Eigenvalue Statistics for Toeplitz and Circulant Ensembles Murat Koloğlu¹, Gene Kopp², Steven J. Miller¹, and Karen Shen³ ¹Williams College ²University of Michigan ³Stanford University http://www.williams.edu/Mathematics/sjmiller/ IMS-APRM2012 meeting Tsukuba, Japan, July 3, 2012 #### **Goals** - See how the structure of the ensembles affects limiting behavior. - Discuss the tools and techniques needed to prove the results. # Real Symmetric Toeplitz Matrices Chris Hammond and Steven J. Miller Refs Appendices # **Toeplitz Ensembles** Toeplitz Toeplitz matrix is of the form $$\begin{pmatrix} b_0 & b_1 & b_2 & \cdots & b_{N-1} \\ b_{-1} & b_0 & b_1 & \cdots & b_{N-2} \\ b_{-2} & b_{-1} & b_0 & \cdots & b_{N-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{1-N} & b_{2-N} & b_{3-N} & \cdots & b_0 \end{pmatrix}$$ - Will consider Real Symmetric Toeplitz matrices. - Main diagonal zero, N − 1 independent parameters. - Normalize Eigenvalues by \sqrt{N} . 4 $$\mu_{A,N}(x)dx = \frac{1}{N}\sum_{i=1}^{N}\delta\left(x-\frac{\lambda_{i}(A)}{\sqrt{N}}\right)dx.$$ The k^{th} moment of $\mu_{A,N}(x)$ is $$M_k(A, N) = \frac{1}{N^{\frac{k}{2}+1}} \sum_{i=1}^{N} \lambda_i^k(A) = \frac{\text{Trace}(A^k)}{N^{\frac{k}{2}+1}}.$$ Let Toeplitz $$M_k = \lim_{N\to\infty} \mathbb{E}_A [M_k(A, N)];$$ have $M_2 = 1$ and $M_{2k+1} = 0$. 00000000 $$\textit{M}_{2k}(\textit{N}) \; = \; \frac{1}{N^{k+1}} \sum_{1 \leq i_1, \cdots, i_{2k} \leq N} \mathbb{E}(\textit{b}_{|i_1 - i_2|} \textit{b}_{|i_2 - i_3|} \cdots \textit{b}_{|i_{2k} - i_1|}).$$ Main Term: b_i 's matched in pairs, say $$b_{|i_m-i_{m+1}|} = b_{|i_n-i_{n+1}|}, \quad x_m = |i_m-i_{m+1}| = |i_n-i_{n+1}|.$$ Two possibilities: $$i_m - i_{m+1} = i_n - i_{n+1}$$ or $i_m - i_{m+1} = -(i_n - i_{n+1})$. (2k-1)!! ways to pair, 2^k choices of sign. 00000000 # Main Term: All Signs Negative (else lower order contribution) $$M_{2k}(N) = \frac{1}{N^{k+1}} \sum_{1 \leq i_1, \dots, i_{2k} \leq N} \mathbb{E}(b_{|i_1 - i_2|} b_{|i_2 - i_3|} \cdots b_{|i_{2k} - i_1|}).$$ Let x_1, \ldots, x_k be the values of the $|i_j - i_{j+1}|$'s, $\epsilon_1, \ldots, \epsilon_k$ the choices of sign. Define $\tilde{x}_1 = i_1 - i_2$, $\tilde{x}_2 = i_2 - i_3$, $$i_{2} = i_{1} - \widetilde{x}_{1}$$ $$i_{3} = i_{1} - \widetilde{x}_{1} - \widetilde{x}_{2}$$ $$\vdots$$ $$i_{1} = i_{1} - \widetilde{x}_{1} - \cdots - \widetilde{x}_{2k}$$ $$\widetilde{x}_{1} + \cdots + \widetilde{x}_{2k} = \sum_{i=1}^{k} (1 + \epsilon_{i}) \eta_{i} x_{j} = 0, \quad \eta_{j} = \pm 1.$$ **Appendices** Refs Main Term: paired, all signs negative. $$M_{2k}(N) \leq (2k-1)!! + O_k\left(\frac{1}{N}\right).$$ Bounded by Gaussian. Toeplitz 00000000 Refs **Appendices** $$\textit{M}_{4}(\textit{N}) = \frac{1}{\textit{N}^{3}} \sum_{1 \leq \textit{i}_{1}, \textit{i}_{2}, \textit{i}_{3}, \textit{i}_{4} \leq \textit{N}} \mathbb{E}(\textit{b}_{|\textit{i}_{1} - \textit{i}_{2}|} \textit{b}_{|\textit{i}_{2} - \textit{i}_{3}|} \textit{b}_{|\textit{i}_{3} - \textit{i}_{4}|} \textit{b}_{|\textit{i}_{4} - \textit{i}_{1}|})$$ Let $x_j = |i_j - i_{j+1}|$. a Case One: $$x_1 = x_2, x_3 = x_4$$: $$i_1 - i_2 = -(i_2 - i_3)$$ and $i_3 - i_4 = -(i_4 - i_1)$. **Implies** $$i_1 = i_3$$, i_2 and i_4 arbitrary. Left with $\mathbb{E}[b_{x_1}^2 b_{x_2}^2]$: $$N^3 - N$$ times get 1, N times get $p_4 = \mathbb{E}[b_{x_1}^4]$. Contributes 1 in the limit. Toeplitz 00000000 $$M_4(N) = \frac{1}{N^3} \sum_{1 \leq i_1, i_2, i_3, i_4 \leq N} \mathbb{E}(b_{|i_1 - i_2|} b_{|i_2 - i_3|} b_{|i_3 - i_4|} b_{|i_4 - i_1|})$$ Case Two: Diophantine Obstruction: $x_1 = x_3$ and $x_2 = x_4$. $$i_1 - i_2 = -(i_3 - i_4)$$ and $i_2 - i_3 = -(i_4 - i_1)$. This yields $$i_1 = i_2 + i_4 - i_3, i_1, i_2, i_3, i_4 \in \{1, \dots, N\}.