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@ See how the structure of the ensembles affects
limiting behavior.

@ Discuss the tools and techniques needed to prove the
results.
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Toeplitz
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Toeplitz Ensembles

Toeplitz matrix is of the form

bo b]_ b2 te bel
b_1 bo by - by
b, b bo -+ bnos
bi_n bo-n by - bo

@ Will consider Real Symmetric Toeplitz matrices.
@ Main diagonal zero, N — 1 independent parameters.
o Normalize Eigenvalues by v/N.

A
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Eigenvalue Density Measure

Let
My = lim Ea [Mk(A, N)],

N—oo

have M, = 1 and My, = 0.
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Even Moments

1
MZk(N) = W Z E(b|il_i2|b“2—i3‘ PN b‘i2k_i1‘)'

1<y, ik <N
Main Term: b;’s matched in pairs, say
By,

—ims1] — b\in—in+l|> Xm = ||m_|m+1| = ||n_|n+1-

Two possibilities:
im - ierl = in - inJrl or im - ierl = _(in - in+l)-

(2k — 1)!! ways to pair, 2 choices of sign.

B
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Main Term: All Signs Negative (else lower order contributio n)

1
MZk(N) = W Z E(b|il_i2|b“2—i3‘ PN b‘i2k_i1‘)'

lSi17"'7i2k§N
Let X1, ..., Xx be the values of the ||J — |J+1\ S, €1,...,¢6 the
choices of sign. Define X; =iy — iy, Xo = ip —i3,. ...
i = i1—X
i3 = il — il — iz
i1 = i —Xp— = Xok

k
=1

y
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Even Moments: Summary

Main Term: paired, all signs negative.
1
Mo (N) < (2k — 1)1 4 Oy (N) .

Bounded by Gaussian.
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The Fourth Moment

1
M4(N) = N3 Z E(b\ilfiz\b|i2*i3|b\i3*i4\b|i4*i1|)

1<iy,ip,i3,i4 <N

Let X = ||J — ij+1‘.
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The Fourth Moment

Case One: X1 = Xo, X3 = X4.
il — i2 = —(i2 — |3) and i3 — i4 = —(i4 — |1)

Implies
i = i3, Iy andis arbitrary.

Left with E[bZ bZ ]:
N® — N timesget 1, N timesget p; = E[by ].

Contributes 1 in the limit.
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The Fourth Moment

1
Ma(N) = N3 Z E(b\il—iz\bliz—islb\is—i4\b|i4—i1|)

1<y,in,i3,i4<N
Case Two: Diophantine Obstruction: X; = X3 and X, = X4.
i1 —ip = —(iz—ig) and i, —iz = —(isg —iy).
This yields
i1 = Ip+1ig — i3, Iy,lp,03,i4 € {1,... N}

Ifip,is > & and iz < §, iy > N: at most (1 — 5)N? valid
choices.

T
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The Fourth Moment

Theorem: Fourth Moment: Let p4 be the fourth moment

of p. Then
2 1

500 Toeplitz Matrices, 400 x 400.
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Main Result

Theorem: HM ’05

For real symmetric Toeplitz matrices, the limiting spectral
measure converges in probability to a unique measure of
unbounded support which is not the Gaussian. If p is
even have strong convergence).
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Poissonian Behavior?

0.2

1 2 3 4 5

Not rescaled. Looking at middle 11 spacings, 1000
Toeplitz matrices (1000 x 1000), entries iidrv from the
ndard normal.




Real Symmetric Palindromic Toeplitz Matrices
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by by b1 b, b, b3 b, b;
b, by by by bs by bs b,
b; b, by by be bs bs bs
b; by bs bg - bo b1 by, bs
b, by bs bs - by by by by
by b, bs by - b, by by by
bo by by bz - bs by, by bg

@ Extra symmetry fixes Diophantine Obstructions.
@ Always have eigenvalue at 0.




Theorem: MMS '07

For real symmetric palindromic matrices, converge in
probability to the Gaussian (if p is even have strong
convergence).




