbers! $\mathbb{C} = \{x + iy : x, y \in \mathbb{R}, i = \sqrt{-1}\}.$

Introduction	Dimension	Coastline	Chaos	Take-aways
			000000000000000000000000000000000000000	

https://www.youtube.com/watch?v=ZsFixqGFNRc

What are the roots to $x^3 - 1 = 0$?

Here comes Complex Numbers! $\mathbb{C} = \{x + iy : x, y \in \mathbb{R}, i = \sqrt{-1}\}.$

$$\begin{aligned} x^{3} - 1 &= (x - 1)(x^{2} + x + 1) \\ &= (x - 1) \cdot \left(x - \frac{-1 + \sqrt{1^{2} - 4 \cdot 1 \cdot 1}}{2}\right) \cdot \left(x - \frac{-1 - \sqrt{1^{2} - 4 \cdot 1 \cdot 1}}{2}\right) \\ &= (x - 1) \cdot \left(x - \frac{-1 + \sqrt{-3}}{2}\right) \cdot \left(x - \frac{-1 - \sqrt{-3}}{2}\right) \\ &= (x - 1) \cdot \left(x - \frac{-1 + i\sqrt{3}}{2}\right) \cdot \left(x - \frac{-1 - i\sqrt{3}}{2}\right). \end{aligned}$$

Roots are 1, $-1/2 + i\sqrt{3}/2$, $-1/2 - i\sqrt{3}/2$.

67

Introduction	Dimension	Coastline	Chaos	Take-aways
			000000000000000000000000000000000000000	

https://www.youtube.com/watch?v=ZsFixqGFNRc

If start at (x, y), what root do you iterate to?

Introduction	Dimension 00000000000	Coastline 0000	Chaos	Take-aways oo

https://www.youtube.com/watch?v=ZsFixqGFNRc

If start at (x, y), what root do you iterate to? Guess

Introduction	Dimension	Coastline	Chaos	Take-aways
			000000000000000000000000000000000000000	

https://www.youtube.com/watch?v=ZsFixgGFNRc

Introduction	Dimension	Coastline	Chaos	Take-aways
	00000000000	0000	○○○○○○○○○○○○○○○○●○○○	oo
Mandelbrot	Set:			

https://www.youtube.com/watch?v=0jGaio87u3A

Definition: Set of all complex numbers c = x + iy ($i = \sqrt{-1}$) such that if $f_c(u) = u^2 + c$ then the sequence

$$z_1 = f_c(0), \quad z_2 = f_c(z_1) = f_c(f_c(0)), \quad \cdots, \quad z_{n+1} = f_c(z_n)$$

 $z_1 = c, \quad z_2 = c^2 + c, \quad z_3 = (c^2 + c)^2 + c, \quad \cdots$

remains bounded as $n \to \infty$.

Introduction	Dimension	Coastline	Chaos	Take-aways
			000000000000000000000000000000000000000	

https://www.youtube.com/watch?v=0jGaio87u3A

Definition: Set of all complex numbers c = x + iy ($i = \sqrt{-1}$) such that if $f_c(u) = u^2 + c$ then the sequence

 $z_1 = f_c(0), \quad z_2 = f_c(z_1) = f_c(f_c(0)), \quad \cdots, \quad z_{n+1} = f_c(z_n)$

remains bounded as $n \to \infty$. MandelbrotSetPlot[]

Introduction	Dimension	Coastline	Chaos	Take-aways
			000000000000000000000000000000000000000	

https://www.youtube.com/watch?v=0jGaio87u3A

Definition: Set of all complex numbers c = x + iy ($i = \sqrt{-1}$) such that if $f_c(u) = u^2 + c$ then the sequence

 $z_1 = f_c(0), \quad z_2 = f_c(z_1) = f_c(f_c(0)), \quad \cdots, \quad z_{n+1} = f_c(z_n)$

remains bounded as $n \rightarrow \infty$. MandelbrotSetPlot[-1.5 - .1 I, -1.3 + .1 I]