$$ If $i_2, i_4 \ge \frac{2N}{3}$ and $i_3 < \frac{N}{3}$, $i_1 > N$: at most $(1 - \frac{1}{27})N^3$ valid choices. 11 **Theorem: Fourth Moment:** Let p_4 be the fourth moment of p. Then $$M_4(N) = 2\frac{2}{3} + O_{\rho_4}\left(\frac{1}{N}\right).$$ 500 Toeplitz Matrices, 400×400 . ## **Main Result** ## Theorem: HM '05 For real symmetric Toeplitz matrices, the limiting spectral measure converges in probability to a unique measure of unbounded support which is not the Gaussian. If *p* is even have strong convergence). ## **Poissonian Behavior?** Not rescaled. Looking at middle 11 spacings, 1000 Toeplitz matrices (1000 \times 1000), entries iidrv from the standard normal. Real Symmetric Palindromic Toeplitz Matrices Adam Massey, Steven J. Miller, Jon Sinsheimer ## **Real Symmetric Palindromic Toeplitz matrices** $$\begin{pmatrix} b_0 & b_1 & b_2 & b_3 & \cdots & b_3 & b_2 & b_1 & b_0 \\ b_1 & b_0 & b_1 & b_2 & \cdots & b_4 & b_3 & b_2 & b_1 \\ b_2 & b_1 & b_0 & b_1 & \cdots & b_5 & b_4 & b_3 & b_2 \\ b_3 & b_2 & b_1 & b_0 & \cdots & b_6 & b_5 & b_4 & b_3 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ b_3 & b_4 & b_5 & b_6 & \cdots & b_0 & b_1 & b_2 & b_3 \\ b_2 & b_3 & b_4 & b_5 & \cdots & b_1 & b_0 & b_1 & b_2 \\ b_1 & b_2 & b_3 & b_4 & \cdots & b_2 & b_1 & b_0 & b_1 \\ b_0 & b_1 & b_2 & b_3 & \cdots & b_3 & b_2 & b_1 & b_0 \end{pmatrix}$$ - Extra symmetry fixes Diophantine Obstructions. - Always have eigenvalue at 0. ## **Results** ## Theorem: MMS '07 For real symmetric palindromic matrices, converge in probability to the Gaussian (if *p* is even have strong convergence). # Theorem: MMS '07 **HPT** Let X_0, \ldots, X_{N-1} be iidry (with $X_i = X_{N-i}$) from a distribution p with mean 0, variance 1, and finite higher moments. For $\omega = (x_0, x_1, \dots)$ set $X_{\ell}(\omega) = x_{\ell}$, and $$S_N^{(k)}(\omega) = \frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} X_\ell(\omega) \cos(2\pi k\ell/N).$$ Then as $n \to \infty$ $$\operatorname{Prob}\left(\left\{\omega\in\Omega:\sup_{\mathbf{x}\in\mathbb{R}}\left|\frac{1}{N}\sum_{k=0}^{N-1}I_{S_{N}^{(k)}(\omega)\leq\mathbf{x}}-\Phi(\mathbf{x})\right|\to0\right\}\right)\ =\ 1;$$ I the indicator fn, Φ CDF of standard normal. Real Symmetric Highly Palindromic Toeplitz Matrices Steven Jackson, Victor Luo, Steven J. Miller, Vincent Pham, Nicholas George Triantafillou # **Notation: Real Symmetric Highly Palindromic Toeplitz matrices** For fixed n, we consider $N \times N$ real symmetric Toeplitz matrices in which the first row is 2^n copies of a palindrome, entries are iidrv from a p with mean 0, variance 1 and finite higher moments. For instance, a doubly palindromic Toeplitz matrix is of the form: $$A_{N} = \begin{pmatrix} b_{0} & b_{1} & \cdots & b_{1} & b_{0} & b_{0} & b_{1} & \cdots & b_{1} & b_{0} \\ b_{1} & b_{0} & \cdots & b_{2} & b_{1} & b_{0} & b_{0} & \cdots & b_{2} & b_{1} \\ b_{2} & b_{1} & \cdots & b_{3} & b_{2} & b_{1} & b_{0} & \cdots & b_{3} & b_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ b_{2} & b_{3} & \cdots & b_{0} & b_{1} & b_{2} & b_{3} & \cdots & b_{1} & b_{2} \\ b_{1} & b_{2} & \cdots & b_{0} & b_{0} & b_{1} & b_{2} & \cdots & b_{0} & b_{1} \\ b_{0} & b_{1} & \cdots & b_{1} & b_{0} & b_{0} & b_{1} & \cdots & b_{1} & b_{0} \end{pmatrix}$$ 20 ## **Main Results** ## Theorem: JMP '12 Let n be a fixed positive integer, N a multiple of 2^n , consider the ensemble of real symmetric $N \times N$ palindromic Toeplitz matrices whose first row is 2^n copies of a fixed palindrome (independent entries iidrv from p with mean 0, variance 1 and finite higher moments). - As $N \to \infty$ the measures μ_{n,A_N} converge in probability to a limiting spectral measure which is even and has unbounded support. - If p is even, then converges almost surely. - The limiting measure has fatter tails than the Gaussian (or any previously seen distribution). Appendices - Highly Palindromic Real Symmetric: all matchings contribute equally for fourth moment, conjectured equally in general. - Highly Palindromic Hermitian: matchings do not contribute equally: fourth moment non-adjacent case is $\frac{1}{3}(2^n + 2^{-n})$, while the adjacent case is $\frac{1}{2}(2^n + 2^{-n})$. 22 Block Circulant Matrices Murat Koloğlu, Gene Kopp and Steven J. Miller ## The Ensemble of *m*-Block Circulant Matrices Study symmetric matrices periodic with period *m* on wrapped diagonals, i.e., symmetric block circulant matrices. 8-by-8 real symmetric 2-block circulant matrix: $$\begin{pmatrix} c_0 & c_1 & c_2 & c_3 & c_4 & d_3 & c_2 & d_1 \\ c_1 & d_0 & d_1 & d_2 & d_3 & d_4 & c_3 & d_2 \\ \hline c_2 & d_1 & c_0 & c_1 & c_2 & c_3 & c_4 & d_3 \\ c_3 & d_2 & c_1 & d_0 & d_1 & d_2 & d_3 & d_4 \\ \hline c_4 & d_3 & c_2 & d_1 & c_0 & c_1 & c_2 & c_3 \\ d_3 & d_4 & c_3 & d_2 & c_1 & d_0 & d_1 & d_2 \\ \hline c_2 & c_3 & c_4 & d_3 & c_2 & d_1 & c_0 & c_1 \\ d_1 & d_2 & d_3 & d_4 & c_3 & d_2 & c_1 & d_0 \end{pmatrix}$$ Choose distinct entries i.i.d.r.v. # **Oriented Matchings and Dualization** Compute moments of eigenvalue distribution (as m stays fixed and $N \to \infty$) using the combinatorics of pairings. Rewrite: $$M_{n}(N) = \frac{1}{N^{\frac{n}{2}+1}} \sum_{1 \leq i_{1}, \dots, i_{n} \leq N} \mathbb{E}(a_{i_{1}i_{2}} a_{i_{2}i_{3}} \cdots a_{i_{n}i_{1}})$$ $$= \frac{1}{N^{\frac{n}{2}+1}} \sum_{n} \eta(n) m_{d_{1}(n)} \cdots m_{d_{l}(n)}.$$ where the sum is over oriented matchings on the edges $\{(1,2),(2,3),...,(n,1)\}$ of a regular n-gon. 25 ## **Oriented Matchings and Dualization** **Figure:** A matching in the expansion for $M_n(N) = M_6(8)$. 26 ## **Oriented Matchings and Dualization** **Figure:** An oriented matching in the expansion for $M_n(N) = M_6(8)$. 27 # **Contributing Terms** As $N \to \infty$, the only terms that contribute to this sum are those in which the entries are matched in pairs and with opposite orientation. # **Only Topology Matters** Think of pairings as topological identifications; the contributing ones give rise to orientable surfaces. Contribution from such a pairing is m^{-2g} , where g is the genus (number of holes) of the surface. Proof: combinatorial argument involving Euler characteristic. Refs Appendices # Theorem: Even Moment Formula $$M_{2k} = \sum_{g=0}^{\lfloor k/2 \rfloor} \varepsilon_g(k) m^{-2g} + O_k \left(\frac{1}{N}\right),$$ with $\varepsilon_g(k)$ the number of pairings of the edges of a (2k)-gon giving rise to a genus g surface. J. Harer and D. Zagier (1986) gave generating functions for the $\varepsilon_g(k)$. 