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Motivation

Let’s send two messages using two different approaches:
"Hi"

↓
0100100001101001

■100■0000110■001
No way to restore the original
signal unless we know more :(

"Hi"
↓

0100100001101001
↓

DFT:
[ f̂0, f̂1, f̂2, f̂3, f̂4, f̂5, f̂6, f̂7, f̂8,
f̂9, f̂10, f̂11, f̂12, f̂13, f̂14, f̂15 ]

Received:
[ ■, f̂1, f̂2, f̂3,■,■, f̂6, f̂7, f̂8,
f̂9, f̂10, f̂11, f̂12,■, f̂14, f̂15 ]

We receive only part of a signal/frequencies - the rest is missing.

Questions we want to answer:
• Is it possible to reconstruct the full message?
• What are sufficient conditions for reconstruction?

Background

• We will call an arbitrary function f : Zd
N → C a signal.

• We will call an arbitrary function’s Fourier transform f̂ : Zd
N → C a

frequency.

Definition: Let f : ZN × ZT → C. The normalized DFT,
f̂ : ZN × ZT → C, of f is given by

f̂ (m, n) := 1√
NT

∑
x∈ZN

∑
y∈ZT

f (x, y)exp
(

−2πi
(xm

N
+ yn

T

))
.

Classical Recovery Condition [2]

Let f : ZN × ZT → C, and suppose we transmit the frequencies f̂ ,
but the values of f̂ are missing in M ⊂ ZN × ZT . If f is supported
in E ⊂ ZN × ZT and

|E||M | <
NT

2
,

then f can be recovered exactly using Logan’s method [1], which
consists of finding f = arg ming ∥g∥L1(ZN×ZT ) subject to
ĝ(m) = f̂ (m) for all m /∈ M .

Improved Recovery Condition Using the Gabor
Transform

We are interested in applying the Gabor transform, an object from
continuous harmonic analysis, to our discrete setting.

Definition: Let f : R → C be (Lebesgue) integrable. The Gabor
transform of f is defined by

Gf(ω, τ ) =
∫ ∞

−∞
f (t)g(t − τ )e−iωtdt,

where g is a window function, commonly taken to be g(t) = 1√
2πσ2

e− t2
2σ2.

The window function isolates the function within a short time span,
as it can be easier to reconstruct f with reasonable accuracy based
on knowledge of its approximate frequencies in short periods of time
than based on an imperfect transmission of the Fourier transform of
the entire function.

In the discrete setting, rather than taking the window function to be
the normal distribution, we can take the window function to restrict f
to particular rows or columns in its domain.

Definition: Given a function f : ZN × ZT → C, we define its row-wise
Gabor Transform Gf : ZN × ZT → C by

Gf (m, a) := N−1/2
∑
t∈ZN

f (t, a)e−2πim·t
N ,

i.e., Gf(m, a) := ̂f (—, a)(m).

Theorem (SMALL 2025)

Suppose f : ZN × ZT → C, where T : N → N such that T (N) = o
(√

NeN
)

a,
and define

Emax := max
a∈ZT

|suppt(f (t, a))|.

Suppose we transmit Gf (m, a) for all (m, a) ∈ ZN ×ZT and that the distribution
of lost frequencies is binomial with fixed probability 0 < θ <

1
2Emax

. Let M be
the set of missing frequencies and define

Mmax := maxa∈ZT
|M ∩ {Gf (t, a) : t ∈ ZN}|,

Mmin := mina∈ZT
|M ∩ {Gf (t, a) : t ∈ ZN}|.

As N → ∞, P
(

Mmax <
N

2Emax

)
→ 1, which implies that the probability of

unique recovery converges to 1.
Furthermore, for θ >

1
2Emax

, as N → ∞, P
(

Mmin <
N

2Emax

)
→ 0.

aWe use standard asymptotic notation: f (N) = O(g(N)) means |f(N)| ≤ C|g(N)| for some
constant C > 0 and sufficiently large N , while f (N) = o(g(N)) means limN→∞ f (N)/g(N) = 0.

Discussion

Suppose f : ZN ×ZT → C has support E ⊂ ZN ×ZT , and we transmit
f̂ , its Fourier transform in ZN × ZT . Suppose also that the values of
f̂ are missing in M , and that each element of M is lost independently
with probability θ. Then, the expectation of lost frequencies is NTθ.
So, according to the classical recovery condition

|E||M | <
NT

2
,

|E| can be as large as⌈
NT

2NTθ

⌉
− 1 =

⌈
1
2θ

⌉
− 1

while guaranteeing unique recovery with high probability for N suffi-
ciently large. In our theorem, we only require

Emax <
1
2θ

,

which means that |E| can be as large as

T

(⌈
1
2θ

⌉
− 1

)
while nearly guaranteeing unique recovery for N large enough, with the
restriction on the growth of T being T = o

(√
NeN

)
.
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