Results

Theorem: MMS '07

Let Xo, ..., Xn—1 be iidrv (with X; = Xy_j) from a
distribution p with mean 0, variance 1, and finite higher
moments. For w = (Xg, Xy, . .. ) set Xy(w) = X,, and

zZ

-1

SV(w) =

~
I
o

X¢(w) cos(2mk(/N).
Thenasn —

N—-1
1
Prob ({w €Q:sup| 5 kz_% sy — P)| = O}) = 1

| the indicator fn, & CDF of standard normal.

1




Real Symmetric Highly Palindromic Toeplitz Matrices
Steven Jackson, Victor Luo, Steven J. Miller, Vincent
Pham, Nicholas George Triantafillou




Notation: Real Symmetric Highly Palindromic Toeplitz matr ices

For fixed n, we consider N x N real symmetric Toeplitz
matrices in which the first row is 2" copies of a
palindrome, entries are iidrv from a p with mean 0,
variance 1 and finite higher moments.

For instance, a doubly palindromic Toeplitz matrix is of the

form:
bo b by bo bo b b1 bo
b1 b b, b1 by by b, by
b, by bz by by by bz by
Ay = P
b, bs bo b1 by bs by by
by by bo bo by by bo b




Main Results

Theorem: JMP '12

Let n be a fixed positive integer, N a multiple of 2",
consider the ensemble of real symmetric N x N
palindromic Toeplitz matrices whose first row is 2" copies
of a fixed palindrome (independent entries iidrv from p
with mean 0, variance 1 and finite higher moments).

@ As N — oo the measures yn a, COnverge in probability
to a limiting spectral measure which is even and has
unbounded support.

© If p is even, then converges almost surely.

@ The limiting measure has fatter tails than the
Gaussian (or any previously seen distribution).




Work in Progress (with Victor Luo and Nicholas Triantafillou

@ Highly Palindromic Real Symmetric: all matchings
contribute equally for fourth moment, conjectured
equally in general.

@ Highly Palindromic Hermitian: matchings do not
contribute equally: fourth moment non-adjacent case
is £(2" +27"), while the adjacent case is (2" +27").
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The Ensemble of m-Block Circulant Matrices

Study symmetric matrices periodic with period m on
wrapped diagonals, i.e., symmetric block circulant
matrices.

8-by-8 real symmetric 2-block circulant matrix:

Co CL|C C3|Cys d3 Co dl
(o] do dl d2 d3 d4 C3 d2
Co dl Co CL|C C3|Cys d3
C3 d2 C1 do dl d2 d3 d4
Cy d3 Co dl Co Ci1|Cr C3
d3 d4 Cs d2 C1 do dl d2
Cr C3|Cy d3 Co dl Co C1
dl d2 d3 d4 C3 dz C1 do

Choose distinct entries i.i.d.r.v.
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Oriented Matchings and Dualization

Compute moments of eigenvalue distribution (as m stays
fixed and N — oo) using the combinatorics of pairings.
Rewrite:

Mn(N) = N > E(ay,80), - 8i,)
2 1<iy in<N

1
= o Z 1(~)Ma,(~) - - May(~)-

where the sum is over oriented matchings on the edges
{(1,2),(2,3),...,(n,1)} of a regular n-gon.




Block Circulant
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Oriented Matchings and Dualization

Figure: A matching in the expansion for M,(N) = Mg(8).




Block Circulant
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Oriented Matchings and Dualization

Co Cp1|Cr C3|Cy d3 c, di
Cy do d; ds d3 da C3 d>

c, di Co C1|Cr C3|Cy d3
C3 d2 C1 do d]_ d2 d3 d4

Cy d3 Co d]_ Co Ci1|Cr C3
d3 d4 C3 d2 Cy do dl d2

Co, C3|Cy d3 c, di Co Ci1
d; do d3 da C3 dr | c1 do

Figure: An oriented matching in the expansion for M,(N) = Mg(8).




Block Circulant

Contributing Terms

As N — oo, the only terms that contribute to this sum are
those in which the entries are matched in pairs and with
opposite orientation.
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Only Topology Matters

Think of pairings as topological identifications; the
contributing ones give rise to orientable surfaces.

i3 i9

(L'igi4 Qg

Qigis Aigiy

Contribution from such a pairing is m=29, where g is the
genus (number of holes) of the surface. Proof:
combinatorial argument involving Euler characteristic.