30 $$\sum_{g=0}^{\lfloor k/2\rfloor} \varepsilon_g(k) r^{k+1-2g} = (2k-1)!! c(k,r)$$ where Toeplitz $$1+2\sum_{k=0}^{\infty}c(k,r)x^{k+1} = \left(\frac{1+x}{1-x}\right)^{r}.$$ Thus, we write $$M_{2k} = m^{-(k+1)}(2k-1)!! c(k, m).$$ 31 $$\phi(t) = \sum_{k=0}^{\infty} \frac{(it)^{2k} M_{2k}}{(2k)!}$$ 32 $$\phi(t) = \sum_{k=0}^{\infty} \frac{(it)^{2k} M_{2k}}{(2k)!} = \frac{1}{m} \sum_{k=0}^{\infty} \frac{(-t^2/2m)^k}{k!} c(k,m)$$ $$\phi(t) = \sum_{k=0}^{\infty} \frac{(it)^{2k} M_{2k}}{(2k)!} = \frac{1}{m} \sum_{k=0}^{\infty} \frac{(-t^2/2m)^k}{k!} c(k, m)$$ $$= \frac{1}{2\pi i m} \oint_{|z|=2} \frac{1}{2z^{-1}} \left(\left(\frac{1+z^{-1}}{1-z^{-1}} \right)^m - 1 \right) e^{-t^2 z/2m} \frac{dz}{z}$$ A multiplicative convolution and Cauchy's residue formula vield the characteristic function of the distribution. $$\phi(t) = \sum_{k=0}^{\infty} \frac{(it)^{2k} M_{2k}}{(2k)!} = \frac{1}{m} \sum_{k=0}^{\infty} \frac{(-t^2/2m)^k}{k!} c(k, m)$$ $$= \frac{1}{2\pi i m} \oint_{|z|=2} \frac{1}{2z^{-1}} \left(\left(\frac{1+z^{-1}}{1-z^{-1}} \right)^m - 1 \right) e^{-t^2 z/2m} \frac{dz}{z}$$ $$= \frac{1}{m} e^{\frac{-t^2}{2m}} \sum_{\ell=1}^{m} {m \choose \ell} \frac{1}{(\ell-1)!} \left(\frac{-t^2}{m} \right)^{\ell-1}$$ ## Results Toeplitz Fourier transform and algebra yields # Theorem: Koloğlu, Kopp and Miller The limiting spectral density function $f_m(x)$ of the real symmetric m-block circulant ensemble is given by the formula $$f_m(x) = \frac{e^{-\frac{mx^2}{2}}}{\sqrt{2\pi m}} \sum_{r=0}^m \frac{1}{(2r)!} \sum_{s=0}^{m-r} {m \choose r+s+1}$$ $$\frac{(2r+2s)!}{(r+s)!s!} \left(-\frac{1}{2}\right)^s (mx^2)^r.$$ As $m \to \infty$, the limiting spectral densities approach the semicircle distribution. **Figure:** Plot for f_1 and histogram of eigenvalues of 100 circulant matrices of size 400×400 . **Figure:** Plot for f_2 and histogram of eigenvalues of 100 2-block circulant matrices of size 400×400 . **Figure:** Plot for f_3 and histogram of eigenvalues of 100 3-block circulant matrices of size 402×402 . **Figure:** Plot for f_4 and histogram of eigenvalues of 100 4-block circulant matrices of size 400×400 . **Figure:** Plot for f_8 and histogram of eigenvalues of 100 8-block circulant matrices of size 400×400 . **Figure:** Plot for f_{20} and histogram of eigenvalues of 100 20-block circulant matrices of size 400×400 . Figure: Plot of convergence to the semi-circle. Weighted Real Symmetric Toeplitz Matrices Olivia Beckwith, Steven J. Miller and Karen Shen ### New Ensemble: Signed Toeplitz and Palindromic Toeplitz Matrices For each entry, multiply by a randomly chosen $\epsilon_{ij} = \{1, -1\}$ with $p = \mathbb{P}(\epsilon_{ij} = 1)$ such that $\epsilon_{ij} = \epsilon_{ji}$. #### **New Ensemble: Signed Toeplitz and Palindromic Toeplitz Matrices** For each entry, multiply by a randomly chosen $\epsilon_{ij} = \{1, -1\}$ with $p = \mathbb{P}(\epsilon_{ij} = 1)$ such that $\epsilon_{ij} = \epsilon_{ij}$. Varying *p* allows us to *continuously* interpolate between: - Real Symmetric at $p = \frac{1}{2}$ (less structured) - Unsigned Toeplitz/Palindromic Toeplitz at p = 1 (more structured) 46 #### **New Ensemble: Signed Toeplitz and Palindromic Toeplitz Matrices** For each entry, multiply by a randomly chosen $\epsilon_{ij} = \{1, -1\}$ with $p = \mathbb{P}(\epsilon_{ij} = 1)$ such that $\epsilon_{ij} = \epsilon_{ji}$. Varying *p* allows us to *continuously* interpolate between: - Real Symmetric at $p = \frac{1}{2}$ (less structured) - Unsigned Toeplitz/Palindromic Toeplitz at p = 1 (more structured) What is the eigenvalue distribution of these signed ensembles? 47 ## **Weighted Contributions** #### Theorem: Each configuration weighted by $(2p-1)^{2m}$, where 2m is the number of points on the circle whose edge crosses another edge. ### Example: We compute the average k^{th} moment to be: $$\frac{1}{N^{\frac{k}{2}+1}} \sum_{1 \leq j_1, \dots, j_k \leq N} \mathbb{E} \left(\epsilon_{i_1 i_2} b_{|i_1 - i_2|} \epsilon_{i_2 i_3} b_{|i_2 - i_3|} \dots \epsilon_{i_k i_1} b_{|i_k - i_1|} \right)$$ where the b's are matched in pairs. We compute the average k^{th} moment to be: $$\frac{1}{N^{\frac{k}{2}+1}} \sum_{1 \leq i_1, \dots, i_k \leq N} \mathbb{E} \left(\epsilon_{i_1 i_2} b_{|i_1 - i_2|} \epsilon_{i_2 i_3} b_{|i_2 - i_3|} \dots \epsilon_{i_k i_1} b_{|i_k - i_1|} \right)$$ Refs Appendices where the b's are matched in pairs. If ϵ_{ij} is matched with some ϵ_{kl} , then $\mathbb{E}\left(\epsilon_{ij}\epsilon_{kl}\right)=1$. We compute the average k^{th} moment to be: $$\frac{1}{N^{\frac{k}{2}+1}} \sum_{1 \leq j_1, \dots, j_k \leq N} \mathbb{E} \left(\epsilon_{i_1 i_2} b_{|i_1 - i_2|} \epsilon_{i_2 i_3} b_{|i_2 - i_3|} \dots \epsilon_{i_k i_1} b_{|i_k - i_1|} \right)$$ where the b's are matched in pairs. If ϵ_{ij} is matched with some ϵ_{kl} , then $\mathbb{E}\left(\epsilon_{ij}\epsilon_{kl}\right)=1$. If ϵ_{ij} is not matched with any ϵ_{kl} , then $\mathbb{E}\left(\epsilon_{ij}\right)=(2p-1)$. We compute the average k^{th} moment to be: $$\frac{1}{N^{\frac{k}{2}+1}} \sum_{1 \leq j_1, \dots, j_k \leq N} \mathbb{E} \left(\epsilon_{i_1 i_2} b_{|i_1 - i_2|} \epsilon_{i_2 i_3} b_{|i_2 - i_3|} \dots \epsilon_{i_k i_1} b_{|i_k - i_1|} \right)$$ where the b's are matched in pairs. If ϵ_{ii} is matched with some ϵ_{kl} , then $\mathbb{E}\left(\epsilon_{ii}\epsilon_{kl}\right)=1$. If ϵ_{ii} is not matched with any ϵ_{kl} , then $\mathbb{E}(\epsilon_{ii}) = (2p-1)$. Can show two ϵ 's are matched if and only if their b's are not in a crossing. **Problem:** Out of the (2k-1)!! ways to pair 2k vertices, how many will have 2m vertices crossing $(Cross_{2k,2m})$? **Problem:** Out of the (2k-1)!! ways to pair 2k vertices, how many will have 2m vertices crossing $(Cross_{2k,2m})$? Example: $Cross_{8,4} = 28$ **Problem:** Out of the (2k-1)!! ways to pair 2k vertices, how many will have 2m vertices crossing $(Cross_{2k,2m})$? Example: $Cross_{8,4} = 28$ #### Fact: $Cross_{2k,0} = C_k$, the k^{th} Catalan number. **HPT** **Problem:** Out of the (2k-1)!! ways to pair 2k vertices, how many will have 2m vertices crossing $(Cross_{2k,2m})$? Example: $Cross_{8,4} = 28$ #### Fact: Toeplitz $Cross_{2k,0} = C_k$, the k^{th} Catalan number. What about for higher *m*? To calculate $Cross_{2k,2m}$, we write it as the following sum: $$Cross_{2k,2m} = \sum_{p=1}^{\lfloor \frac{m}{4} \rfloor} P_{2k,2m,p}.