

Introduction

The Fibonacci sequence: let $F_0 = 0, F_1 = 1$ and for n > 1, we have $F_n = F_{n-1} + F_{n-2}$.

0,	1,	1,	2,	3,	5,	8,	13,	21,	34,	55,	89,	144,	•••
F_0	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9	F_{10}	F_{11}	F_{12}	

The order of appearance z(n) for a natural nis the smallest positive integer ℓ such that $n \mid F_{\ell}$.

n	1	2	3	4	5	6	7	8	9	10	11	12
z(n)	1	3	4	6	5	12	8	6	12	15	10	12
Table 1: The order of appearance $z(n)$												

A fixed point in the Fibonacci sequence occurs when z(n) = n.

Theorem

z(n) = n if and only if $n = 5^k$ or $n = 12 \cdot 5^k$ for some $k \ge 0$.

Fixed Point Order

Definition

The **fixed point order** $z^{k}(n)$ for a natural nis the smallest positive integer k such that $z^k(n)$ is a fixed point. If n is a fixed point, the fixed point order is 0.

$n \setminus k$	1	2	3	4
1	1			
2	3	4	6	12
3	4	6	12	
4	6	12		
5	5			
6	12			
7	8	6	12	
8	6	12		
9	12			
10	15	20	30	60

Table 2: Iterations of z on n, bold values are fixed points

Fixed Points in the Fibonacci Sequence

Presenter: Amanda Verga¹ Collaborators: Molly FitzGibbons², Dr. Steven J. Miller² ¹Trinity College, ²Williams College

Families of Integers *k***-Iterations from a Fixed Point**

We study the sequence of k-iterations of z on n required to reach a fixed point. This result tells us if there exists an integer n that takes exactly k iterations of z to reach a fixed point, then there are infinitely many integers that take exactly k iterations of z to reach a fixed point.

Theorem (FMV)

For all positive integers k, there exist infinitely many n with fixed point order k.

Example: When $n = 6 \cdot 5^k$ with $k \ge 0$, we know $z^k(n)$ has fixed point order 1. These include $n = 6, 30, 150, 750, 3750, 18750, \ldots$ To see why this is a fixed point, consider $z(6 \cdot 5^k) = \operatorname{lcm}(z(2), z(3), z(5^k)) = 3 \cdot 4 \cdot 5^k = 12 \cdot 5^k.$ Thus, after one iteration of z on $n = 6 \cdot 5^k$, we have arrived at a fixed point.

When $z^{k}(n)$ is expressed as the product of a constant relatively prime to 5 and a power of 5, then $z^{k}(n \cdot 5^{a})$ can be written as the product of that same constant and another power of 5.

Lemma 1 (FMV): Suppose $z^k(5^a \cdot n) = c_k 5^{a_i}$, where $gcd(c_k, 5) = 1$. For all non-negative integers a, the coefficient c_k remains constant.

For powers of 10, the k^{th} iteration of z is given by Lemma 2. This allows us to find integers that require exactly k iterations of z to reach a fixed point for any positive integer k

Lemma 2 (FMV): For all integers k and m with $k \ge 0, m \ge 4$ and $2k + 2 \le m$, we have $z^k (10^m) = 3 \cdot 5^m \cdot 2^{m-2k}.$

Finite Fixed Point Order

We are interested in knowing how many iterations of z on n are required in order to reach a fixed point and what fixed point a given number is sent to.

Theorem (FMV)

All positive integers n have finite fixed point order.

This result has been proven by showing $z^k(n) = 2^a 3^b 5^c$ for positive integers a, b, c and by using a relationship between the Pisano period of n and z(n). We prove this using a minimal counterexample argument.

This lets us consider different proof strategies • Case 1: n is prime • Case 2: n is a power of a prime • Case 3: n has at least two distinct prime factors **Future Directions** • Where are fixed points located when initial conditions are varied? **2** How does $z^k(n)$ behave for related sequences? **3** For a given integer, can the fixed point order be bounded as a function of n? Table 3: First n that takes k iterations to reach a fixed point, calculated in Mathematica References Diego Marques. "Fixed points of the order of appearance in the Fibonacci sequence". In: Fib Quarterly 50.4 (Nov. 2012), pp. 346–352.

2 Eva Trojovská. "On the Diophantine Equation z(n) = (2 - 1/k) n Involving the Order of Appearance in the Fibonacci Sequence". In: Mathematics 8.1 (Jan. 2020), pp. 124. 3 Eva Trojovská. "On periodic points of the order of appearance in the Fibonacci sequence". In: Mathematics 8.5 (May 2020), pp. 773. Acknowledgements

We thank our mentor Dr. Steven J. Miller. This work was supported by NSF Grants No. DMS-2241623, DMS-1947438, and DMS-2015553 while in residence at Williams College in Williamstown, MA during the SMALL REU.

Properties of z(n)

We use the following property for n = ab, where aand b are relatively prime

$$z^{k}(n) = \operatorname{lcm}\left(z^{k}\left(a\right), z^{k}\left(b\right)\right).$$

•	1	2	3	4	5	6	7	8	9	10
),	1	4	3	2	11	89	1069	2137	4273	59833
Р	1	12	12	12	60	60	60	60	60	60