)
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Computing the Even Moments

Theorem: Even Moment Formula
[k/2] 1
Mo = ) eg(k)m~2¢ + O, (N) :

9=0

with g4(k) the number of pairings of the edges of a
(2k)-gon giving rise to a genus g surface.

J. Harer and D. Zagier (1986) gave generating functions
for the £4(K).
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Harer and Zagier

Lk/2]
D eg(k)rkt0 = (2k — 1)l c(k, 1)
g=0
where r
- 1+ x
k+1
1+2§c(k,r)x = (1—x) .

Thus, we write

My = m~ &2k — D)lic(k, m).
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A multiplicative convolution and Cauchy’s residue formula
yield the characteristic function of the distribution.

o0

Z It ZkMZk

k=




Block Circulant
°

A multiplicative convolution and Cauchy’s residue formula
yield the characteristic function of the distribution.




Block Circulant
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A multiplicative convolution and Cauchy’s residue formula
yield the characteristic function of the distribution.

o(t) = T2k

k=0

1

m
1 f 1
N 27im |z|=2 2z1
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A multiplicative convolution and Cauchy’s residue formula
yield the characteristic function of the distribution.

o(t) =

k=0

1

m
1 f 1
N 27im |z|=2 2z1




Block Circulant

Fourier transform and algebra yields

Theorem: Kolo glu, Kopp and Miller

The limiting spectral density function f,(x) of the real
symmetric m-block circulant ensemble is given by the
formula

fn(X) = j;—ig (er)! g (r +rsn+ 1)
(2r +2s)! (_1>s(mx2)r.

(r+s)ls! 2

As m — oo, the limiting spectral densities approach the
semicircle distribution.
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Results (continued)

Figure: Plot for f; and histogram of eigenvalues of 100 circulant
matrices of size 400 x 400.
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Results (continued)

0.4

. .
-3 -2 -1 1 2 3

Figure: Plot for f, and histogram of eigenvalues of 100 2-block
circulant matrices of size 400 x 400.
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Results (continued)

-3 -2 -1 1 2 3

Figure: Plot for f3 and histogram of eigenvalues of 100 3-block
circulant matrices of size 402 x 402.
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Results (continued)

0.4

-3 -2 -1 1 2 3

Figure: Plot for f, and histogram of eigenvalues of 100 4-block
circulant matrices of size 400 x 400.

A
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Results (continued)

0.4

Figure: Plot for fg and histogram of eigenvalues of 100 8-block
circulant matrices of size 400 x 400.

A
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Results (continued)

0.4

-3 -2 -1 1 2 3

Figure: Plot for f,o and histogram of eigenvalues of 100 20-block
circulant matrices of size 400 x 400.

A
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Results (continued)

Figure: Plot of convergence to the semi-circle.

A
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Weighted Real Symmetric Toeplitz Matrices
Olivia Beckwith, Steven J. Miller and Karen Shen J
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New Ensemble: Signed Toeplitz and Palindromic Toeplitz Mat  rices

For each entry, multiply by a randomly chosen
€jj = {1, —1} with P= ]P)(Eij = l) such that €ij = €ji-

AT




Weighted Toeplitz
°

New Ensemble: Signed Toeplitz and Palindromic Toeplitz Mat  rices

For each entry, multiply by a randomly chosen
€jj = {1, —1} with P= ]P)(Eij = l) such that €ij = €ji-

Varying p allows us to continuously interpolate between:
@ Real Symmetricatp = % (less structured)

@ Unsigned Toeplitz/Palindromic Toeplitz at p = 1 (more
structured)

AR




Weighted Toeplitz
°

New Ensemble: Signed Toeplitz and Palindromic Toeplitz Mat  rices

For each entry, multiply by a randomly chosen
€jj = {1, —1} with P= ]P)(Eij = l) such that €ij = €ji-

Varying p allows us to continuously interpolate between:
@ Real Symmetricatp = % (less structured)

@ Unsigned Toeplitz/Palindromic Toeplitz at p = 1 (more
structured)

What is the eigenvalue distribution of these signed
ensembles?