$$ where $P_{2k,2m,p}$ is the number of configurations of 2k vertices with 2m vertices crossing in p partitions. 57 To calculate $Cross_{2k,2m}$, we write it as the following sum: $$Cross_{2k,2m} = \sum_{p=1}^{\lfloor \frac{m}{4} \rfloor} P_{2k,2m,p}.$$ where $P_{2k,2m,p}$ is the number of configurations of 2k vertices with 2m vertices crossing in p partitions. ## **Non-Crossing Regions** #### Theorem: If 2m vertices are already paired, the number of ways to pair and place the remaining 2k - 2m vertices as non-crossing non-partitioning edges is $\binom{2k}{k-m}$. Example: $\binom{8}{2} = 28$ pairings with 4 crossing vertices. ## **Non-Crossing Regions** #### Theorem: Toeplitz If 2m vertices are already paired, the number of ways to pair and place the remaining 2k - 2m vertices as non-crossing non-partitioning edges is $\binom{2k}{k}$. Example: $\binom{8}{2} = 28$ pairings with 4 crossing vertices. #### Lemma: $$P_{2k,2m,1} = Cross_{2m,2m} \binom{2k}{k-m}$$. ## **Proof of Non-Crossing Regions Theorem** We showed the following equivalence: $$\sum_{s_1+s_2+\cdots+s_{2m}=2k-2m} C_{s_1} C_{s_2} \cdots C_{s_{2m}} = \binom{2k}{k-m}.$$ • $p = \frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support - $p = \frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support - Some progress towards exact formulas for the moments, from which we can recover the distribution - $p = \frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support - Some progress towards exact formulas for the moments, from which we can recover the distribution - Weight of each configuration as a function of p and the number of vertices in a crossing (2m): $(2p-1)^{2m}$ - $p = \frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support - Some progress towards exact formulas for the moments, from which we can recover the distribution - Weight of each configuration as a function of p and the number of vertices in a crossing (2m): $(2p-1)^{2m}$ - A way to count the number of configurations with 2m vertices crossing for small m Toeplitz - $p = \frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support - Some progress towards exact formulas for the moments, from which we can recover the distribution - Weight of each configuration as a function of p and the number of vertices in a crossing (2m): $(2p-1)^{2m}$ - A way to count the number of configurations with 2m vertices crossing for small m - Tight bounds on the moments in the limit - The expected number of vertices involved in a crossing is $$\frac{2k}{2k-1}\left(2k-2-\frac{{}_{2}F_{1}(1,\frac{3}{2},\frac{5}{2}-k;-1)}{2k-3}-(2k-1){}_{2}F_{1}(1,\frac{1}{2}+k,\frac{3}{2};-1)\right),$$ which is $$2k - 2 - \frac{2}{k} + O\left(\frac{1}{k^2}\right)$$ as $k \to \infty$. • The variance tends to 4 as $k \to \infty$. #### References - C. Hammond and S. J. Miller, Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices, Journal of Theoretical Probability 18 (2005), no. 3, 537–566. - A. Massey, S. J. Miller and J. Sinsheimer, Distribution of eigenvalues of real symmetric palindromic Toeplitz matrices and circulant matrices, Journal of Theoretical Probability 20 (2007), no. 3, 637–662. - S. Jackson, S. J. Miller and V. Pham, Distribution of eigenvalues for highly palindromic real