Introduction	Dimension	Coastline	Chaos	Take-aways
	00000000000	0000	○○○○○○○○○○○○○○○○○○	oo

https://www.youtube.com/watch?v=0jGaio87u3A

Definition: Set of all complex numbers c = x + iy $(i = \sqrt{-1})$ such that if $f_c(u) = u^2 + c$ then the sequence

$$z_1 = f_c(0), \quad z_2 = f_c(z_1) = f_c(f_c(0)), \quad \cdots, \quad z_{n+1} = f_c(z_n)$$

remains bounded as $n \to \infty$. Zooming in....

Introduction	Dimension	Coastline	Chaos	Take-aways
			000000000000000000000000000000000000000	

https://www.youtube.com/watch?v=0jGaio87u3A

Definition: Set of all complex numbers c = x + iy ($i = \sqrt{-1}$) such that if $f_c(u) = u^2 + c$ then the sequence

 $z_1 = f_c(0), \quad z_2 = f_c(z_1) = f_c(f_c(0)), \quad \cdots, \quad z_{n+1} = f_c(z_n)$

remains bounded as $n \to \infty$.

Extreme zoom!

Introduction	Dimension 00000000000	Coastline 0000	Chaos ○○○○○○○○○○○○○○○●○○	Take-aways

/www.hpdz.net/inde

Mandelbrot Links: Especially

- https://www.youtube.com/watch?v=0jGaio87u3A
- https://www.youtube.com/watch?v=9j2yV1nLCEI
- https://www.youtube.com/watch?v=ZsFixqGFNRc
- https://www.youtube.com/watch?v=PD2XgQ0yCCk
- https://www.youtube.com/watch?v=vfteiiTfE0c

Introduction	Dimension	Coastline	Chaos	Take-aways
	00000000000	0000	○○○○○○○○○○○○○○○○○○●○	oo
Conseque	nces			

Why do we care?

77

Introduction	Dimension	Coastline	Chaos	Take-aways
00000	00000000000	0000	○○○○○○○○○○○○○○○○○○	00
Consequen	ces			

Why do we care?

If such small changes can lead to such wildly different behavior, what happens when we try to solve the equations governing our world?

Lorenz equations and chaos (from Wikipedia)

Lorenz equations:

In 1963, Edward Lorenz developed a simplified mathematical model for atmospheric convection.^[1] The model is a system of three ordinary differential equations now known as the Lorenz equations:

$$\left\{egin{array}{ll} \dot{x}=\sigma(y-x)\ \dot{y}=x(
ho-z)-y\ \dot{z}=xy-eta z \end{array}
ight.$$

The equations relate the properties of a two-dimensional fluid layer uniformly warmed from below and cooled from above. In particular, the equations describe the rate of change of three quantities with respect to time: x is proportional to the rate of convection, y to the horizontal temperature variation, and z to the vertical temperature variation.^[2] The constants σ , ρ , and β are system parameters proportional to the Prandtl number, Rayleigh number, and certain physical dimensions of the layer itself.^[3]

The Lorenz equations also arise in simplified models for lasers,^[4] dynamos,^[5] thermosyphons,^[6] brushless DC motors,^[7] electric circuits,^[8] chemical reactions^[9] and forward osmosis.^[10]

Introduction	Dimension	Coastline	Chaos	Take-aways
			0000000000000000000000	

Lorenz equations and chaos (from Wikipedia)

Introduction	Dimension	Coastline	Chaos	Take-aways
	00000000000	0000	000000000000000000000000000000000000	●○

Take-aways

Introduction	Dimension	Coastline	Chaos	Take-aways
	00000000000	0000	000000000000000000000000000000000000	○●
Takeaways				

Math is applicable!

Similar behavior in very different systems.

Extreme sensitivity challenges.