A
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Weighted Contributions

Each configuration weighted by (2p — 1)?™, where 2m is
the number of points on the circle whose edge crosses

another edge.

Example:

eSS

A
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Proof of Weighted Contributions Theorem

We compute the average k™" moment to be:

1
‘ DD L CHATREAENY TRENPIRE NN JRN)

kKiq
N2"" T <N

where the b’s are matched in pairs.

AQ




Weighted Toeplitz
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Proof of Weighted Contributions Theorem

We compute the average k™" moment to be:

1
NS+ Z E (Eilizb|i1—i2|€i2i3b\i2—i3\ s eikilb\ik—il\)

1<ig,. ik <N

where the b’s are matched in pairs.

If ¢; is matched with some ¢4, then E (ejjeq) = 1.




Weighted Toeplitz
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Proof of Weighted Contributions Theorem

We compute the average k™" moment to be:

1
‘ DD L CHATREAENY TRENPIRE NN JRN)

kKiq
N2"" T <N

where the b’s are matched in pairs.
If ¢; is matched with some ¢4, then E (ejjeq) = 1.

If &; is not matched with any ¢y, then E () = (2p — 1).




Weighted Toeplitz
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Proof of Weighted Contributions Theorem

We compute the average k™" moment to be:

1
NS+ Z E (Eilizb|i1—i2|€i2i3b\i2—i3\ s eikilb\ik—il\)

1<ig,. ik <N

where the b’s are matched in pairs.
If ¢; is matched with some ¢4, then E (ejjeq) = 1.
If &; is not matched with any ¢y, then E () = (2p — 1).

Can show two ¢’s are matched if and only if their b’s are
not in a crossing.




Weighted Toeplitz
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Counting Crossing Configurations

Problem: Out of the (2k — 1)!! ways to pair 2k vertices,
how many will have 2m vertices crossing (Crossy om)?




Weighted Toeplitz
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Counting Crossing Configurations

Problem: Out of the (2k — 1)!! ways to pair 2k vertices,
how many will have 2m vertices crossing (Crossy om)?

Example: Crossg, = 28

SN




Weighted Toeplitz
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Counting Crossing Configurations

Problem: Out of the (2k — 1)!! ways to pair 2k vertices,
how many will have 2m vertices crossing (Crossy om)?

Example: Crossg, = 28

—
N\ NS \
SR NEAARE
Crossyi 0 = Cx, the k' Catalan number.
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Counting Crossing Configurations

Problem: Out of the (2k — 1)!! ways to pair 2k vertices,
how many will have 2m vertices crossing (Crossy om)?

Example: Crossg, = 28

—
N\ NS \
SR NEAARE
Crossyi 0 = Cx, the k' Catalan number.

What about for higher m?
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Counting Crossing Configurations

To calculate Crossyk »m, We write it as the following sum:

Crossyk om = Z Pok 2m,p-
p-1

where P omp is the number of configurations of 2k
vertices with 2m vertices crossing in p partitions.




Weighted Toeplitz
.

Counting Crossing Configurations

To calculate Crossyk »m, We write it as the following sum:

Crossyk om = Z Pok 2m,p-
p-1

where P omp is the number of configurations of 2k
vertices with 2m vertices crossing in p partitions.

For example:
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Non-Crossing Regions

If 2m vertices are already paired, the number of ways to
pair and place the remaining 2k — 2m vertices as
non-crossing non-partitioning edges is (> ).

Example: g = 28 pairings with 4 crossing vertices.

*\ /L\ \
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Non-Crossing Regions

¢

If 2m vertices are already paired, the number of ways to
pair and place the remaining 2k — 2m vertices as
non-crossing non-partitioning edges is (> ).

8

Example 2

= 28 pairings with 4 crossing vertices.
*\ a5 \
><8

2k
Pak,2m,1 = Crossom om (k,m)-
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Proof of Non-Crossing Regions Theorem

We showed the following equivalence:

2k
> Cs,Cs,++ Cs, = (k - m).