symmetric Toeplitz matrices, Journal of Theoretical Probability 25 (2012), 464–495. - M. Koloğlu, G. S. Kopp, S. J. Miller, F. W. Strauch and W. Xiong, The Limiting Spectral Measure for Ensembles of Symmetric Block Circulant Matrices, to appear in the Journal of Theoretical Probability. # **Appendices** For sixth moment, five configurations occurring (respectively) 2, 6, 3, 3 and 1 times. $$M_6(N) = 11$$ (Gaussian's is 15). $M_8(N) = 64\frac{4}{15}$ (Gaussian's is 105). **Lemma:** For $2k \ge 4$, $\lim_{N\to\infty} M_{2k}(N) < (2k-1)!!$. 70 ## **Higher Toeplitz Moments: Unbounded support** **Lemma:** Moments' growth implies unbounded support. Proof: Main idea: $$i_{2} = i_{1} - \widetilde{X}_{1}$$ $$i_{3} = i_{1} - \widetilde{X}_{1} - \widetilde{X}_{2}$$ $$\vdots$$ $$i_{2k} = i_{1} - \widetilde{X}_{1} - \dots - \widetilde{X}_{2k}$$ Once specify i_1 and \widetilde{x}_1 through \widetilde{x}_{2k} , all indices fixed. If matched in pairs and each $i_j \in \{1, \dots, N\}$, have a valid configuration, contributes +1. Problem: a running sum $i_1 - \tilde{x}_1 - \cdots - \tilde{x}_m \notin \{1, \dots, N\}$. Lots of freedom in locating positive and negative signs, use CLT to show "most" configurations are valid. #### **Real Symmetric Palindromic Toeplitz** 500 Real Symmetric Palindromic Toeplitz, 1000×1000 . Note the bump at the zeroth bin is due to the forced eigenvalues at 0. **HPT** ## Palindromic Toeplitz: Effects of Palindromicity on Matchings $a_{i_m i_{m+1}}$ paired with $a_{i_n i_{n+1}}$ implies one of the following hold: $$i_{m+1} - i_m = \pm (i_{n+1} - i_n)$$ $i_{m+1} - i_m = \pm (i_{n+1} - i_n) + (N-1)$ $i_{m+1} - i_m = \pm (i_{n+1} - i_n) - (N-1)$. Concisely: There is a $C \in \{0, \pm (N-1)\}$ such that $$i_{m+1} - i_m = \pm (i_{n+1} - i_n) + C.$$ 73 ### **Palindromic Toeplitz: Fourth Moment** Highlights the effect of palindromicity. Still matched in pairs, but more diagonals now lead to valid matchings. ## **Palindromic Toeplitz: Fourth Moment** Highlights the effect of palindromicity. Still matched in pairs, but more diagonals now lead to valid matchings. Non-adjacent case was $x_1 = x_3$ and $x_2 = x_4$: $$i_1 - i_2 = -(i_3 - i_4)$$ and $i_2 - i_3 = -(i_4 - i_1)$. This yields $$i_1 = i_2 + i_4 - i_3, i_1, i_2, i_3, i_4 \in \{1, \dots, N\}.$$ 75 Appendices ## **Palindromic Toeplitz: Fourth Moment** Highlights the effect of palindromicity. Still matched in pairs, but more diagonals now lead to valid matchings. Non-adjacent case now $x_1 = x_3$ and $x_2 = x_4$: $$j-i = -(I-k)+C_1$$ $k-j = -(i-1)+C_2$ or equivalently $$j = i + k - l + C_1 = i + k - l - C_2.$$ We see that $C_1 = -C_2$, or $C_1 + C_2 = 0$. 76 ## **Highly Palindromic: Key Lemmas** Much of analysis similar to previous ensembles (though combinatorics more involved). For the fourth moment: both the adjacent and non-adjacent matchings contribute the same. Lemma: As $N \to \infty$ the fourth moment tends to $$M_{4,n} = 2^{n+1} + 2^{-n}$$. Note: Number of palindromes is 2^n ; thus smallest is $2^0 = 1$ (and do recover 3 for palindromic Toeplitz). 77 ### **Highly Palindromic: Conjectures** ## Conjecture Toeplitz In the limit, all matchings contribute equally. Very hard to test; numerics hard to analyze. To avoid simulating ever-larger matrices, noticed Diophantine analysis suggests average $2m^{\text{th}}$ moment of $N \times N$ matrices should satisfy $$M_{2m,n;N} = M_{2m,n} + \frac{C_{1,n}}{N} + \frac{C_{2,n}}{N^2} + \cdots + \frac{C_{m,n}}{N^m}.