S1+So++Som=2k—2m

¢
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Summary of Results

Op:
p #

: Semicircle Distribution (Bounded Support)
: Unbounded Support

NIFRNI(-

R




Weighted Toeplitz
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Summary of Results

@ p = 3: Semicircle Distribution (Bounded Support)
p # 5: Unbounded Support

@ Some progress towards exact formulas for the
moments, from which we can recover the distribution

NIFRNI(-

R




Weighted Toeplitz
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Summary of Results

op= %: Semicircle Distribution (Bounded Support)
p # 3: Unbounded Support

@ Some progress towards exact formulas for the
moments, from which we can recover the distribution
@ Weight of each configuration as a function of p and the
number of vertices in a crossing (2m): (2p — 1)2m

RA




Weighted Toeplitz
°

Summary of Results

op= %: Semicircle Distribution (Bounded Support)
p # 3: Unbounded Support
@ Some progress towards exact formulas for the
moments, from which we can recover the distribution
@ Weight of each configuration as a function of p and the

number of vertices in a crossing (2m): (2p — 1)2m
@ A way to count the number of configurations with 2m
vertices crossing for small m

RE
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Weighted Toeplitz
°

Summary of Results

op= %: Semicircle Distribution (Bounded Support)
p # 3: Unbounded Support
@ Some progress towards exact formulas for the
moments, from which we can recover the distribution
@ Weight of each configuration as a function of p and the
number of vertices in a crossing (2m): (2p — 1)*"
@ A way to count the number of configurations with 2m
vertices crossing for small m
@ Tight bounds on the moments in the limit
@ The expected number of vertices involved in a crossing is

2k 2F1(17%7% 7k’71) 1 3
2k —2 — —(2k —1) ,F(1,= +k,=; -1
2k—l< 2k — 3 ( )2 1(72+ N ) )

whichis 2k —2 — £ + O (%) ask — oo.
o The variance tendsto 4 as k — oo.

OGS
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Appendices
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Higher Toeplitz Moments: Brute Force

For sixth moment, five configurations occurring
(respectively) 2,6, 3,3 and 1 times.

Me(N) = 11 (Gaussian’s is 15).
Ms(N) = 64-% (Gaussian's is 105).

Lemma: For 2k > 4, limy_, Ma(N) < (2k — 1)!1.
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Higher Toeplitz Moments: Unbounded support

Lemma: Moments’ growth implies unbounded support.

Proof: Main idea:

i = b—X;
i3 = 1—X1—X
ok = i1 —Xg— - — Xak.

Once specify i; and X; through Xy, all indices fixed.

If matched in pairs and each i; € {1,...,N}, have a valid
configuration, contributes +1.
Problem: a running sumi; —X; — -+~ —Xm € {1,...,N}.

Lots of freedom in locating positive and negative signs,
use CLT to show “most” configurations are valid.

y
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Real Symmetric Palindromic Toeplitz

500 Real Symmetric Palindromic Toeplitz, 2000 x 1000.

Note the bump at the zeroth bin is due to the forced
eigenvalues at 0.

7SS -
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Palindromic Toeplitz: Effects of Palindromicity on Matchi ngs

Q.. Paired with a; ; ., implies one of the following hold:

ierl - im = :|:(in+1 - in)

Concisely: Thereisa C € {0, £(N — 1)} such that
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Palindromic Toeplitz: Fourth Moment

Highlights the effect of palindromicity.

Still matched in pairs, but more diagonals now lead to
valid matchings.

A




Appendices
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Palindromic Toeplitz: Fourth Moment

Highlights the effect of palindromicity.

Still matched in pairs, but more diagonals now lead to
valid matchings.

Non-adjacent case was X; = X3 and X, = X4:
i]_ — i2 = —(|3 — |4) and i2 — i3 = —(|4 — |1)
This yields

il - i2+i4_i37 il7i27i37i4€{17"'7N}'

V- EEEEEOOSTSTSSSSSSS L —-—S
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Palindromic Toeplitz: Fourth Moment

Highlights the effect of palindromicity.

Still matched in pairs, but more diagonals now lead to
valid matchings.

Non-adjacent case now X; = Xz and X, = X4:
j—i=-(0-K+C  k—-j=-(-D+Cs
or equivalently
j=1+k—-1+C, =i+k—-1-0C,.

We see that C; = —C,,0orC; + C, = 0.

y
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Highly Palindromic: Key Lemmas

Much of analysis similar to previous ensembles (though
combinatorics more involved).

For the fourth moment: both the adjacent and
non-adjacent matchings contribute the same.

Lemma: As N — oo the fourth moment tends to
Mgn = 2"t 427",

Note: Number of palindromes is 2"; thus smallest is
2° = 1 (and do recover 3 for palindromic Toeplitz).

y
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Appendices
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Highly Palindromic: Conjectures

In the limit, all matchings contribute equally.

Very hard to test; numerics hard to analyze.

To avoid simulating ever-larger matrices, noticed
Diophantine analysis suggests average 2m™ moment of
N x N matrices should satisfy

C2,n Cm,n

Cin, Con

N N2 Nm™ -
Instead of simulating prohibitively large matrices, simulate
large numbers of several sizes of smaller matrices, do a
least squares analysis to estimate My, ..

MZm,n;N = Iv|2m,n‘|'
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Highly Palindromic: Conjectures

Table: Conjectured and observed moments for 1000 real symmetric
doubly palindromic 2048 x 2048 Toeplitz matrices. The conjectured
values come from assuming Conjecture.

| Moment | Conjectured | Observed | Observed/Predicted |

2 1.000 1.001 1.001
4 4.500 4.521 1.005
6 37.500 37.887 1.010
8 433.125 468.53 1.082
10 6260.63 | 107717.3 17.206

Qe



Highly Palindromic: Conjectures

Appendices
[ ele}

Table: Observed moments for doubly palindromic Toeplitz matrices.

Conjectured values from assuming Conjecture.

[ N #isims [ 2nd [ 4th ] 6th | 8th | 10th |
8 1,000,000 1.000 8.583 150.246 3984.36 141270.00
12 1,000,000 1.000 7.178 110.847 2709.61 90816.60
16 1,000,000 1.001 6.529 93.311 2195.78 73780.00
20 1,000,000 1.001 6.090 80.892 1790.39 57062.50
24 1,000,000 1.000 5.818 73.741 1577.42 49221.50
28 1,000,000 1.000 5.621 68.040 1396.50 42619.90
64 250,000 1.001 4.992 50.719 858.58 22012.90
68 250,000 1.000 4.955 49.813 831.66 20949.60
72 250,000 1.000 4,933 49.168 811.50 20221.20
76 250,000 1.000 4.903 48.474 794.10 19924.10
80 250,000 1.000 4.888 47.951 773.31 18817.00
84 250,000 1.001 4.876 47.615 764.84 18548.00
128 125,000 1.000 4,745 44.155 659.00 14570.60
132 125,000 1.000 4.739 43.901 651.18 14325.30
136 125,000 0.999 4.718 43.456 637.70 13788.10
140 125,000 1.000 4,718 43.320 638.74 14440.40
144 125,000 1.001 4.727 43.674 647.05 14221.80
148 125,000 1.000 4.716 43.172 628.02 13648.10
[ Conjectured [ 1.000 | 4500 | 37500 | 433.125 |  6260.63 |
| Best Fit My, o | | 1.000 | 4.496 | 38.186 | 490.334 | 6120.94 |

Q)
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Weighted Toeplitz: Proof of Weighted Contributions Theore

A non-crossing pair of b’s must have matched es:

Assume by _; | and b|ip7ip+1| are a non-crossing pair.

|ir_+1| _ ZE:r (Ik - Ik+l) = O
, * =k —li1+li1- -+l —lpt1 =l —lpta

This implies that i; = ip1.
Similarly, iry1 = ip

Thus, €iriprq — Eipi

p+1°
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Weighted Toeplitz: Proof of Weighted Contributions Theore

A matched pair of ¢€'s must not be in a crossing:
Suppose €i,i, ., = 6yi,,,» With @ < b.

b

D (i —ikr1) = fa—ipsa = O

k=a
d
= > dlic — sl
k=b

where & = 0 if and only if the vertex k is paired with is
between a and b.

Need N*X*! degrees of freedom, so & = O for all k.
Thus, €,;,,, and €, ., are notin a crossing.
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