$$ Instead of simulating prohibitively large matrices, simulate large numbers of several sizes of smaller matrices, do a least squares analysis to estimate M_{2mn} . #### **Highly Palindromic: Conjectures** **Table:** Conjectured and observed moments for 1000 real symmetric doubly palindromic 2048×2048 Toeplitz matrices. The conjectured values come from assuming Conjecture. | Moment | Conjectured | Observed | Observed/Predicted | |--------|-------------|----------|--------------------| | 2 | 1.000 | 1.001 | 1.001 | | 4 | 4.500 | 4.521 | 1.005 | | 6 | 37.500 | 37.887 | 1.010 | | 8 | 433.125 | 468.53 | 1.082 | | 10 | 6260.63 | 107717.3 | 17.206 | #### **Highly Palindromic: Conjectures** **Table:** Observed moments for doubly palindromic Toeplitz matrices. Conjectured values from assuming Conjecture. | N | #sims | 2nd | 4th | 6th | 8th | 10th | |----------------------------|-----------|-------|-------|---------|---------|-----------| | 8 | 1,000,000 | 1.000 | 8.583 | 150.246 | 3984.36 | 141270.00 | | 12 | 1,000,000 | 1.000 | 7.178 | 110.847 | 2709.61 | 90816.60 | | 16 | 1,000,000 | 1.001 | 6.529 | 93.311 | 2195.78 | 73780.00 | | 20 | 1,000,000 | 1.001 | 6.090 | 80.892 | 1790.39 | 57062.50 | | 24 | 1,000,000 | 1.000 | 5.818 | 73.741 | 1577.42 | 49221.50 | | 28 | 1,000,000 | 1.000 | 5.621 | 68.040 | 1396.50 | 42619.90 | | 64 | 250,000 | 1.001 | 4.992 | 50.719 | 858.58 | 22012.90 | | 68 | 250,000 | 1.000 | 4.955 | 49.813 | 831.66 | 20949.60 | | 72 | 250,000 | 1.000 | 4.933 | 49.168 | 811.50 | 20221.20 | | 76 | 250,000 | 1.000 | 4.903 | 48.474 | 794.10 | 19924.10 | | 80 | 250,000 | 1.000 | 4.888 | 47.951 | 773.31 | 18817.00 | | 84 | 250,000 | 1.001 | 4.876 | 47.615 | 764.84 | 18548.00 | | 128 | 125,000 | 1.000 | 4.745 | 44.155 | 659.00 | 14570.60 | | 132 | 125,000 | 1.000 | 4.739 | 43.901 | 651.18 | 14325.30 | | 136 | 125,000 | 0.999 | 4.718 | 43.456 | 637.70 | 13788.10 | | 140 | 125,000 | 1.000 | 4.718 | 43.320 | 638.74 | 14440.40 | | 144 | 125,000 | 1.001 | 4.727 | 43.674 | 647.05 | 14221.80 | | 148 | 125,000 | 1.000 | 4.716 | 43.172 | 628.02 | 13648.10 | | Conjectured | | 1.000 | 4.500 | 37.500 | 433.125 | 6260.63 | | Best Fit M _{2m,2} | | 1.000 | 4.496 | 38.186 | 490.334 | 6120.94 | ## Weighted Toeplitz: Proof of Weighted Contributions Theorem A non-crossing pair of b's must have matched ϵ s: Assume $b_{|i_r-i_{r+1}|}$ and $b_{|i_p-i_{p+1}|}$ are a non-crossing pair. $$\sum_{k=r}^{p} (i_k - i_{k+1}) = 0$$ = $i_r - i_{r+1} + i_{r+1} + \cdots + i_p - i_{p+1} = i_r - i_{p+1}$ This implies that $i_r = i_{p+1}$. Similarly, $i_{r+1} = i_p$ Thus, $\epsilon_{i_r i_{r+1}} = \epsilon_{i_p i_{p+1}}$. # Weighted Toeplitz: Proof of Weighted Contributions Theorem A matched pair of ϵ 's must not be in a crossing: Suppose $\epsilon_{i_a i_{a+1}} = \epsilon_{i_b i_{b+1}}$, with a < b. $$\sum_{k=a}^{b} (i_k - i_{k+1}) = i_a - i_{b+1} = 0$$ $$= \sum_{k=a}^{d} \delta_k |i_k - i_{k+1}|$$ where $\delta_k = 0$ if and only if the vertex k is paired with is between a and b. Need N^{k+1} degrees of freedom, so $\delta_k = 0$ for all k. Thus, $\epsilon_{i_a i_{a+1}}$ and $\epsilon_{i_h i_{h+1}}$ are not in a crossing.